Properties

Label 1682.4.a.k.1.3
Level $1682$
Weight $4$
Character 1682.1
Self dual yes
Analytic conductor $99.241$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1682,4,Mod(1,1682)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1682, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1682.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1682.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-12,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.2412126297\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 97x^{4} - 87x^{3} + 1809x^{2} + 1890x - 1620 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.68430\) of defining polynomial
Character \(\chi\) \(=\) 1682.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -3.04095 q^{3} +4.00000 q^{4} +20.5863 q^{5} +6.08191 q^{6} -7.99437 q^{7} -8.00000 q^{8} -17.7526 q^{9} -41.1726 q^{10} +51.8694 q^{11} -12.1638 q^{12} -66.5113 q^{13} +15.9887 q^{14} -62.6020 q^{15} +16.0000 q^{16} +119.963 q^{17} +35.5052 q^{18} -114.153 q^{19} +82.3453 q^{20} +24.3105 q^{21} -103.739 q^{22} -156.955 q^{23} +24.3276 q^{24} +298.797 q^{25} +133.023 q^{26} +136.091 q^{27} -31.9775 q^{28} +125.204 q^{30} +28.7742 q^{31} -32.0000 q^{32} -157.732 q^{33} -239.925 q^{34} -164.575 q^{35} -71.0104 q^{36} +149.472 q^{37} +228.306 q^{38} +202.258 q^{39} -164.691 q^{40} -16.6204 q^{41} -48.6210 q^{42} -19.8401 q^{43} +207.477 q^{44} -365.461 q^{45} +313.909 q^{46} -277.437 q^{47} -48.6552 q^{48} -279.090 q^{49} -597.593 q^{50} -364.801 q^{51} -266.045 q^{52} -193.075 q^{53} -272.181 q^{54} +1067.80 q^{55} +63.9550 q^{56} +347.134 q^{57} +129.515 q^{59} -250.408 q^{60} -495.263 q^{61} -57.5483 q^{62} +141.921 q^{63} +64.0000 q^{64} -1369.22 q^{65} +315.465 q^{66} -800.451 q^{67} +479.850 q^{68} +477.292 q^{69} +329.149 q^{70} -464.445 q^{71} +142.021 q^{72} -28.9706 q^{73} -298.944 q^{74} -908.626 q^{75} -456.612 q^{76} -414.663 q^{77} -404.515 q^{78} -45.5102 q^{79} +329.381 q^{80} +65.4754 q^{81} +33.2408 q^{82} -136.916 q^{83} +97.2420 q^{84} +2469.59 q^{85} +39.6802 q^{86} -414.955 q^{88} +329.723 q^{89} +730.922 q^{90} +531.716 q^{91} -627.818 q^{92} -87.5009 q^{93} +554.875 q^{94} -2349.99 q^{95} +97.3105 q^{96} +251.136 q^{97} +558.180 q^{98} -920.816 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{2} - 10 q^{3} + 24 q^{4} - 10 q^{5} + 20 q^{6} - 26 q^{7} - 48 q^{8} + 54 q^{9} + 20 q^{10} + 89 q^{11} - 40 q^{12} - 86 q^{13} + 52 q^{14} - 89 q^{15} + 96 q^{16} + 95 q^{17} - 108 q^{18} + 30 q^{19}+ \cdots + 3854 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −3.04095 −0.585232 −0.292616 0.956230i \(-0.594526\pi\)
−0.292616 + 0.956230i \(0.594526\pi\)
\(4\) 4.00000 0.500000
\(5\) 20.5863 1.84130 0.920648 0.390393i \(-0.127661\pi\)
0.920648 + 0.390393i \(0.127661\pi\)
\(6\) 6.08191 0.413821
\(7\) −7.99437 −0.431656 −0.215828 0.976431i \(-0.569245\pi\)
−0.215828 + 0.976431i \(0.569245\pi\)
\(8\) −8.00000 −0.353553
\(9\) −17.7526 −0.657504
\(10\) −41.1726 −1.30199
\(11\) 51.8694 1.42175 0.710873 0.703321i \(-0.248300\pi\)
0.710873 + 0.703321i \(0.248300\pi\)
\(12\) −12.1638 −0.292616
\(13\) −66.5113 −1.41899 −0.709497 0.704709i \(-0.751078\pi\)
−0.709497 + 0.704709i \(0.751078\pi\)
\(14\) 15.9887 0.305227
\(15\) −62.6020 −1.07758
\(16\) 16.0000 0.250000
\(17\) 119.963 1.71148 0.855741 0.517404i \(-0.173102\pi\)
0.855741 + 0.517404i \(0.173102\pi\)
\(18\) 35.5052 0.464925
\(19\) −114.153 −1.37834 −0.689171 0.724599i \(-0.742025\pi\)
−0.689171 + 0.724599i \(0.742025\pi\)
\(20\) 82.3453 0.920648
\(21\) 24.3105 0.252618
\(22\) −103.739 −1.00533
\(23\) −156.955 −1.42293 −0.711463 0.702724i \(-0.751967\pi\)
−0.711463 + 0.702724i \(0.751967\pi\)
\(24\) 24.3276 0.206911
\(25\) 298.797 2.39037
\(26\) 133.023 1.00338
\(27\) 136.091 0.970024
\(28\) −31.9775 −0.215828
\(29\) 0 0
\(30\) 125.204 0.761968
\(31\) 28.7742 0.166709 0.0833547 0.996520i \(-0.473437\pi\)
0.0833547 + 0.996520i \(0.473437\pi\)
\(32\) −32.0000 −0.176777
\(33\) −157.732 −0.832050
\(34\) −239.925 −1.21020
\(35\) −164.575 −0.794806
\(36\) −71.0104 −0.328752
\(37\) 149.472 0.664137 0.332069 0.943255i \(-0.392253\pi\)
0.332069 + 0.943255i \(0.392253\pi\)
\(38\) 228.306 0.974635
\(39\) 202.258 0.830440
\(40\) −164.691 −0.650997
\(41\) −16.6204 −0.0633090 −0.0316545 0.999499i \(-0.510078\pi\)
−0.0316545 + 0.999499i \(0.510078\pi\)
\(42\) −48.6210 −0.178628
\(43\) −19.8401 −0.0703624 −0.0351812 0.999381i \(-0.511201\pi\)
−0.0351812 + 0.999381i \(0.511201\pi\)
\(44\) 207.477 0.710873
\(45\) −365.461 −1.21066
\(46\) 313.909 1.00616
\(47\) −277.437 −0.861029 −0.430515 0.902584i \(-0.641668\pi\)
−0.430515 + 0.902584i \(0.641668\pi\)
\(48\) −48.6552 −0.146308
\(49\) −279.090 −0.813674
\(50\) −597.593 −1.69025
\(51\) −364.801 −1.00161
\(52\) −266.045 −0.709497
\(53\) −193.075 −0.500394 −0.250197 0.968195i \(-0.580495\pi\)
−0.250197 + 0.968195i \(0.580495\pi\)
\(54\) −272.181 −0.685910
\(55\) 1067.80 2.61785
\(56\) 63.9550 0.152613
\(57\) 347.134 0.806650
\(58\) 0 0
\(59\) 129.515 0.285787 0.142893 0.989738i \(-0.454359\pi\)
0.142893 + 0.989738i \(0.454359\pi\)
\(60\) −250.408 −0.538792
\(61\) −495.263 −1.03954 −0.519770 0.854306i \(-0.673982\pi\)
−0.519770 + 0.854306i \(0.673982\pi\)
\(62\) −57.5483 −0.117881
\(63\) 141.921 0.283815
\(64\) 64.0000 0.125000
\(65\) −1369.22 −2.61279
\(66\) 315.465 0.588348
\(67\) −800.451 −1.45956 −0.729781 0.683681i \(-0.760378\pi\)
−0.729781 + 0.683681i \(0.760378\pi\)
\(68\) 479.850 0.855741
\(69\) 477.292 0.832741
\(70\) 329.149 0.562013
\(71\) −464.445 −0.776330 −0.388165 0.921590i \(-0.626891\pi\)
−0.388165 + 0.921590i \(0.626891\pi\)
\(72\) 142.021 0.232463
\(73\) −28.9706 −0.0464487 −0.0232244 0.999730i \(-0.507393\pi\)
−0.0232244 + 0.999730i \(0.507393\pi\)
\(74\) −298.944 −0.469616
\(75\) −908.626 −1.39892
\(76\) −456.612 −0.689171
\(77\) −414.663 −0.613704
\(78\) −404.515 −0.587210
\(79\) −45.5102 −0.0648139 −0.0324070 0.999475i \(-0.510317\pi\)
−0.0324070 + 0.999475i \(0.510317\pi\)
\(80\) 329.381 0.460324
\(81\) 65.4754 0.0898154
\(82\) 33.2408 0.0447662
\(83\) −136.916 −0.181066 −0.0905328 0.995893i \(-0.528857\pi\)
−0.0905328 + 0.995893i \(0.528857\pi\)
\(84\) 97.2420 0.126309
\(85\) 2469.59 3.15135
\(86\) 39.6802 0.0497537
\(87\) 0 0
\(88\) −414.955 −0.502663
\(89\) 329.723 0.392703 0.196351 0.980534i \(-0.437091\pi\)
0.196351 + 0.980534i \(0.437091\pi\)
\(90\) 730.922 0.856066
\(91\) 531.716 0.612516
\(92\) −627.818 −0.711463
\(93\) −87.5009 −0.0975636
\(94\) 554.875 0.608840
\(95\) −2349.99 −2.53794
\(96\) 97.3105 0.103455
\(97\) 251.136 0.262876 0.131438 0.991324i \(-0.458041\pi\)
0.131438 + 0.991324i \(0.458041\pi\)
\(98\) 558.180 0.575354
\(99\) −920.816 −0.934803
\(100\) 1195.19 1.19519
\(101\) 337.700 0.332697 0.166348 0.986067i \(-0.446802\pi\)
0.166348 + 0.986067i \(0.446802\pi\)
\(102\) 729.601 0.708248
\(103\) 1051.61 1.00600 0.503001 0.864286i \(-0.332229\pi\)
0.503001 + 0.864286i \(0.332229\pi\)
\(104\) 532.090 0.501690
\(105\) 500.464 0.465145
\(106\) 386.150 0.353832
\(107\) −910.584 −0.822705 −0.411353 0.911476i \(-0.634944\pi\)
−0.411353 + 0.911476i \(0.634944\pi\)
\(108\) 544.362 0.485012
\(109\) 837.923 0.736316 0.368158 0.929763i \(-0.379989\pi\)
0.368158 + 0.929763i \(0.379989\pi\)
\(110\) −2135.60 −1.85110
\(111\) −454.538 −0.388674
\(112\) −127.910 −0.107914
\(113\) −1522.30 −1.26731 −0.633654 0.773617i \(-0.718446\pi\)
−0.633654 + 0.773617i \(0.718446\pi\)
\(114\) −694.268 −0.570387
\(115\) −3231.12 −2.62003
\(116\) 0 0
\(117\) 1180.75 0.932994
\(118\) −259.030 −0.202082
\(119\) −959.026 −0.738771
\(120\) 500.816 0.380984
\(121\) 1359.43 1.02136
\(122\) 990.526 0.735066
\(123\) 50.5418 0.0370504
\(124\) 115.097 0.0833547
\(125\) 3577.83 2.56009
\(126\) −283.842 −0.200688
\(127\) 1664.14 1.16274 0.581372 0.813638i \(-0.302516\pi\)
0.581372 + 0.813638i \(0.302516\pi\)
\(128\) −128.000 −0.0883883
\(129\) 60.3328 0.0411783
\(130\) 2738.45 1.84752
\(131\) −668.361 −0.445763 −0.222882 0.974846i \(-0.571546\pi\)
−0.222882 + 0.974846i \(0.571546\pi\)
\(132\) −630.929 −0.416025
\(133\) 912.582 0.594969
\(134\) 1600.90 1.03207
\(135\) 2801.60 1.78610
\(136\) −959.701 −0.605100
\(137\) −2077.97 −1.29586 −0.647931 0.761699i \(-0.724366\pi\)
−0.647931 + 0.761699i \(0.724366\pi\)
\(138\) −954.583 −0.588837
\(139\) 667.398 0.407251 0.203626 0.979049i \(-0.434727\pi\)
0.203626 + 0.979049i \(0.434727\pi\)
\(140\) −658.299 −0.397403
\(141\) 843.674 0.503902
\(142\) 928.889 0.548948
\(143\) −3449.90 −2.01745
\(144\) −284.042 −0.164376
\(145\) 0 0
\(146\) 57.9413 0.0328442
\(147\) 848.700 0.476187
\(148\) 597.889 0.332069
\(149\) 2170.19 1.19321 0.596606 0.802534i \(-0.296515\pi\)
0.596606 + 0.802534i \(0.296515\pi\)
\(150\) 1817.25 0.989187
\(151\) −2551.61 −1.37515 −0.687574 0.726114i \(-0.741324\pi\)
−0.687574 + 0.726114i \(0.741324\pi\)
\(152\) 913.224 0.487318
\(153\) −2129.65 −1.12531
\(154\) 829.326 0.433954
\(155\) 592.354 0.306961
\(156\) 809.031 0.415220
\(157\) −985.392 −0.500910 −0.250455 0.968128i \(-0.580580\pi\)
−0.250455 + 0.968128i \(0.580580\pi\)
\(158\) 91.0204 0.0458304
\(159\) 587.132 0.292846
\(160\) −658.762 −0.325498
\(161\) 1254.75 0.614214
\(162\) −130.951 −0.0635091
\(163\) 1712.58 0.822940 0.411470 0.911423i \(-0.365015\pi\)
0.411470 + 0.911423i \(0.365015\pi\)
\(164\) −66.4816 −0.0316545
\(165\) −3247.13 −1.53205
\(166\) 273.831 0.128033
\(167\) 1947.60 0.902454 0.451227 0.892409i \(-0.350987\pi\)
0.451227 + 0.892409i \(0.350987\pi\)
\(168\) −194.484 −0.0893141
\(169\) 2226.75 1.01354
\(170\) −4939.18 −2.22834
\(171\) 2026.51 0.906266
\(172\) −79.3603 −0.0351812
\(173\) −358.047 −0.157351 −0.0786757 0.996900i \(-0.525069\pi\)
−0.0786757 + 0.996900i \(0.525069\pi\)
\(174\) 0 0
\(175\) −2388.69 −1.03182
\(176\) 829.910 0.355436
\(177\) −393.849 −0.167251
\(178\) −659.446 −0.277683
\(179\) 1365.65 0.570242 0.285121 0.958492i \(-0.407966\pi\)
0.285121 + 0.958492i \(0.407966\pi\)
\(180\) −1461.84 −0.605330
\(181\) −499.158 −0.204984 −0.102492 0.994734i \(-0.532682\pi\)
−0.102492 + 0.994734i \(0.532682\pi\)
\(182\) −1063.43 −0.433114
\(183\) 1506.07 0.608372
\(184\) 1255.64 0.503080
\(185\) 3077.08 1.22287
\(186\) 175.002 0.0689879
\(187\) 6222.38 2.43329
\(188\) −1109.75 −0.430515
\(189\) −1087.96 −0.418716
\(190\) 4699.98 1.79459
\(191\) −3904.01 −1.47898 −0.739488 0.673170i \(-0.764932\pi\)
−0.739488 + 0.673170i \(0.764932\pi\)
\(192\) −194.621 −0.0731540
\(193\) 2899.72 1.08148 0.540742 0.841189i \(-0.318144\pi\)
0.540742 + 0.841189i \(0.318144\pi\)
\(194\) −502.272 −0.185881
\(195\) 4163.74 1.52909
\(196\) −1116.36 −0.406837
\(197\) −2072.98 −0.749715 −0.374858 0.927082i \(-0.622308\pi\)
−0.374858 + 0.927082i \(0.622308\pi\)
\(198\) 1841.63 0.661006
\(199\) 197.139 0.0702253 0.0351127 0.999383i \(-0.488821\pi\)
0.0351127 + 0.999383i \(0.488821\pi\)
\(200\) −2390.37 −0.845124
\(201\) 2434.13 0.854182
\(202\) −675.399 −0.235252
\(203\) 0 0
\(204\) −1459.20 −0.500807
\(205\) −342.153 −0.116571
\(206\) −2103.22 −0.711351
\(207\) 2786.35 0.935579
\(208\) −1064.18 −0.354748
\(209\) −5921.05 −1.95965
\(210\) −1000.93 −0.328908
\(211\) −1159.47 −0.378299 −0.189149 0.981948i \(-0.560573\pi\)
−0.189149 + 0.981948i \(0.560573\pi\)
\(212\) −772.299 −0.250197
\(213\) 1412.35 0.454333
\(214\) 1821.17 0.581740
\(215\) −408.434 −0.129558
\(216\) −1088.72 −0.342955
\(217\) −230.031 −0.0719610
\(218\) −1675.85 −0.520654
\(219\) 88.0983 0.0271833
\(220\) 4271.20 1.30893
\(221\) −7978.87 −2.42858
\(222\) 909.076 0.274834
\(223\) −5055.53 −1.51813 −0.759066 0.651014i \(-0.774344\pi\)
−0.759066 + 0.651014i \(0.774344\pi\)
\(224\) 255.820 0.0763066
\(225\) −5304.42 −1.57168
\(226\) 3044.60 0.896122
\(227\) 785.964 0.229807 0.114904 0.993377i \(-0.463344\pi\)
0.114904 + 0.993377i \(0.463344\pi\)
\(228\) 1388.54 0.403325
\(229\) 20.0300 0.00578000 0.00289000 0.999996i \(-0.499080\pi\)
0.00289000 + 0.999996i \(0.499080\pi\)
\(230\) 6462.24 1.85264
\(231\) 1260.97 0.359159
\(232\) 0 0
\(233\) −3272.63 −0.920158 −0.460079 0.887878i \(-0.652179\pi\)
−0.460079 + 0.887878i \(0.652179\pi\)
\(234\) −2361.50 −0.659726
\(235\) −5711.41 −1.58541
\(236\) 518.060 0.142893
\(237\) 138.394 0.0379311
\(238\) 1918.05 0.522390
\(239\) −4597.12 −1.24420 −0.622098 0.782939i \(-0.713720\pi\)
−0.622098 + 0.782939i \(0.713720\pi\)
\(240\) −1001.63 −0.269396
\(241\) 2126.69 0.568432 0.284216 0.958760i \(-0.408267\pi\)
0.284216 + 0.958760i \(0.408267\pi\)
\(242\) −2718.86 −0.722211
\(243\) −3873.55 −1.02259
\(244\) −1981.05 −0.519770
\(245\) −5745.44 −1.49821
\(246\) −101.084 −0.0261986
\(247\) 7592.47 1.95586
\(248\) −230.193 −0.0589407
\(249\) 416.354 0.105965
\(250\) −7155.67 −1.81026
\(251\) 1376.21 0.346079 0.173040 0.984915i \(-0.444641\pi\)
0.173040 + 0.984915i \(0.444641\pi\)
\(252\) 567.684 0.141908
\(253\) −8141.13 −2.02304
\(254\) −3328.28 −0.822184
\(255\) −7509.90 −1.84427
\(256\) 256.000 0.0625000
\(257\) −5550.89 −1.34730 −0.673648 0.739053i \(-0.735273\pi\)
−0.673648 + 0.739053i \(0.735273\pi\)
\(258\) −120.666 −0.0291175
\(259\) −1194.94 −0.286679
\(260\) −5476.89 −1.30639
\(261\) 0 0
\(262\) 1336.72 0.315202
\(263\) −7922.44 −1.85748 −0.928742 0.370725i \(-0.879109\pi\)
−0.928742 + 0.370725i \(0.879109\pi\)
\(264\) 1261.86 0.294174
\(265\) −3974.70 −0.921373
\(266\) −1825.16 −0.420707
\(267\) −1002.67 −0.229822
\(268\) −3201.80 −0.729781
\(269\) 6669.70 1.51174 0.755871 0.654721i \(-0.227214\pi\)
0.755871 + 0.654721i \(0.227214\pi\)
\(270\) −5603.21 −1.26296
\(271\) −6527.79 −1.46323 −0.731614 0.681719i \(-0.761233\pi\)
−0.731614 + 0.681719i \(0.761233\pi\)
\(272\) 1919.40 0.427871
\(273\) −1616.92 −0.358464
\(274\) 4155.95 0.916314
\(275\) 15498.4 3.39850
\(276\) 1909.17 0.416371
\(277\) −8872.44 −1.92453 −0.962263 0.272122i \(-0.912274\pi\)
−0.962263 + 0.272122i \(0.912274\pi\)
\(278\) −1334.80 −0.287970
\(279\) −510.816 −0.109612
\(280\) 1316.60 0.281006
\(281\) 1700.97 0.361108 0.180554 0.983565i \(-0.442211\pi\)
0.180554 + 0.983565i \(0.442211\pi\)
\(282\) −1687.35 −0.356312
\(283\) −4126.87 −0.866845 −0.433422 0.901191i \(-0.642694\pi\)
−0.433422 + 0.901191i \(0.642694\pi\)
\(284\) −1857.78 −0.388165
\(285\) 7146.21 1.48528
\(286\) 6899.80 1.42655
\(287\) 132.870 0.0273277
\(288\) 568.083 0.116231
\(289\) 9478.02 1.92917
\(290\) 0 0
\(291\) −763.692 −0.153843
\(292\) −115.883 −0.0232244
\(293\) −493.443 −0.0983865 −0.0491932 0.998789i \(-0.515665\pi\)
−0.0491932 + 0.998789i \(0.515665\pi\)
\(294\) −1697.40 −0.336715
\(295\) 2666.24 0.526218
\(296\) −1195.78 −0.234808
\(297\) 7058.93 1.37913
\(298\) −4340.37 −0.843729
\(299\) 10439.3 2.01912
\(300\) −3634.51 −0.699461
\(301\) 158.609 0.0303723
\(302\) 5103.23 0.972377
\(303\) −1026.93 −0.194705
\(304\) −1826.45 −0.344586
\(305\) −10195.6 −1.91410
\(306\) 4259.30 0.795712
\(307\) 3443.22 0.640114 0.320057 0.947398i \(-0.396298\pi\)
0.320057 + 0.947398i \(0.396298\pi\)
\(308\) −1658.65 −0.306852
\(309\) −3197.90 −0.588744
\(310\) −1184.71 −0.217055
\(311\) −4228.33 −0.770955 −0.385477 0.922717i \(-0.625963\pi\)
−0.385477 + 0.922717i \(0.625963\pi\)
\(312\) −1618.06 −0.293605
\(313\) −3154.43 −0.569644 −0.284822 0.958580i \(-0.591935\pi\)
−0.284822 + 0.958580i \(0.591935\pi\)
\(314\) 1970.78 0.354197
\(315\) 2921.63 0.522588
\(316\) −182.041 −0.0324070
\(317\) 4850.65 0.859431 0.429716 0.902964i \(-0.358614\pi\)
0.429716 + 0.902964i \(0.358614\pi\)
\(318\) −1174.26 −0.207074
\(319\) 0 0
\(320\) 1317.52 0.230162
\(321\) 2769.04 0.481473
\(322\) −2509.51 −0.434315
\(323\) −13694.1 −2.35901
\(324\) 261.902 0.0449077
\(325\) −19873.3 −3.39192
\(326\) −3425.15 −0.581907
\(327\) −2548.08 −0.430915
\(328\) 132.963 0.0223831
\(329\) 2217.94 0.371668
\(330\) 6494.25 1.08332
\(331\) −3831.91 −0.636317 −0.318159 0.948037i \(-0.603064\pi\)
−0.318159 + 0.948037i \(0.603064\pi\)
\(332\) −547.663 −0.0905328
\(333\) −2653.52 −0.436673
\(334\) −3895.20 −0.638131
\(335\) −16478.3 −2.68749
\(336\) 388.968 0.0631546
\(337\) 4326.31 0.699314 0.349657 0.936878i \(-0.386298\pi\)
0.349657 + 0.936878i \(0.386298\pi\)
\(338\) −4453.50 −0.716683
\(339\) 4629.24 0.741668
\(340\) 9878.35 1.57567
\(341\) 1492.50 0.237018
\(342\) −4053.03 −0.640827
\(343\) 4973.22 0.782882
\(344\) 158.721 0.0248769
\(345\) 9825.68 1.53332
\(346\) 716.094 0.111264
\(347\) −9181.01 −1.42035 −0.710177 0.704024i \(-0.751385\pi\)
−0.710177 + 0.704024i \(0.751385\pi\)
\(348\) 0 0
\(349\) −9402.78 −1.44218 −0.721088 0.692843i \(-0.756358\pi\)
−0.721088 + 0.692843i \(0.756358\pi\)
\(350\) 4777.38 0.729605
\(351\) −9051.56 −1.37646
\(352\) −1659.82 −0.251331
\(353\) −12799.3 −1.92985 −0.964927 0.262519i \(-0.915447\pi\)
−0.964927 + 0.262519i \(0.915447\pi\)
\(354\) 787.698 0.118265
\(355\) −9561.21 −1.42945
\(356\) 1318.89 0.196351
\(357\) 2916.35 0.432352
\(358\) −2731.30 −0.403222
\(359\) 5065.31 0.744671 0.372335 0.928098i \(-0.378557\pi\)
0.372335 + 0.928098i \(0.378557\pi\)
\(360\) 2923.69 0.428033
\(361\) 6171.92 0.899828
\(362\) 998.317 0.144946
\(363\) −4133.96 −0.597732
\(364\) 2126.86 0.306258
\(365\) −596.399 −0.0855258
\(366\) −3012.14 −0.430184
\(367\) 2782.74 0.395798 0.197899 0.980222i \(-0.436588\pi\)
0.197899 + 0.980222i \(0.436588\pi\)
\(368\) −2511.27 −0.355732
\(369\) 295.055 0.0416259
\(370\) −6154.17 −0.864702
\(371\) 1543.51 0.215998
\(372\) −350.003 −0.0487818
\(373\) −2444.52 −0.339336 −0.169668 0.985501i \(-0.554270\pi\)
−0.169668 + 0.985501i \(0.554270\pi\)
\(374\) −12444.8 −1.72060
\(375\) −10880.0 −1.49824
\(376\) 2219.50 0.304420
\(377\) 0 0
\(378\) 2175.92 0.296077
\(379\) −12278.3 −1.66410 −0.832050 0.554701i \(-0.812833\pi\)
−0.832050 + 0.554701i \(0.812833\pi\)
\(380\) −9399.97 −1.26897
\(381\) −5060.57 −0.680475
\(382\) 7808.02 1.04579
\(383\) 11979.5 1.59823 0.799115 0.601179i \(-0.205302\pi\)
0.799115 + 0.601179i \(0.205302\pi\)
\(384\) 389.242 0.0517277
\(385\) −8536.38 −1.13001
\(386\) −5799.44 −0.764725
\(387\) 352.213 0.0462636
\(388\) 1004.54 0.131438
\(389\) 5010.85 0.653111 0.326555 0.945178i \(-0.394112\pi\)
0.326555 + 0.945178i \(0.394112\pi\)
\(390\) −8327.48 −1.08123
\(391\) −18828.7 −2.43531
\(392\) 2232.72 0.287677
\(393\) 2032.45 0.260875
\(394\) 4145.96 0.530129
\(395\) −936.888 −0.119342
\(396\) −3683.27 −0.467402
\(397\) −6756.58 −0.854163 −0.427082 0.904213i \(-0.640458\pi\)
−0.427082 + 0.904213i \(0.640458\pi\)
\(398\) −394.279 −0.0496568
\(399\) −2775.12 −0.348195
\(400\) 4780.75 0.597593
\(401\) −2492.08 −0.310346 −0.155173 0.987887i \(-0.549593\pi\)
−0.155173 + 0.987887i \(0.549593\pi\)
\(402\) −4868.27 −0.603998
\(403\) −1913.81 −0.236560
\(404\) 1350.80 0.166348
\(405\) 1347.90 0.165377
\(406\) 0 0
\(407\) 7753.03 0.944234
\(408\) 2918.40 0.354124
\(409\) 4780.34 0.577928 0.288964 0.957340i \(-0.406689\pi\)
0.288964 + 0.957340i \(0.406689\pi\)
\(410\) 684.305 0.0824279
\(411\) 6319.02 0.758380
\(412\) 4206.44 0.503001
\(413\) −1035.39 −0.123361
\(414\) −5572.71 −0.661555
\(415\) −2818.59 −0.333396
\(416\) 2128.36 0.250845
\(417\) −2029.52 −0.238336
\(418\) 11842.1 1.38568
\(419\) 7779.43 0.907041 0.453520 0.891246i \(-0.350168\pi\)
0.453520 + 0.891246i \(0.350168\pi\)
\(420\) 2001.86 0.232573
\(421\) 2927.91 0.338949 0.169474 0.985535i \(-0.445793\pi\)
0.169474 + 0.985535i \(0.445793\pi\)
\(422\) 2318.94 0.267498
\(423\) 4925.23 0.566130
\(424\) 1544.60 0.176916
\(425\) 35844.4 4.09108
\(426\) −2824.71 −0.321262
\(427\) 3959.32 0.448723
\(428\) −3642.34 −0.411353
\(429\) 10491.0 1.18067
\(430\) 816.869 0.0916114
\(431\) −889.746 −0.0994374 −0.0497187 0.998763i \(-0.515832\pi\)
−0.0497187 + 0.998763i \(0.515832\pi\)
\(432\) 2177.45 0.242506
\(433\) −6554.79 −0.727490 −0.363745 0.931499i \(-0.618502\pi\)
−0.363745 + 0.931499i \(0.618502\pi\)
\(434\) 460.063 0.0508841
\(435\) 0 0
\(436\) 3351.69 0.368158
\(437\) 17916.8 1.96128
\(438\) −176.197 −0.0192215
\(439\) 17685.8 1.92277 0.961384 0.275209i \(-0.0887471\pi\)
0.961384 + 0.275209i \(0.0887471\pi\)
\(440\) −8542.39 −0.925551
\(441\) 4954.58 0.534994
\(442\) 15957.7 1.71727
\(443\) −7658.61 −0.821380 −0.410690 0.911775i \(-0.634712\pi\)
−0.410690 + 0.911775i \(0.634712\pi\)
\(444\) −1818.15 −0.194337
\(445\) 6787.78 0.723082
\(446\) 10111.1 1.07348
\(447\) −6599.44 −0.698306
\(448\) −511.640 −0.0539569
\(449\) 14612.4 1.53587 0.767933 0.640530i \(-0.221285\pi\)
0.767933 + 0.640530i \(0.221285\pi\)
\(450\) 10608.8 1.11135
\(451\) −862.089 −0.0900093
\(452\) −6089.19 −0.633654
\(453\) 7759.34 0.804780
\(454\) −1571.93 −0.162498
\(455\) 10946.1 1.12782
\(456\) −2777.07 −0.285194
\(457\) 16770.0 1.71656 0.858280 0.513181i \(-0.171533\pi\)
0.858280 + 0.513181i \(0.171533\pi\)
\(458\) −40.0600 −0.00408708
\(459\) 16325.8 1.66018
\(460\) −12924.5 −1.31001
\(461\) −16965.6 −1.71403 −0.857016 0.515290i \(-0.827684\pi\)
−0.857016 + 0.515290i \(0.827684\pi\)
\(462\) −2521.94 −0.253964
\(463\) −1022.91 −0.102675 −0.0513376 0.998681i \(-0.516348\pi\)
−0.0513376 + 0.998681i \(0.516348\pi\)
\(464\) 0 0
\(465\) −1801.32 −0.179644
\(466\) 6545.25 0.650650
\(467\) −5522.03 −0.547171 −0.273586 0.961848i \(-0.588210\pi\)
−0.273586 + 0.961848i \(0.588210\pi\)
\(468\) 4723.00 0.466497
\(469\) 6399.10 0.630028
\(470\) 11422.8 1.12105
\(471\) 2996.53 0.293148
\(472\) −1036.12 −0.101041
\(473\) −1029.09 −0.100037
\(474\) −276.789 −0.0268214
\(475\) −34108.5 −3.29475
\(476\) −3836.10 −0.369385
\(477\) 3427.58 0.329011
\(478\) 9194.24 0.879780
\(479\) −8813.93 −0.840749 −0.420374 0.907351i \(-0.638101\pi\)
−0.420374 + 0.907351i \(0.638101\pi\)
\(480\) 2003.26 0.190492
\(481\) −9941.59 −0.942407
\(482\) −4253.38 −0.401942
\(483\) −3815.65 −0.359457
\(484\) 5437.72 0.510680
\(485\) 5169.96 0.484033
\(486\) 7747.11 0.723078
\(487\) −18961.3 −1.76431 −0.882155 0.470959i \(-0.843908\pi\)
−0.882155 + 0.470959i \(0.843908\pi\)
\(488\) 3962.10 0.367533
\(489\) −5207.86 −0.481611
\(490\) 11490.9 1.05940
\(491\) 5187.74 0.476822 0.238411 0.971164i \(-0.423373\pi\)
0.238411 + 0.971164i \(0.423373\pi\)
\(492\) 202.167 0.0185252
\(493\) 0 0
\(494\) −15184.9 −1.38300
\(495\) −18956.2 −1.72125
\(496\) 460.387 0.0416774
\(497\) 3712.94 0.335107
\(498\) −832.708 −0.0749288
\(499\) −6000.25 −0.538293 −0.269147 0.963099i \(-0.586742\pi\)
−0.269147 + 0.963099i \(0.586742\pi\)
\(500\) 14311.3 1.28004
\(501\) −5922.56 −0.528145
\(502\) −2752.43 −0.244715
\(503\) 6117.69 0.542295 0.271147 0.962538i \(-0.412597\pi\)
0.271147 + 0.962538i \(0.412597\pi\)
\(504\) −1135.37 −0.100344
\(505\) 6951.99 0.612593
\(506\) 16282.3 1.43050
\(507\) −6771.45 −0.593157
\(508\) 6656.56 0.581372
\(509\) −1138.83 −0.0991706 −0.0495853 0.998770i \(-0.515790\pi\)
−0.0495853 + 0.998770i \(0.515790\pi\)
\(510\) 15019.8 1.30409
\(511\) 231.602 0.0200498
\(512\) −512.000 −0.0441942
\(513\) −15535.2 −1.33702
\(514\) 11101.8 0.952682
\(515\) 21648.8 1.85235
\(516\) 241.331 0.0205892
\(517\) −14390.5 −1.22416
\(518\) 2389.87 0.202712
\(519\) 1088.80 0.0920870
\(520\) 10953.8 0.923760
\(521\) 21662.2 1.82157 0.910785 0.412881i \(-0.135477\pi\)
0.910785 + 0.412881i \(0.135477\pi\)
\(522\) 0 0
\(523\) 12784.9 1.06892 0.534460 0.845194i \(-0.320515\pi\)
0.534460 + 0.845194i \(0.320515\pi\)
\(524\) −2673.44 −0.222882
\(525\) 7263.90 0.603852
\(526\) 15844.9 1.31344
\(527\) 3451.82 0.285320
\(528\) −2523.72 −0.208013
\(529\) 12467.7 1.02472
\(530\) 7949.40 0.651509
\(531\) −2299.23 −0.187906
\(532\) 3650.33 0.297485
\(533\) 1105.44 0.0898350
\(534\) 2005.34 0.162509
\(535\) −18745.6 −1.51484
\(536\) 6403.61 0.516033
\(537\) −4152.87 −0.333724
\(538\) −13339.4 −1.06896
\(539\) −14476.2 −1.15684
\(540\) 11206.4 0.893051
\(541\) 4491.84 0.356967 0.178484 0.983943i \(-0.442881\pi\)
0.178484 + 0.983943i \(0.442881\pi\)
\(542\) 13055.6 1.03466
\(543\) 1517.92 0.119963
\(544\) −3838.80 −0.302550
\(545\) 17249.7 1.35578
\(546\) 3233.85 0.253472
\(547\) 3041.09 0.237710 0.118855 0.992912i \(-0.462078\pi\)
0.118855 + 0.992912i \(0.462078\pi\)
\(548\) −8311.89 −0.647931
\(549\) 8792.21 0.683502
\(550\) −30996.8 −2.40310
\(551\) 0 0
\(552\) −3818.33 −0.294419
\(553\) 363.826 0.0279773
\(554\) 17744.9 1.36084
\(555\) −9357.27 −0.715665
\(556\) 2669.59 0.203626
\(557\) −5354.83 −0.407345 −0.203673 0.979039i \(-0.565288\pi\)
−0.203673 + 0.979039i \(0.565288\pi\)
\(558\) 1021.63 0.0775075
\(559\) 1319.59 0.0998438
\(560\) −2633.20 −0.198701
\(561\) −18922.0 −1.42404
\(562\) −3401.94 −0.255342
\(563\) −13225.9 −0.990063 −0.495031 0.868875i \(-0.664843\pi\)
−0.495031 + 0.868875i \(0.664843\pi\)
\(564\) 3374.69 0.251951
\(565\) −31338.5 −2.33349
\(566\) 8253.75 0.612952
\(567\) −523.435 −0.0387693
\(568\) 3715.56 0.274474
\(569\) 26652.9 1.96371 0.981854 0.189641i \(-0.0607323\pi\)
0.981854 + 0.189641i \(0.0607323\pi\)
\(570\) −14292.4 −1.05025
\(571\) −6229.77 −0.456581 −0.228291 0.973593i \(-0.573314\pi\)
−0.228291 + 0.973593i \(0.573314\pi\)
\(572\) −13799.6 −1.00872
\(573\) 11871.9 0.865543
\(574\) −265.739 −0.0193236
\(575\) −46897.5 −3.40132
\(576\) −1136.17 −0.0821880
\(577\) −552.312 −0.0398493 −0.0199247 0.999801i \(-0.506343\pi\)
−0.0199247 + 0.999801i \(0.506343\pi\)
\(578\) −18956.0 −1.36413
\(579\) −8817.91 −0.632919
\(580\) 0 0
\(581\) 1094.55 0.0781580
\(582\) 1527.38 0.108784
\(583\) −10014.7 −0.711433
\(584\) 231.765 0.0164221
\(585\) 24307.3 1.71792
\(586\) 986.886 0.0695697
\(587\) −18891.1 −1.32831 −0.664155 0.747595i \(-0.731208\pi\)
−0.664155 + 0.747595i \(0.731208\pi\)
\(588\) 3394.80 0.238094
\(589\) −3284.66 −0.229783
\(590\) −5332.47 −0.372092
\(591\) 6303.84 0.438757
\(592\) 2391.56 0.166034
\(593\) −16037.3 −1.11058 −0.555289 0.831658i \(-0.687392\pi\)
−0.555289 + 0.831658i \(0.687392\pi\)
\(594\) −14117.9 −0.975190
\(595\) −19742.8 −1.36030
\(596\) 8680.75 0.596606
\(597\) −599.492 −0.0410981
\(598\) −20878.5 −1.42774
\(599\) −10407.9 −0.709943 −0.354971 0.934877i \(-0.615509\pi\)
−0.354971 + 0.934877i \(0.615509\pi\)
\(600\) 7269.01 0.494594
\(601\) 3011.45 0.204392 0.102196 0.994764i \(-0.467413\pi\)
0.102196 + 0.994764i \(0.467413\pi\)
\(602\) −317.218 −0.0214765
\(603\) 14210.1 0.959668
\(604\) −10206.5 −0.687574
\(605\) 27985.7 1.88063
\(606\) 2053.86 0.137677
\(607\) −20731.9 −1.38630 −0.693148 0.720795i \(-0.743777\pi\)
−0.693148 + 0.720795i \(0.743777\pi\)
\(608\) 3652.90 0.243659
\(609\) 0 0
\(610\) 20391.3 1.35347
\(611\) 18452.7 1.22180
\(612\) −8518.59 −0.562653
\(613\) −7118.56 −0.469031 −0.234515 0.972112i \(-0.575350\pi\)
−0.234515 + 0.972112i \(0.575350\pi\)
\(614\) −6886.44 −0.452629
\(615\) 1040.47 0.0682208
\(616\) 3317.30 0.216977
\(617\) 3451.80 0.225226 0.112613 0.993639i \(-0.464078\pi\)
0.112613 + 0.993639i \(0.464078\pi\)
\(618\) 6395.79 0.416305
\(619\) −9388.26 −0.609606 −0.304803 0.952415i \(-0.598591\pi\)
−0.304803 + 0.952415i \(0.598591\pi\)
\(620\) 2369.42 0.153481
\(621\) −21360.0 −1.38027
\(622\) 8456.67 0.545147
\(623\) −2635.93 −0.169512
\(624\) 3236.12 0.207610
\(625\) 36304.8 2.32351
\(626\) 6308.85 0.402799
\(627\) 18005.6 1.14685
\(628\) −3941.57 −0.250455
\(629\) 17931.1 1.13666
\(630\) −5843.26 −0.369525
\(631\) −24265.2 −1.53087 −0.765437 0.643510i \(-0.777477\pi\)
−0.765437 + 0.643510i \(0.777477\pi\)
\(632\) 364.082 0.0229152
\(633\) 3525.89 0.221392
\(634\) −9701.30 −0.607710
\(635\) 34258.5 2.14096
\(636\) 2348.53 0.146423
\(637\) 18562.6 1.15460
\(638\) 0 0
\(639\) 8245.10 0.510440
\(640\) −2635.05 −0.162749
\(641\) 19402.3 1.19554 0.597772 0.801666i \(-0.296053\pi\)
0.597772 + 0.801666i \(0.296053\pi\)
\(642\) −5538.08 −0.340453
\(643\) −27872.0 −1.70943 −0.854715 0.519098i \(-0.826268\pi\)
−0.854715 + 0.519098i \(0.826268\pi\)
\(644\) 5019.01 0.307107
\(645\) 1242.03 0.0758215
\(646\) 27388.2 1.66807
\(647\) −20345.5 −1.23627 −0.618134 0.786073i \(-0.712111\pi\)
−0.618134 + 0.786073i \(0.712111\pi\)
\(648\) −523.803 −0.0317545
\(649\) 6717.86 0.406316
\(650\) 39746.7 2.39845
\(651\) 699.515 0.0421139
\(652\) 6850.30 0.411470
\(653\) 7147.67 0.428346 0.214173 0.976796i \(-0.431294\pi\)
0.214173 + 0.976796i \(0.431294\pi\)
\(654\) 5096.17 0.304703
\(655\) −13759.1 −0.820782
\(656\) −265.926 −0.0158272
\(657\) 514.304 0.0305402
\(658\) −4435.87 −0.262809
\(659\) −22380.0 −1.32291 −0.661457 0.749983i \(-0.730062\pi\)
−0.661457 + 0.749983i \(0.730062\pi\)
\(660\) −12988.5 −0.766026
\(661\) −10398.3 −0.611869 −0.305935 0.952053i \(-0.598969\pi\)
−0.305935 + 0.952053i \(0.598969\pi\)
\(662\) 7663.83 0.449944
\(663\) 24263.4 1.42128
\(664\) 1095.33 0.0640164
\(665\) 18786.7 1.09551
\(666\) 5307.04 0.308774
\(667\) 0 0
\(668\) 7790.40 0.451227
\(669\) 15373.6 0.888459
\(670\) 32956.7 1.90034
\(671\) −25689.0 −1.47796
\(672\) −777.936 −0.0446571
\(673\) 12529.0 0.717618 0.358809 0.933411i \(-0.383183\pi\)
0.358809 + 0.933411i \(0.383183\pi\)
\(674\) −8652.61 −0.494490
\(675\) 40663.4 2.31872
\(676\) 8907.01 0.506771
\(677\) 14538.7 0.825360 0.412680 0.910876i \(-0.364593\pi\)
0.412680 + 0.910876i \(0.364593\pi\)
\(678\) −9258.47 −0.524439
\(679\) −2007.67 −0.113472
\(680\) −19756.7 −1.11417
\(681\) −2390.08 −0.134491
\(682\) −2984.99 −0.167597
\(683\) −42.6821 −0.00239119 −0.00119560 0.999999i \(-0.500381\pi\)
−0.00119560 + 0.999999i \(0.500381\pi\)
\(684\) 8106.06 0.453133
\(685\) −42777.8 −2.38607
\(686\) −9946.44 −0.553581
\(687\) −60.9103 −0.00338264
\(688\) −317.441 −0.0175906
\(689\) 12841.7 0.710055
\(690\) −19651.4 −1.08422
\(691\) −3802.43 −0.209336 −0.104668 0.994507i \(-0.533378\pi\)
−0.104668 + 0.994507i \(0.533378\pi\)
\(692\) −1432.19 −0.0786757
\(693\) 7361.35 0.403513
\(694\) 18362.0 1.00434
\(695\) 13739.3 0.749870
\(696\) 0 0
\(697\) −1993.82 −0.108352
\(698\) 18805.6 1.01977
\(699\) 9951.90 0.538506
\(700\) −9554.77 −0.515909
\(701\) −28718.5 −1.54734 −0.773668 0.633592i \(-0.781580\pi\)
−0.773668 + 0.633592i \(0.781580\pi\)
\(702\) 18103.1 0.973302
\(703\) −17062.7 −0.915409
\(704\) 3319.64 0.177718
\(705\) 17368.1 0.927832
\(706\) 25598.6 1.36461
\(707\) −2699.70 −0.143610
\(708\) −1575.40 −0.0836257
\(709\) −2335.31 −0.123702 −0.0618509 0.998085i \(-0.519700\pi\)
−0.0618509 + 0.998085i \(0.519700\pi\)
\(710\) 19122.4 1.01078
\(711\) 807.925 0.0426154
\(712\) −2637.78 −0.138841
\(713\) −4516.24 −0.237215
\(714\) −5832.70 −0.305719
\(715\) −71020.7 −3.71472
\(716\) 5462.59 0.285121
\(717\) 13979.6 0.728143
\(718\) −10130.6 −0.526562
\(719\) 9359.27 0.485455 0.242727 0.970095i \(-0.421958\pi\)
0.242727 + 0.970095i \(0.421958\pi\)
\(720\) −5847.37 −0.302665
\(721\) −8406.96 −0.434246
\(722\) −12343.8 −0.636274
\(723\) −6467.16 −0.332664
\(724\) −1996.63 −0.102492
\(725\) 0 0
\(726\) 8267.93 0.422660
\(727\) −12187.4 −0.621741 −0.310870 0.950452i \(-0.600620\pi\)
−0.310870 + 0.950452i \(0.600620\pi\)
\(728\) −4253.73 −0.216557
\(729\) 10011.5 0.508635
\(730\) 1192.80 0.0604759
\(731\) −2380.07 −0.120424
\(732\) 6024.29 0.304186
\(733\) 17055.8 0.859440 0.429720 0.902962i \(-0.358612\pi\)
0.429720 + 0.902962i \(0.358612\pi\)
\(734\) −5565.48 −0.279871
\(735\) 17471.6 0.876802
\(736\) 5022.55 0.251540
\(737\) −41518.9 −2.07513
\(738\) −590.110 −0.0294340
\(739\) −15358.8 −0.764522 −0.382261 0.924054i \(-0.624854\pi\)
−0.382261 + 0.924054i \(0.624854\pi\)
\(740\) 12308.3 0.611437
\(741\) −23088.3 −1.14463
\(742\) −3087.02 −0.152733
\(743\) 12103.5 0.597621 0.298811 0.954312i \(-0.403410\pi\)
0.298811 + 0.954312i \(0.403410\pi\)
\(744\) 700.007 0.0344940
\(745\) 44676.2 2.19706
\(746\) 4889.04 0.239947
\(747\) 2430.61 0.119051
\(748\) 24889.5 1.21665
\(749\) 7279.55 0.355125
\(750\) 21760.0 1.05942
\(751\) 8013.04 0.389348 0.194674 0.980868i \(-0.437635\pi\)
0.194674 + 0.980868i \(0.437635\pi\)
\(752\) −4439.00 −0.215257
\(753\) −4185.00 −0.202536
\(754\) 0 0
\(755\) −52528.3 −2.53206
\(756\) −4351.83 −0.209358
\(757\) 27546.0 1.32256 0.661279 0.750140i \(-0.270014\pi\)
0.661279 + 0.750140i \(0.270014\pi\)
\(758\) 24556.6 1.17670
\(759\) 24756.8 1.18395
\(760\) 18799.9 0.897296
\(761\) −29739.3 −1.41662 −0.708310 0.705902i \(-0.750542\pi\)
−0.708310 + 0.705902i \(0.750542\pi\)
\(762\) 10121.1 0.481168
\(763\) −6698.67 −0.317835
\(764\) −15616.0 −0.739488
\(765\) −43841.6 −2.07202
\(766\) −23958.9 −1.13012
\(767\) −8614.21 −0.405529
\(768\) −778.484 −0.0365770
\(769\) 35529.8 1.66611 0.833054 0.553192i \(-0.186590\pi\)
0.833054 + 0.553192i \(0.186590\pi\)
\(770\) 17072.8 0.799039
\(771\) 16880.0 0.788480
\(772\) 11598.9 0.540742
\(773\) −24008.3 −1.11710 −0.558549 0.829471i \(-0.688642\pi\)
−0.558549 + 0.829471i \(0.688642\pi\)
\(774\) −704.426 −0.0327133
\(775\) 8597.62 0.398498
\(776\) −2009.09 −0.0929407
\(777\) 3633.75 0.167773
\(778\) −10021.7 −0.461819
\(779\) 1897.27 0.0872615
\(780\) 16655.0 0.764543
\(781\) −24090.4 −1.10374
\(782\) 37657.4 1.72203
\(783\) 0 0
\(784\) −4465.44 −0.203418
\(785\) −20285.6 −0.922323
\(786\) −4064.91 −0.184466
\(787\) 20459.4 0.926683 0.463342 0.886180i \(-0.346650\pi\)
0.463342 + 0.886180i \(0.346650\pi\)
\(788\) −8291.93 −0.374858
\(789\) 24091.8 1.08706
\(790\) 1873.78 0.0843873
\(791\) 12169.8 0.547040
\(792\) 7366.53 0.330503
\(793\) 32940.6 1.47510
\(794\) 13513.2 0.603985
\(795\) 12086.9 0.539217
\(796\) 788.558 0.0351127
\(797\) −15412.1 −0.684976 −0.342488 0.939522i \(-0.611270\pi\)
−0.342488 + 0.939522i \(0.611270\pi\)
\(798\) 5550.24 0.246211
\(799\) −33282.1 −1.47364
\(800\) −9561.49 −0.422562
\(801\) −5853.44 −0.258204
\(802\) 4984.17 0.219448
\(803\) −1502.69 −0.0660382
\(804\) 9736.53 0.427091
\(805\) 25830.8 1.13095
\(806\) 3827.61 0.167273
\(807\) −20282.2 −0.884719
\(808\) −2701.60 −0.117626
\(809\) −23857.1 −1.03680 −0.518399 0.855139i \(-0.673472\pi\)
−0.518399 + 0.855139i \(0.673472\pi\)
\(810\) −2695.80 −0.116939
\(811\) 29129.5 1.26125 0.630626 0.776087i \(-0.282798\pi\)
0.630626 + 0.776087i \(0.282798\pi\)
\(812\) 0 0
\(813\) 19850.7 0.856327
\(814\) −15506.1 −0.667675
\(815\) 35255.6 1.51528
\(816\) −5836.81 −0.250403
\(817\) 2264.81 0.0969835
\(818\) −9560.68 −0.408657
\(819\) −9439.35 −0.402732
\(820\) −1368.61 −0.0582853
\(821\) 13095.6 0.556686 0.278343 0.960482i \(-0.410215\pi\)
0.278343 + 0.960482i \(0.410215\pi\)
\(822\) −12638.0 −0.536256
\(823\) 9664.63 0.409341 0.204671 0.978831i \(-0.434388\pi\)
0.204671 + 0.978831i \(0.434388\pi\)
\(824\) −8412.88 −0.355675
\(825\) −47129.9 −1.98891
\(826\) 2070.78 0.0872297
\(827\) −11008.9 −0.462899 −0.231450 0.972847i \(-0.574347\pi\)
−0.231450 + 0.972847i \(0.574347\pi\)
\(828\) 11145.4 0.467790
\(829\) −683.366 −0.0286300 −0.0143150 0.999898i \(-0.504557\pi\)
−0.0143150 + 0.999898i \(0.504557\pi\)
\(830\) 5637.18 0.235746
\(831\) 26980.7 1.12629
\(832\) −4256.72 −0.177374
\(833\) −33480.4 −1.39259
\(834\) 4059.05 0.168529
\(835\) 40093.9 1.66169
\(836\) −23684.2 −0.979826
\(837\) 3915.89 0.161712
\(838\) −15558.9 −0.641375
\(839\) 37980.0 1.56283 0.781416 0.624011i \(-0.214498\pi\)
0.781416 + 0.624011i \(0.214498\pi\)
\(840\) −4003.71 −0.164454
\(841\) 0 0
\(842\) −5855.81 −0.239673
\(843\) −5172.57 −0.211332
\(844\) −4637.87 −0.189149
\(845\) 45840.6 1.86623
\(846\) −9850.47 −0.400315
\(847\) −10867.8 −0.440876
\(848\) −3089.20 −0.125098
\(849\) 12549.6 0.507305
\(850\) −71688.8 −2.89283
\(851\) −23460.4 −0.945018
\(852\) 5649.42 0.227167
\(853\) 9838.50 0.394917 0.197458 0.980311i \(-0.436731\pi\)
0.197458 + 0.980311i \(0.436731\pi\)
\(854\) −7918.63 −0.317295
\(855\) 41718.5 1.66870
\(856\) 7284.67 0.290870
\(857\) 28719.5 1.14474 0.572368 0.819997i \(-0.306025\pi\)
0.572368 + 0.819997i \(0.306025\pi\)
\(858\) −20982.0 −0.834863
\(859\) 40759.0 1.61895 0.809476 0.587153i \(-0.199751\pi\)
0.809476 + 0.587153i \(0.199751\pi\)
\(860\) −1633.74 −0.0647790
\(861\) −404.050 −0.0159930
\(862\) 1779.49 0.0703129
\(863\) 8994.82 0.354794 0.177397 0.984139i \(-0.443232\pi\)
0.177397 + 0.984139i \(0.443232\pi\)
\(864\) −4354.90 −0.171478
\(865\) −7370.87 −0.289731
\(866\) 13109.6 0.514413
\(867\) −28822.2 −1.12901
\(868\) −920.125 −0.0359805
\(869\) −2360.59 −0.0921489
\(870\) 0 0
\(871\) 53239.0 2.07111
\(872\) −6703.38 −0.260327
\(873\) −4458.31 −0.172842
\(874\) −35833.7 −1.38683
\(875\) −28602.5 −1.10508
\(876\) 352.393 0.0135916
\(877\) −10503.2 −0.404412 −0.202206 0.979343i \(-0.564811\pi\)
−0.202206 + 0.979343i \(0.564811\pi\)
\(878\) −35371.5 −1.35960
\(879\) 1500.54 0.0575789
\(880\) 17084.8 0.654464
\(881\) −42642.0 −1.63070 −0.815350 0.578968i \(-0.803456\pi\)
−0.815350 + 0.578968i \(0.803456\pi\)
\(882\) −9909.15 −0.378298
\(883\) 39816.2 1.51747 0.758733 0.651402i \(-0.225819\pi\)
0.758733 + 0.651402i \(0.225819\pi\)
\(884\) −31915.5 −1.21429
\(885\) −8107.90 −0.307959
\(886\) 15317.2 0.580804
\(887\) −33823.8 −1.28037 −0.640187 0.768219i \(-0.721143\pi\)
−0.640187 + 0.768219i \(0.721143\pi\)
\(888\) 3636.30 0.137417
\(889\) −13303.8 −0.501905
\(890\) −13575.6 −0.511297
\(891\) 3396.17 0.127695
\(892\) −20222.1 −0.759066
\(893\) 31670.3 1.18679
\(894\) 13198.9 0.493777
\(895\) 28113.7 1.04998
\(896\) 1023.28 0.0381533
\(897\) −31745.3 −1.18165
\(898\) −29224.9 −1.08602
\(899\) 0 0
\(900\) −21217.7 −0.785840
\(901\) −23161.8 −0.856415
\(902\) 1724.18 0.0636462
\(903\) −482.322 −0.0177748
\(904\) 12178.4 0.448061
\(905\) −10275.8 −0.377437
\(906\) −15518.7 −0.569066
\(907\) −47756.3 −1.74831 −0.874157 0.485643i \(-0.838585\pi\)
−0.874157 + 0.485643i \(0.838585\pi\)
\(908\) 3143.86 0.114904
\(909\) −5995.05 −0.218749
\(910\) −21892.2 −0.797492
\(911\) 42015.9 1.52804 0.764022 0.645190i \(-0.223222\pi\)
0.764022 + 0.645190i \(0.223222\pi\)
\(912\) 5554.14 0.201662
\(913\) −7101.73 −0.257429
\(914\) −33540.0 −1.21379
\(915\) 31004.5 1.12019
\(916\) 80.1200 0.00289000
\(917\) 5343.13 0.192416
\(918\) −32651.6 −1.17392
\(919\) −21834.8 −0.783748 −0.391874 0.920019i \(-0.628173\pi\)
−0.391874 + 0.920019i \(0.628173\pi\)
\(920\) 25848.9 0.926320
\(921\) −10470.7 −0.374615
\(922\) 33931.3 1.21200
\(923\) 30890.8 1.10161
\(924\) 5043.88 0.179580
\(925\) 44661.8 1.58754
\(926\) 2045.82 0.0726024
\(927\) −18668.8 −0.661450
\(928\) 0 0
\(929\) 44670.5 1.57760 0.788801 0.614648i \(-0.210702\pi\)
0.788801 + 0.614648i \(0.210702\pi\)
\(930\) 3602.64 0.127027
\(931\) 31859.0 1.12152
\(932\) −13090.5 −0.460079
\(933\) 12858.2 0.451187
\(934\) 11044.1 0.386908
\(935\) 128096. 4.48041
\(936\) −9445.99 −0.329863
\(937\) 4476.33 0.156068 0.0780339 0.996951i \(-0.475136\pi\)
0.0780339 + 0.996951i \(0.475136\pi\)
\(938\) −12798.2 −0.445497
\(939\) 9592.46 0.333374
\(940\) −22845.7 −0.792705
\(941\) 18114.9 0.627553 0.313777 0.949497i \(-0.398406\pi\)
0.313777 + 0.949497i \(0.398406\pi\)
\(942\) −5993.06 −0.207287
\(943\) 2608.65 0.0900840
\(944\) 2072.24 0.0714467
\(945\) −22397.1 −0.770980
\(946\) 2058.18 0.0707372
\(947\) −14778.7 −0.507122 −0.253561 0.967319i \(-0.581602\pi\)
−0.253561 + 0.967319i \(0.581602\pi\)
\(948\) 553.578 0.0189656
\(949\) 1926.87 0.0659104
\(950\) 68217.1 2.32974
\(951\) −14750.6 −0.502966
\(952\) 7672.20 0.261195
\(953\) −43564.1 −1.48078 −0.740389 0.672179i \(-0.765358\pi\)
−0.740389 + 0.672179i \(0.765358\pi\)
\(954\) −6855.16 −0.232646
\(955\) −80369.2 −2.72323
\(956\) −18388.5 −0.622098
\(957\) 0 0
\(958\) 17627.9 0.594499
\(959\) 16612.1 0.559366
\(960\) −4006.53 −0.134698
\(961\) −28963.0 −0.972208
\(962\) 19883.2 0.666382
\(963\) 16165.2 0.540932
\(964\) 8506.76 0.284216
\(965\) 59694.6 1.99133
\(966\) 7631.29 0.254175
\(967\) 34229.1 1.13830 0.569148 0.822235i \(-0.307273\pi\)
0.569148 + 0.822235i \(0.307273\pi\)
\(968\) −10875.4 −0.361105
\(969\) 41643.1 1.38057
\(970\) −10339.9 −0.342263
\(971\) 26279.2 0.868528 0.434264 0.900786i \(-0.357008\pi\)
0.434264 + 0.900786i \(0.357008\pi\)
\(972\) −15494.2 −0.511293
\(973\) −5335.42 −0.175792
\(974\) 37922.6 1.24756
\(975\) 60433.9 1.98506
\(976\) −7924.21 −0.259885
\(977\) −27095.0 −0.887254 −0.443627 0.896211i \(-0.646309\pi\)
−0.443627 + 0.896211i \(0.646309\pi\)
\(978\) 10415.7 0.340550
\(979\) 17102.5 0.558324
\(980\) −22981.7 −0.749107
\(981\) −14875.3 −0.484131
\(982\) −10375.5 −0.337164
\(983\) −45364.5 −1.47193 −0.735963 0.677022i \(-0.763270\pi\)
−0.735963 + 0.677022i \(0.763270\pi\)
\(984\) −404.335 −0.0130993
\(985\) −42675.1 −1.38045
\(986\) 0 0
\(987\) −6744.64 −0.217512
\(988\) 30369.9 0.977929
\(989\) 3113.99 0.100121
\(990\) 37912.4 1.21711
\(991\) −18082.0 −0.579611 −0.289805 0.957086i \(-0.593591\pi\)
−0.289805 + 0.957086i \(0.593591\pi\)
\(992\) −920.773 −0.0294703
\(993\) 11652.7 0.372393
\(994\) −7425.89 −0.236957
\(995\) 4058.38 0.129306
\(996\) 1665.42 0.0529827
\(997\) 26432.3 0.839640 0.419820 0.907607i \(-0.362093\pi\)
0.419820 + 0.907607i \(0.362093\pi\)
\(998\) 12000.5 0.380631
\(999\) 20341.8 0.644229
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.4.a.k.1.3 6
29.28 even 2 1682.4.a.l.1.4 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1682.4.a.k.1.3 6 1.1 even 1 trivial
1682.4.a.l.1.4 yes 6 29.28 even 2