Properties

Label 1682.4.a.k
Level $1682$
Weight $4$
Character orbit 1682.a
Self dual yes
Analytic conductor $99.241$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1682,4,Mod(1,1682)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1682, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1682.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1682.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-12,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.2412126297\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 97x^{4} - 87x^{3} + 1809x^{2} + 1890x - 1620 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (\beta_{5} - 2) q^{3} + 4 q^{4} + ( - \beta_{5} + \beta_{4} - \beta_{3} + \cdots + 1) q^{5} + ( - 2 \beta_{5} + 4) q^{6} + (\beta_{5} + \beta_{4} + 2 \beta_{3} + \cdots - 6) q^{7} - 8 q^{8}+ \cdots + ( - 75 \beta_{5} - 98 \beta_{4} + \cdots + 177) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{2} - 10 q^{3} + 24 q^{4} - 10 q^{5} + 20 q^{6} - 26 q^{7} - 48 q^{8} + 54 q^{9} + 20 q^{10} + 89 q^{11} - 40 q^{12} - 86 q^{13} + 52 q^{14} - 89 q^{15} + 96 q^{16} + 95 q^{17} - 108 q^{18} + 30 q^{19}+ \cdots + 3854 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 97x^{4} - 87x^{3} + 1809x^{2} + 1890x - 1620 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -77\nu^{5} + 395\nu^{4} + 5585\nu^{3} - 11565\nu^{2} - 81423\nu - 45792 ) / 58374 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} + 11\nu^{4} - 172\nu^{3} - 702\nu^{2} + 3528\nu + 3861 ) / 621 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 58\nu^{5} - 466\nu^{4} - 1006\nu^{3} + 5721\nu^{2} - 57438\nu + 175500 ) / 29187 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 53\nu^{5} - 314\nu^{4} - 3044\nu^{3} + 9645\nu^{2} + 16623\nu - 20790 ) / 9729 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 4\beta_{5} - 3\beta_{4} + 12\beta_{2} + 4\beta _1 + 36 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 22\beta_{5} - 3\beta_{4} + 3\beta_{3} + 90\beta_{2} + 65\beta _1 + 117 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 347\beta_{5} - 177\beta_{4} + 57\beta_{3} + 1236\beta_{2} + 459\beta _1 + 2421 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2775\beta_{5} - 675\beta_{4} + 510\beta_{3} + 10308\beta_{2} + 5411\beta _1 + 14904 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.65790
−6.42899
−1.68430
0.565072
9.73132
−5.84101
−2.00000 −9.53664 4.00000 1.45008 19.0733 −33.3969 −8.00000 63.9476 −2.90016
1.2 −2.00000 −5.97333 4.00000 −9.06103 11.9467 −5.48119 −8.00000 8.68070 18.1221
1.3 −2.00000 −3.04095 4.00000 20.5863 6.08191 −7.99437 −8.00000 −17.7526 −41.1726
1.4 −2.00000 −2.91431 4.00000 −7.56771 5.82861 17.6968 −8.00000 −18.5068 15.1354
1.5 −2.00000 4.01428 4.00000 −7.58102 −8.02857 0.475564 −8.00000 −10.8855 15.1620
1.6 −2.00000 7.45095 4.00000 −7.82664 −14.9019 2.70016 −8.00000 28.5167 15.6533
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1682.4.a.k 6
29.b even 2 1 1682.4.a.l yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1682.4.a.k 6 1.a even 1 1 trivial
1682.4.a.l yes 6 29.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} + 10T_{3}^{5} - 58T_{3}^{4} - 695T_{3}^{3} - 229T_{3}^{2} + 8470T_{3} + 15100 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1682))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 10 T^{5} + \cdots + 15100 \) Copy content Toggle raw display
$5$ \( T^{6} + 10 T^{5} + \cdots + 121455 \) Copy content Toggle raw display
$7$ \( T^{6} + 26 T^{5} + \cdots - 33255 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 3156090039 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 1068709689 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 4813781796 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 127552104955 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 222823171989 \) Copy content Toggle raw display
$29$ \( T^{6} \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 7738085869 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 1658282920880 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 6378535487664 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 7863899526659 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 92542526238339 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 119294451556596 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 18\!\cdots\!25 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 26\!\cdots\!95 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 26735867645905 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 17\!\cdots\!21 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 1844275431359 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 74546262563805 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 14\!\cdots\!59 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 23\!\cdots\!95 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 89\!\cdots\!64 \) Copy content Toggle raw display
show more
show less