Properties

Label 1680.3.n.c.1471.4
Level $1680$
Weight $3$
Character 1680.1471
Analytic conductor $45.777$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,3,Mod(1471,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.1471"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1680.n (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-48,0,0,0,48,0,0,0,-96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.7766844125\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7 x^{15} + 6 x^{14} + 115 x^{13} - 535 x^{12} + 605 x^{11} + 2453 x^{10} - 10997 x^{9} + \cdots + 92164 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{36} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1471.4
Root \(2.51939 + 1.56062i\) of defining polynomial
Character \(\chi\) \(=\) 1680.1471
Dual form 1680.3.n.c.1471.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} -2.23607 q^{5} +2.64575i q^{7} -3.00000 q^{9} +5.10452i q^{11} -12.4178 q^{13} +3.87298i q^{15} -26.0758 q^{17} -15.5836i q^{19} +4.58258 q^{21} -18.3400i q^{23} +5.00000 q^{25} +5.19615i q^{27} +46.5279 q^{29} +2.63506i q^{31} +8.84128 q^{33} -5.91608i q^{35} +28.7266 q^{37} +21.5082i q^{39} +61.8324 q^{41} +67.6436i q^{43} +6.70820 q^{45} -0.353999i q^{47} -7.00000 q^{49} +45.1646i q^{51} -39.4015 q^{53} -11.4140i q^{55} -26.9916 q^{57} -23.4528i q^{59} +4.09977 q^{61} -7.93725i q^{63} +27.7669 q^{65} +88.1856i q^{67} -31.7657 q^{69} +99.4186i q^{71} +96.6327 q^{73} -8.66025i q^{75} -13.5053 q^{77} -81.1594i q^{79} +9.00000 q^{81} -97.3455i q^{83} +58.3073 q^{85} -80.5887i q^{87} +94.0310 q^{89} -32.8543i q^{91} +4.56406 q^{93} +34.8460i q^{95} +3.09617 q^{97} -15.3135i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{9} + 48 q^{13} - 96 q^{17} + 80 q^{25} + 112 q^{29} + 48 q^{33} - 224 q^{37} + 160 q^{41} - 112 q^{49} - 96 q^{53} + 80 q^{61} - 80 q^{65} + 48 q^{69} - 48 q^{73} + 144 q^{81} - 160 q^{89}+ \cdots + 592 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.73205i − 0.577350i
\(4\) 0 0
\(5\) −2.23607 −0.447214
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 5.10452i 0.464047i 0.972710 + 0.232023i \(0.0745346\pi\)
−0.972710 + 0.232023i \(0.925465\pi\)
\(12\) 0 0
\(13\) −12.4178 −0.955212 −0.477606 0.878574i \(-0.658495\pi\)
−0.477606 + 0.878574i \(0.658495\pi\)
\(14\) 0 0
\(15\) 3.87298i 0.258199i
\(16\) 0 0
\(17\) −26.0758 −1.53387 −0.766936 0.641724i \(-0.778220\pi\)
−0.766936 + 0.641724i \(0.778220\pi\)
\(18\) 0 0
\(19\) − 15.5836i − 0.820190i −0.912043 0.410095i \(-0.865496\pi\)
0.912043 0.410095i \(-0.134504\pi\)
\(20\) 0 0
\(21\) 4.58258 0.218218
\(22\) 0 0
\(23\) − 18.3400i − 0.797389i −0.917084 0.398695i \(-0.869463\pi\)
0.917084 0.398695i \(-0.130537\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 46.5279 1.60441 0.802206 0.597048i \(-0.203660\pi\)
0.802206 + 0.597048i \(0.203660\pi\)
\(30\) 0 0
\(31\) 2.63506i 0.0850019i 0.999096 + 0.0425010i \(0.0135326\pi\)
−0.999096 + 0.0425010i \(0.986467\pi\)
\(32\) 0 0
\(33\) 8.84128 0.267918
\(34\) 0 0
\(35\) − 5.91608i − 0.169031i
\(36\) 0 0
\(37\) 28.7266 0.776393 0.388197 0.921577i \(-0.373098\pi\)
0.388197 + 0.921577i \(0.373098\pi\)
\(38\) 0 0
\(39\) 21.5082i 0.551492i
\(40\) 0 0
\(41\) 61.8324 1.50811 0.754054 0.656813i \(-0.228096\pi\)
0.754054 + 0.656813i \(0.228096\pi\)
\(42\) 0 0
\(43\) 67.6436i 1.57311i 0.617522 + 0.786553i \(0.288136\pi\)
−0.617522 + 0.786553i \(0.711864\pi\)
\(44\) 0 0
\(45\) 6.70820 0.149071
\(46\) 0 0
\(47\) − 0.353999i − 0.00753189i −0.999993 0.00376595i \(-0.998801\pi\)
0.999993 0.00376595i \(-0.00119874\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) 45.1646i 0.885581i
\(52\) 0 0
\(53\) −39.4015 −0.743424 −0.371712 0.928348i \(-0.621229\pi\)
−0.371712 + 0.928348i \(0.621229\pi\)
\(54\) 0 0
\(55\) − 11.4140i − 0.207528i
\(56\) 0 0
\(57\) −26.9916 −0.473537
\(58\) 0 0
\(59\) − 23.4528i − 0.397505i −0.980050 0.198752i \(-0.936311\pi\)
0.980050 0.198752i \(-0.0636889\pi\)
\(60\) 0 0
\(61\) 4.09977 0.0672093 0.0336046 0.999435i \(-0.489301\pi\)
0.0336046 + 0.999435i \(0.489301\pi\)
\(62\) 0 0
\(63\) − 7.93725i − 0.125988i
\(64\) 0 0
\(65\) 27.7669 0.427184
\(66\) 0 0
\(67\) 88.1856i 1.31620i 0.752929 + 0.658101i \(0.228640\pi\)
−0.752929 + 0.658101i \(0.771360\pi\)
\(68\) 0 0
\(69\) −31.7657 −0.460373
\(70\) 0 0
\(71\) 99.4186i 1.40026i 0.714015 + 0.700131i \(0.246875\pi\)
−0.714015 + 0.700131i \(0.753125\pi\)
\(72\) 0 0
\(73\) 96.6327 1.32374 0.661868 0.749620i \(-0.269764\pi\)
0.661868 + 0.749620i \(0.269764\pi\)
\(74\) 0 0
\(75\) − 8.66025i − 0.115470i
\(76\) 0 0
\(77\) −13.5053 −0.175393
\(78\) 0 0
\(79\) − 81.1594i − 1.02733i −0.857989 0.513667i \(-0.828287\pi\)
0.857989 0.513667i \(-0.171713\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) − 97.3455i − 1.17284i −0.810008 0.586419i \(-0.800537\pi\)
0.810008 0.586419i \(-0.199463\pi\)
\(84\) 0 0
\(85\) 58.3073 0.685968
\(86\) 0 0
\(87\) − 80.5887i − 0.926307i
\(88\) 0 0
\(89\) 94.0310 1.05653 0.528264 0.849080i \(-0.322843\pi\)
0.528264 + 0.849080i \(0.322843\pi\)
\(90\) 0 0
\(91\) − 32.8543i − 0.361036i
\(92\) 0 0
\(93\) 4.56406 0.0490759
\(94\) 0 0
\(95\) 34.8460i 0.366800i
\(96\) 0 0
\(97\) 3.09617 0.0319192 0.0159596 0.999873i \(-0.494920\pi\)
0.0159596 + 0.999873i \(0.494920\pi\)
\(98\) 0 0
\(99\) − 15.3135i − 0.154682i
\(100\) 0 0
\(101\) −96.7821 −0.958239 −0.479120 0.877750i \(-0.659044\pi\)
−0.479120 + 0.877750i \(0.659044\pi\)
\(102\) 0 0
\(103\) 173.284i 1.68237i 0.540745 + 0.841186i \(0.318142\pi\)
−0.540745 + 0.841186i \(0.681858\pi\)
\(104\) 0 0
\(105\) −10.2470 −0.0975900
\(106\) 0 0
\(107\) 111.618i 1.04316i 0.853202 + 0.521581i \(0.174658\pi\)
−0.853202 + 0.521581i \(0.825342\pi\)
\(108\) 0 0
\(109\) 138.733 1.27278 0.636388 0.771369i \(-0.280428\pi\)
0.636388 + 0.771369i \(0.280428\pi\)
\(110\) 0 0
\(111\) − 49.7558i − 0.448251i
\(112\) 0 0
\(113\) 215.262 1.90497 0.952487 0.304579i \(-0.0985158\pi\)
0.952487 + 0.304579i \(0.0985158\pi\)
\(114\) 0 0
\(115\) 41.0094i 0.356603i
\(116\) 0 0
\(117\) 37.2533 0.318404
\(118\) 0 0
\(119\) − 68.9901i − 0.579749i
\(120\) 0 0
\(121\) 94.9439 0.784660
\(122\) 0 0
\(123\) − 107.097i − 0.870706i
\(124\) 0 0
\(125\) −11.1803 −0.0894427
\(126\) 0 0
\(127\) − 216.668i − 1.70604i −0.521874 0.853022i \(-0.674767\pi\)
0.521874 0.853022i \(-0.325233\pi\)
\(128\) 0 0
\(129\) 117.162 0.908234
\(130\) 0 0
\(131\) − 140.526i − 1.07272i −0.843989 0.536361i \(-0.819799\pi\)
0.843989 0.536361i \(-0.180201\pi\)
\(132\) 0 0
\(133\) 41.2304 0.310003
\(134\) 0 0
\(135\) − 11.6190i − 0.0860663i
\(136\) 0 0
\(137\) 58.1404 0.424382 0.212191 0.977228i \(-0.431940\pi\)
0.212191 + 0.977228i \(0.431940\pi\)
\(138\) 0 0
\(139\) 223.817i 1.61020i 0.593141 + 0.805099i \(0.297888\pi\)
−0.593141 + 0.805099i \(0.702112\pi\)
\(140\) 0 0
\(141\) −0.613144 −0.00434854
\(142\) 0 0
\(143\) − 63.3866i − 0.443263i
\(144\) 0 0
\(145\) −104.040 −0.717514
\(146\) 0 0
\(147\) 12.1244i 0.0824786i
\(148\) 0 0
\(149\) 105.629 0.708923 0.354461 0.935071i \(-0.384664\pi\)
0.354461 + 0.935071i \(0.384664\pi\)
\(150\) 0 0
\(151\) 73.6111i 0.487491i 0.969839 + 0.243745i \(0.0783762\pi\)
−0.969839 + 0.243745i \(0.921624\pi\)
\(152\) 0 0
\(153\) 78.2274 0.511290
\(154\) 0 0
\(155\) − 5.89217i − 0.0380140i
\(156\) 0 0
\(157\) 205.320 1.30777 0.653885 0.756594i \(-0.273138\pi\)
0.653885 + 0.756594i \(0.273138\pi\)
\(158\) 0 0
\(159\) 68.2454i 0.429216i
\(160\) 0 0
\(161\) 48.5230 0.301385
\(162\) 0 0
\(163\) 204.188i 1.25269i 0.779547 + 0.626344i \(0.215450\pi\)
−0.779547 + 0.626344i \(0.784550\pi\)
\(164\) 0 0
\(165\) −19.7697 −0.119816
\(166\) 0 0
\(167\) 20.8370i 0.124773i 0.998052 + 0.0623863i \(0.0198711\pi\)
−0.998052 + 0.0623863i \(0.980129\pi\)
\(168\) 0 0
\(169\) −14.7993 −0.0875701
\(170\) 0 0
\(171\) 46.7508i 0.273397i
\(172\) 0 0
\(173\) −129.149 −0.746529 −0.373264 0.927725i \(-0.621762\pi\)
−0.373264 + 0.927725i \(0.621762\pi\)
\(174\) 0 0
\(175\) 13.2288i 0.0755929i
\(176\) 0 0
\(177\) −40.6214 −0.229499
\(178\) 0 0
\(179\) − 335.588i − 1.87480i −0.348261 0.937398i \(-0.613228\pi\)
0.348261 0.937398i \(-0.386772\pi\)
\(180\) 0 0
\(181\) −150.609 −0.832094 −0.416047 0.909343i \(-0.636585\pi\)
−0.416047 + 0.909343i \(0.636585\pi\)
\(182\) 0 0
\(183\) − 7.10100i − 0.0388033i
\(184\) 0 0
\(185\) −64.2345 −0.347214
\(186\) 0 0
\(187\) − 133.104i − 0.711788i
\(188\) 0 0
\(189\) −13.7477 −0.0727393
\(190\) 0 0
\(191\) − 247.834i − 1.29756i −0.760977 0.648779i \(-0.775280\pi\)
0.760977 0.648779i \(-0.224720\pi\)
\(192\) 0 0
\(193\) 198.054 1.02619 0.513094 0.858332i \(-0.328499\pi\)
0.513094 + 0.858332i \(0.328499\pi\)
\(194\) 0 0
\(195\) − 48.0938i − 0.246635i
\(196\) 0 0
\(197\) 72.3188 0.367101 0.183550 0.983010i \(-0.441241\pi\)
0.183550 + 0.983010i \(0.441241\pi\)
\(198\) 0 0
\(199\) − 218.281i − 1.09689i −0.836187 0.548445i \(-0.815220\pi\)
0.836187 0.548445i \(-0.184780\pi\)
\(200\) 0 0
\(201\) 152.742 0.759910
\(202\) 0 0
\(203\) 123.101i 0.606410i
\(204\) 0 0
\(205\) −138.261 −0.674446
\(206\) 0 0
\(207\) 55.0199i 0.265796i
\(208\) 0 0
\(209\) 79.5468 0.380607
\(210\) 0 0
\(211\) 267.621i 1.26834i 0.773192 + 0.634172i \(0.218659\pi\)
−0.773192 + 0.634172i \(0.781341\pi\)
\(212\) 0 0
\(213\) 172.198 0.808441
\(214\) 0 0
\(215\) − 151.256i − 0.703515i
\(216\) 0 0
\(217\) −6.97171 −0.0321277
\(218\) 0 0
\(219\) − 167.373i − 0.764259i
\(220\) 0 0
\(221\) 323.803 1.46517
\(222\) 0 0
\(223\) 137.858i 0.618198i 0.951030 + 0.309099i \(0.100027\pi\)
−0.951030 + 0.309099i \(0.899973\pi\)
\(224\) 0 0
\(225\) −15.0000 −0.0666667
\(226\) 0 0
\(227\) − 171.639i − 0.756118i −0.925782 0.378059i \(-0.876592\pi\)
0.925782 0.378059i \(-0.123408\pi\)
\(228\) 0 0
\(229\) −26.6275 −0.116277 −0.0581386 0.998309i \(-0.518517\pi\)
−0.0581386 + 0.998309i \(0.518517\pi\)
\(230\) 0 0
\(231\) 23.3918i 0.101263i
\(232\) 0 0
\(233\) −114.142 −0.489881 −0.244941 0.969538i \(-0.578768\pi\)
−0.244941 + 0.969538i \(0.578768\pi\)
\(234\) 0 0
\(235\) 0.791566i 0.00336836i
\(236\) 0 0
\(237\) −140.572 −0.593132
\(238\) 0 0
\(239\) − 99.6449i − 0.416924i −0.978030 0.208462i \(-0.933154\pi\)
0.978030 0.208462i \(-0.0668458\pi\)
\(240\) 0 0
\(241\) 87.0912 0.361374 0.180687 0.983541i \(-0.442168\pi\)
0.180687 + 0.983541i \(0.442168\pi\)
\(242\) 0 0
\(243\) − 15.5885i − 0.0641500i
\(244\) 0 0
\(245\) 15.6525 0.0638877
\(246\) 0 0
\(247\) 193.513i 0.783455i
\(248\) 0 0
\(249\) −168.607 −0.677138
\(250\) 0 0
\(251\) 401.400i 1.59920i 0.600531 + 0.799602i \(0.294956\pi\)
−0.600531 + 0.799602i \(0.705044\pi\)
\(252\) 0 0
\(253\) 93.6166 0.370026
\(254\) 0 0
\(255\) − 100.991i − 0.396044i
\(256\) 0 0
\(257\) 80.8278 0.314505 0.157252 0.987558i \(-0.449736\pi\)
0.157252 + 0.987558i \(0.449736\pi\)
\(258\) 0 0
\(259\) 76.0033i 0.293449i
\(260\) 0 0
\(261\) −139.584 −0.534804
\(262\) 0 0
\(263\) − 27.9109i − 0.106125i −0.998591 0.0530625i \(-0.983102\pi\)
0.998591 0.0530625i \(-0.0168983\pi\)
\(264\) 0 0
\(265\) 88.1044 0.332469
\(266\) 0 0
\(267\) − 162.866i − 0.609987i
\(268\) 0 0
\(269\) −40.8922 −0.152016 −0.0760078 0.997107i \(-0.524217\pi\)
−0.0760078 + 0.997107i \(0.524217\pi\)
\(270\) 0 0
\(271\) 38.7754i 0.143083i 0.997438 + 0.0715413i \(0.0227918\pi\)
−0.997438 + 0.0715413i \(0.977208\pi\)
\(272\) 0 0
\(273\) −56.9053 −0.208444
\(274\) 0 0
\(275\) 25.5226i 0.0928094i
\(276\) 0 0
\(277\) −386.534 −1.39543 −0.697715 0.716375i \(-0.745800\pi\)
−0.697715 + 0.716375i \(0.745800\pi\)
\(278\) 0 0
\(279\) − 7.90518i − 0.0283340i
\(280\) 0 0
\(281\) 357.365 1.27176 0.635881 0.771787i \(-0.280637\pi\)
0.635881 + 0.771787i \(0.280637\pi\)
\(282\) 0 0
\(283\) − 247.517i − 0.874619i −0.899311 0.437309i \(-0.855931\pi\)
0.899311 0.437309i \(-0.144069\pi\)
\(284\) 0 0
\(285\) 60.3551 0.211772
\(286\) 0 0
\(287\) 163.593i 0.570011i
\(288\) 0 0
\(289\) 390.948 1.35276
\(290\) 0 0
\(291\) − 5.36272i − 0.0184286i
\(292\) 0 0
\(293\) −87.7105 −0.299353 −0.149677 0.988735i \(-0.547823\pi\)
−0.149677 + 0.988735i \(0.547823\pi\)
\(294\) 0 0
\(295\) 52.4420i 0.177770i
\(296\) 0 0
\(297\) −26.5238 −0.0893059
\(298\) 0 0
\(299\) 227.741i 0.761676i
\(300\) 0 0
\(301\) −178.968 −0.594578
\(302\) 0 0
\(303\) 167.632i 0.553240i
\(304\) 0 0
\(305\) −9.16736 −0.0300569
\(306\) 0 0
\(307\) 241.887i 0.787906i 0.919131 + 0.393953i \(0.128893\pi\)
−0.919131 + 0.393953i \(0.871107\pi\)
\(308\) 0 0
\(309\) 300.137 0.971318
\(310\) 0 0
\(311\) − 277.512i − 0.892320i −0.894953 0.446160i \(-0.852791\pi\)
0.894953 0.446160i \(-0.147209\pi\)
\(312\) 0 0
\(313\) −46.5328 −0.148667 −0.0743335 0.997233i \(-0.523683\pi\)
−0.0743335 + 0.997233i \(0.523683\pi\)
\(314\) 0 0
\(315\) 17.7482i 0.0563436i
\(316\) 0 0
\(317\) −411.665 −1.29863 −0.649313 0.760521i \(-0.724944\pi\)
−0.649313 + 0.760521i \(0.724944\pi\)
\(318\) 0 0
\(319\) 237.503i 0.744522i
\(320\) 0 0
\(321\) 193.329 0.602270
\(322\) 0 0
\(323\) 406.355i 1.25807i
\(324\) 0 0
\(325\) −62.0888 −0.191042
\(326\) 0 0
\(327\) − 240.292i − 0.734838i
\(328\) 0 0
\(329\) 0.936593 0.00284679
\(330\) 0 0
\(331\) − 106.573i − 0.321972i −0.986957 0.160986i \(-0.948533\pi\)
0.986957 0.160986i \(-0.0514674\pi\)
\(332\) 0 0
\(333\) −86.1797 −0.258798
\(334\) 0 0
\(335\) − 197.189i − 0.588624i
\(336\) 0 0
\(337\) −472.309 −1.40151 −0.700756 0.713401i \(-0.747154\pi\)
−0.700756 + 0.713401i \(0.747154\pi\)
\(338\) 0 0
\(339\) − 372.845i − 1.09984i
\(340\) 0 0
\(341\) −13.4507 −0.0394449
\(342\) 0 0
\(343\) − 18.5203i − 0.0539949i
\(344\) 0 0
\(345\) 71.0303 0.205885
\(346\) 0 0
\(347\) 382.728i 1.10296i 0.834188 + 0.551481i \(0.185937\pi\)
−0.834188 + 0.551481i \(0.814063\pi\)
\(348\) 0 0
\(349\) 267.858 0.767501 0.383751 0.923437i \(-0.374632\pi\)
0.383751 + 0.923437i \(0.374632\pi\)
\(350\) 0 0
\(351\) − 64.5246i − 0.183831i
\(352\) 0 0
\(353\) 598.049 1.69419 0.847095 0.531441i \(-0.178349\pi\)
0.847095 + 0.531441i \(0.178349\pi\)
\(354\) 0 0
\(355\) − 222.307i − 0.626216i
\(356\) 0 0
\(357\) −119.494 −0.334718
\(358\) 0 0
\(359\) − 105.553i − 0.294019i −0.989135 0.147010i \(-0.953035\pi\)
0.989135 0.147010i \(-0.0469648\pi\)
\(360\) 0 0
\(361\) 118.151 0.327288
\(362\) 0 0
\(363\) − 164.448i − 0.453024i
\(364\) 0 0
\(365\) −216.077 −0.591993
\(366\) 0 0
\(367\) 254.558i 0.693618i 0.937936 + 0.346809i \(0.112735\pi\)
−0.937936 + 0.346809i \(0.887265\pi\)
\(368\) 0 0
\(369\) −185.497 −0.502702
\(370\) 0 0
\(371\) − 104.247i − 0.280988i
\(372\) 0 0
\(373\) 90.0152 0.241328 0.120664 0.992693i \(-0.461498\pi\)
0.120664 + 0.992693i \(0.461498\pi\)
\(374\) 0 0
\(375\) 19.3649i 0.0516398i
\(376\) 0 0
\(377\) −577.772 −1.53255
\(378\) 0 0
\(379\) 649.951i 1.71491i 0.514558 + 0.857456i \(0.327956\pi\)
−0.514558 + 0.857456i \(0.672044\pi\)
\(380\) 0 0
\(381\) −375.279 −0.984985
\(382\) 0 0
\(383\) − 6.65993i − 0.0173889i −0.999962 0.00869443i \(-0.997232\pi\)
0.999962 0.00869443i \(-0.00276756\pi\)
\(384\) 0 0
\(385\) 30.1987 0.0784382
\(386\) 0 0
\(387\) − 202.931i − 0.524369i
\(388\) 0 0
\(389\) 25.3910 0.0652724 0.0326362 0.999467i \(-0.489610\pi\)
0.0326362 + 0.999467i \(0.489610\pi\)
\(390\) 0 0
\(391\) 478.229i 1.22309i
\(392\) 0 0
\(393\) −243.399 −0.619336
\(394\) 0 0
\(395\) 181.478i 0.459438i
\(396\) 0 0
\(397\) −591.020 −1.48872 −0.744358 0.667781i \(-0.767244\pi\)
−0.744358 + 0.667781i \(0.767244\pi\)
\(398\) 0 0
\(399\) − 71.4131i − 0.178980i
\(400\) 0 0
\(401\) −322.719 −0.804785 −0.402393 0.915467i \(-0.631821\pi\)
−0.402393 + 0.915467i \(0.631821\pi\)
\(402\) 0 0
\(403\) − 32.7215i − 0.0811949i
\(404\) 0 0
\(405\) −20.1246 −0.0496904
\(406\) 0 0
\(407\) 146.635i 0.360283i
\(408\) 0 0
\(409\) 338.317 0.827181 0.413590 0.910463i \(-0.364275\pi\)
0.413590 + 0.910463i \(0.364275\pi\)
\(410\) 0 0
\(411\) − 100.702i − 0.245017i
\(412\) 0 0
\(413\) 62.0502 0.150243
\(414\) 0 0
\(415\) 217.671i 0.524509i
\(416\) 0 0
\(417\) 387.663 0.929648
\(418\) 0 0
\(419\) − 166.464i − 0.397288i −0.980072 0.198644i \(-0.936346\pi\)
0.980072 0.198644i \(-0.0636538\pi\)
\(420\) 0 0
\(421\) 463.057 1.09990 0.549949 0.835199i \(-0.314647\pi\)
0.549949 + 0.835199i \(0.314647\pi\)
\(422\) 0 0
\(423\) 1.06200i 0.00251063i
\(424\) 0 0
\(425\) −130.379 −0.306774
\(426\) 0 0
\(427\) 10.8470i 0.0254027i
\(428\) 0 0
\(429\) −109.789 −0.255918
\(430\) 0 0
\(431\) − 117.540i − 0.272714i −0.990660 0.136357i \(-0.956461\pi\)
0.990660 0.136357i \(-0.0435395\pi\)
\(432\) 0 0
\(433\) 117.959 0.272423 0.136211 0.990680i \(-0.456507\pi\)
0.136211 + 0.990680i \(0.456507\pi\)
\(434\) 0 0
\(435\) 180.202i 0.414257i
\(436\) 0 0
\(437\) −285.803 −0.654011
\(438\) 0 0
\(439\) 52.7908i 0.120252i 0.998191 + 0.0601262i \(0.0191503\pi\)
−0.998191 + 0.0601262i \(0.980850\pi\)
\(440\) 0 0
\(441\) 21.0000 0.0476190
\(442\) 0 0
\(443\) − 315.351i − 0.711853i −0.934514 0.355927i \(-0.884165\pi\)
0.934514 0.355927i \(-0.115835\pi\)
\(444\) 0 0
\(445\) −210.260 −0.472494
\(446\) 0 0
\(447\) − 182.956i − 0.409297i
\(448\) 0 0
\(449\) 476.573 1.06141 0.530705 0.847557i \(-0.321927\pi\)
0.530705 + 0.847557i \(0.321927\pi\)
\(450\) 0 0
\(451\) 315.624i 0.699833i
\(452\) 0 0
\(453\) 127.498 0.281453
\(454\) 0 0
\(455\) 73.4644i 0.161460i
\(456\) 0 0
\(457\) 59.3708 0.129914 0.0649571 0.997888i \(-0.479309\pi\)
0.0649571 + 0.997888i \(0.479309\pi\)
\(458\) 0 0
\(459\) − 135.494i − 0.295194i
\(460\) 0 0
\(461\) −209.996 −0.455522 −0.227761 0.973717i \(-0.573140\pi\)
−0.227761 + 0.973717i \(0.573140\pi\)
\(462\) 0 0
\(463\) 405.442i 0.875684i 0.899052 + 0.437842i \(0.144257\pi\)
−0.899052 + 0.437842i \(0.855743\pi\)
\(464\) 0 0
\(465\) −10.2055 −0.0219474
\(466\) 0 0
\(467\) − 774.009i − 1.65741i −0.559689 0.828703i \(-0.689079\pi\)
0.559689 0.828703i \(-0.310921\pi\)
\(468\) 0 0
\(469\) −233.317 −0.497478
\(470\) 0 0
\(471\) − 355.625i − 0.755042i
\(472\) 0 0
\(473\) −345.288 −0.729995
\(474\) 0 0
\(475\) − 77.9180i − 0.164038i
\(476\) 0 0
\(477\) 118.204 0.247808
\(478\) 0 0
\(479\) − 113.617i − 0.237196i −0.992942 0.118598i \(-0.962160\pi\)
0.992942 0.118598i \(-0.0378399\pi\)
\(480\) 0 0
\(481\) −356.719 −0.741620
\(482\) 0 0
\(483\) − 84.0442i − 0.174005i
\(484\) 0 0
\(485\) −6.92324 −0.0142747
\(486\) 0 0
\(487\) 801.556i 1.64590i 0.568110 + 0.822952i \(0.307675\pi\)
−0.568110 + 0.822952i \(0.692325\pi\)
\(488\) 0 0
\(489\) 353.664 0.723240
\(490\) 0 0
\(491\) − 588.018i − 1.19759i −0.800901 0.598796i \(-0.795646\pi\)
0.800901 0.598796i \(-0.204354\pi\)
\(492\) 0 0
\(493\) −1213.25 −2.46096
\(494\) 0 0
\(495\) 34.2421i 0.0691760i
\(496\) 0 0
\(497\) −263.037 −0.529249
\(498\) 0 0
\(499\) − 23.7739i − 0.0476432i −0.999716 0.0238216i \(-0.992417\pi\)
0.999716 0.0238216i \(-0.00758336\pi\)
\(500\) 0 0
\(501\) 36.0908 0.0720375
\(502\) 0 0
\(503\) 371.403i 0.738376i 0.929355 + 0.369188i \(0.120364\pi\)
−0.929355 + 0.369188i \(0.879636\pi\)
\(504\) 0 0
\(505\) 216.411 0.428538
\(506\) 0 0
\(507\) 25.6332i 0.0505586i
\(508\) 0 0
\(509\) 165.052 0.324268 0.162134 0.986769i \(-0.448162\pi\)
0.162134 + 0.986769i \(0.448162\pi\)
\(510\) 0 0
\(511\) 255.666i 0.500325i
\(512\) 0 0
\(513\) 80.9748 0.157846
\(514\) 0 0
\(515\) − 387.476i − 0.752380i
\(516\) 0 0
\(517\) 1.80699 0.00349515
\(518\) 0 0
\(519\) 223.693i 0.431008i
\(520\) 0 0
\(521\) 47.0690 0.0903435 0.0451717 0.998979i \(-0.485616\pi\)
0.0451717 + 0.998979i \(0.485616\pi\)
\(522\) 0 0
\(523\) 667.863i 1.27699i 0.769628 + 0.638493i \(0.220442\pi\)
−0.769628 + 0.638493i \(0.779558\pi\)
\(524\) 0 0
\(525\) 22.9129 0.0436436
\(526\) 0 0
\(527\) − 68.7113i − 0.130382i
\(528\) 0 0
\(529\) 192.646 0.364170
\(530\) 0 0
\(531\) 70.3583i 0.132502i
\(532\) 0 0
\(533\) −767.820 −1.44056
\(534\) 0 0
\(535\) − 249.586i − 0.466516i
\(536\) 0 0
\(537\) −581.256 −1.08241
\(538\) 0 0
\(539\) − 35.7316i − 0.0662924i
\(540\) 0 0
\(541\) −714.702 −1.32108 −0.660538 0.750793i \(-0.729672\pi\)
−0.660538 + 0.750793i \(0.729672\pi\)
\(542\) 0 0
\(543\) 260.862i 0.480410i
\(544\) 0 0
\(545\) −310.216 −0.569203
\(546\) 0 0
\(547\) 667.532i 1.22035i 0.792266 + 0.610175i \(0.208901\pi\)
−0.792266 + 0.610175i \(0.791099\pi\)
\(548\) 0 0
\(549\) −12.2993 −0.0224031
\(550\) 0 0
\(551\) − 725.073i − 1.31592i
\(552\) 0 0
\(553\) 214.728 0.388296
\(554\) 0 0
\(555\) 111.257i 0.200464i
\(556\) 0 0
\(557\) −594.544 −1.06740 −0.533702 0.845673i \(-0.679199\pi\)
−0.533702 + 0.845673i \(0.679199\pi\)
\(558\) 0 0
\(559\) − 839.982i − 1.50265i
\(560\) 0 0
\(561\) −230.544 −0.410951
\(562\) 0 0
\(563\) − 1077.37i − 1.91363i −0.290705 0.956813i \(-0.593890\pi\)
0.290705 0.956813i \(-0.406110\pi\)
\(564\) 0 0
\(565\) −481.341 −0.851930
\(566\) 0 0
\(567\) 23.8118i 0.0419961i
\(568\) 0 0
\(569\) 213.690 0.375553 0.187777 0.982212i \(-0.439872\pi\)
0.187777 + 0.982212i \(0.439872\pi\)
\(570\) 0 0
\(571\) 665.176i 1.16493i 0.812855 + 0.582466i \(0.197912\pi\)
−0.812855 + 0.582466i \(0.802088\pi\)
\(572\) 0 0
\(573\) −429.260 −0.749146
\(574\) 0 0
\(575\) − 91.6998i − 0.159478i
\(576\) 0 0
\(577\) −671.641 −1.16402 −0.582011 0.813181i \(-0.697734\pi\)
−0.582011 + 0.813181i \(0.697734\pi\)
\(578\) 0 0
\(579\) − 343.040i − 0.592470i
\(580\) 0 0
\(581\) 257.552 0.443291
\(582\) 0 0
\(583\) − 201.126i − 0.344984i
\(584\) 0 0
\(585\) −83.3008 −0.142395
\(586\) 0 0
\(587\) 156.431i 0.266492i 0.991083 + 0.133246i \(0.0425401\pi\)
−0.991083 + 0.133246i \(0.957460\pi\)
\(588\) 0 0
\(589\) 41.0637 0.0697177
\(590\) 0 0
\(591\) − 125.260i − 0.211946i
\(592\) 0 0
\(593\) 338.402 0.570662 0.285331 0.958429i \(-0.407897\pi\)
0.285331 + 0.958429i \(0.407897\pi\)
\(594\) 0 0
\(595\) 154.267i 0.259272i
\(596\) 0 0
\(597\) −378.074 −0.633289
\(598\) 0 0
\(599\) 629.125i 1.05029i 0.851012 + 0.525146i \(0.175989\pi\)
−0.851012 + 0.525146i \(0.824011\pi\)
\(600\) 0 0
\(601\) −552.824 −0.919840 −0.459920 0.887960i \(-0.652122\pi\)
−0.459920 + 0.887960i \(0.652122\pi\)
\(602\) 0 0
\(603\) − 264.557i − 0.438734i
\(604\) 0 0
\(605\) −212.301 −0.350911
\(606\) 0 0
\(607\) − 123.936i − 0.204178i −0.994775 0.102089i \(-0.967447\pi\)
0.994775 0.102089i \(-0.0325527\pi\)
\(608\) 0 0
\(609\) 213.218 0.350111
\(610\) 0 0
\(611\) 4.39587i 0.00719455i
\(612\) 0 0
\(613\) 1164.11 1.89903 0.949515 0.313721i \(-0.101576\pi\)
0.949515 + 0.313721i \(0.101576\pi\)
\(614\) 0 0
\(615\) 239.476i 0.389392i
\(616\) 0 0
\(617\) 323.657 0.524566 0.262283 0.964991i \(-0.415525\pi\)
0.262283 + 0.964991i \(0.415525\pi\)
\(618\) 0 0
\(619\) − 382.614i − 0.618116i −0.951043 0.309058i \(-0.899986\pi\)
0.951043 0.309058i \(-0.100014\pi\)
\(620\) 0 0
\(621\) 95.2972 0.153458
\(622\) 0 0
\(623\) 248.783i 0.399330i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) − 137.779i − 0.219743i
\(628\) 0 0
\(629\) −749.068 −1.19089
\(630\) 0 0
\(631\) − 98.2864i − 0.155763i −0.996963 0.0778815i \(-0.975184\pi\)
0.996963 0.0778815i \(-0.0248156\pi\)
\(632\) 0 0
\(633\) 463.533 0.732279
\(634\) 0 0
\(635\) 484.484i 0.762966i
\(636\) 0 0
\(637\) 86.9243 0.136459
\(638\) 0 0
\(639\) − 298.256i − 0.466754i
\(640\) 0 0
\(641\) −1010.53 −1.57649 −0.788244 0.615363i \(-0.789009\pi\)
−0.788244 + 0.615363i \(0.789009\pi\)
\(642\) 0 0
\(643\) − 448.858i − 0.698069i −0.937110 0.349034i \(-0.886510\pi\)
0.937110 0.349034i \(-0.113490\pi\)
\(644\) 0 0
\(645\) −261.982 −0.406174
\(646\) 0 0
\(647\) − 405.975i − 0.627472i −0.949510 0.313736i \(-0.898419\pi\)
0.949510 0.313736i \(-0.101581\pi\)
\(648\) 0 0
\(649\) 119.715 0.184461
\(650\) 0 0
\(651\) 12.0754i 0.0185489i
\(652\) 0 0
\(653\) 196.084 0.300282 0.150141 0.988665i \(-0.452027\pi\)
0.150141 + 0.988665i \(0.452027\pi\)
\(654\) 0 0
\(655\) 314.227i 0.479735i
\(656\) 0 0
\(657\) −289.898 −0.441245
\(658\) 0 0
\(659\) 920.381i 1.39663i 0.715790 + 0.698316i \(0.246067\pi\)
−0.715790 + 0.698316i \(0.753933\pi\)
\(660\) 0 0
\(661\) 1019.52 1.54239 0.771197 0.636597i \(-0.219658\pi\)
0.771197 + 0.636597i \(0.219658\pi\)
\(662\) 0 0
\(663\) − 560.843i − 0.845918i
\(664\) 0 0
\(665\) −92.1939 −0.138637
\(666\) 0 0
\(667\) − 853.320i − 1.27934i
\(668\) 0 0
\(669\) 238.777 0.356917
\(670\) 0 0
\(671\) 20.9273i 0.0311883i
\(672\) 0 0
\(673\) 688.377 1.02285 0.511424 0.859328i \(-0.329118\pi\)
0.511424 + 0.859328i \(0.329118\pi\)
\(674\) 0 0
\(675\) 25.9808i 0.0384900i
\(676\) 0 0
\(677\) −433.825 −0.640805 −0.320402 0.947282i \(-0.603818\pi\)
−0.320402 + 0.947282i \(0.603818\pi\)
\(678\) 0 0
\(679\) 8.19169i 0.0120643i
\(680\) 0 0
\(681\) −297.287 −0.436545
\(682\) 0 0
\(683\) 918.373i 1.34462i 0.740272 + 0.672308i \(0.234697\pi\)
−0.740272 + 0.672308i \(0.765303\pi\)
\(684\) 0 0
\(685\) −130.006 −0.189790
\(686\) 0 0
\(687\) 46.1202i 0.0671327i
\(688\) 0 0
\(689\) 489.278 0.710128
\(690\) 0 0
\(691\) 897.634i 1.29904i 0.760346 + 0.649518i \(0.225029\pi\)
−0.760346 + 0.649518i \(0.774971\pi\)
\(692\) 0 0
\(693\) 40.5158 0.0584644
\(694\) 0 0
\(695\) − 500.471i − 0.720102i
\(696\) 0 0
\(697\) −1612.33 −2.31324
\(698\) 0 0
\(699\) 197.700i 0.282833i
\(700\) 0 0
\(701\) −971.305 −1.38560 −0.692799 0.721130i \(-0.743623\pi\)
−0.692799 + 0.721130i \(0.743623\pi\)
\(702\) 0 0
\(703\) − 447.663i − 0.636790i
\(704\) 0 0
\(705\) 1.37103 0.00194473
\(706\) 0 0
\(707\) − 256.061i − 0.362180i
\(708\) 0 0
\(709\) 368.861 0.520255 0.260128 0.965574i \(-0.416235\pi\)
0.260128 + 0.965574i \(0.416235\pi\)
\(710\) 0 0
\(711\) 243.478i 0.342445i
\(712\) 0 0
\(713\) 48.3269 0.0677796
\(714\) 0 0
\(715\) 141.737i 0.198233i
\(716\) 0 0
\(717\) −172.590 −0.240711
\(718\) 0 0
\(719\) 81.4585i 0.113294i 0.998394 + 0.0566471i \(0.0180410\pi\)
−0.998394 + 0.0566471i \(0.981959\pi\)
\(720\) 0 0
\(721\) −458.467 −0.635877
\(722\) 0 0
\(723\) − 150.846i − 0.208640i
\(724\) 0 0
\(725\) 232.640 0.320882
\(726\) 0 0
\(727\) 286.135i 0.393583i 0.980445 + 0.196792i \(0.0630522\pi\)
−0.980445 + 0.196792i \(0.936948\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) − 1763.86i − 2.41294i
\(732\) 0 0
\(733\) −597.050 −0.814529 −0.407265 0.913310i \(-0.633517\pi\)
−0.407265 + 0.913310i \(0.633517\pi\)
\(734\) 0 0
\(735\) − 27.1109i − 0.0368856i
\(736\) 0 0
\(737\) −450.145 −0.610780
\(738\) 0 0
\(739\) 1115.03i 1.50883i 0.656395 + 0.754417i \(0.272080\pi\)
−0.656395 + 0.754417i \(0.727920\pi\)
\(740\) 0 0
\(741\) 335.175 0.452328
\(742\) 0 0
\(743\) − 661.612i − 0.890460i −0.895416 0.445230i \(-0.853122\pi\)
0.895416 0.445230i \(-0.146878\pi\)
\(744\) 0 0
\(745\) −236.195 −0.317040
\(746\) 0 0
\(747\) 292.036i 0.390946i
\(748\) 0 0
\(749\) −295.314 −0.394278
\(750\) 0 0
\(751\) − 176.622i − 0.235182i −0.993062 0.117591i \(-0.962483\pi\)
0.993062 0.117591i \(-0.0375172\pi\)
\(752\) 0 0
\(753\) 695.245 0.923301
\(754\) 0 0
\(755\) − 164.599i − 0.218013i
\(756\) 0 0
\(757\) −1255.24 −1.65818 −0.829088 0.559119i \(-0.811140\pi\)
−0.829088 + 0.559119i \(0.811140\pi\)
\(758\) 0 0
\(759\) − 162.149i − 0.213635i
\(760\) 0 0
\(761\) 565.354 0.742909 0.371455 0.928451i \(-0.378859\pi\)
0.371455 + 0.928451i \(0.378859\pi\)
\(762\) 0 0
\(763\) 367.052i 0.481064i
\(764\) 0 0
\(765\) −174.922 −0.228656
\(766\) 0 0
\(767\) 291.231i 0.379701i
\(768\) 0 0
\(769\) 700.628 0.911090 0.455545 0.890213i \(-0.349444\pi\)
0.455545 + 0.890213i \(0.349444\pi\)
\(770\) 0 0
\(771\) − 139.998i − 0.181579i
\(772\) 0 0
\(773\) 1204.71 1.55849 0.779243 0.626722i \(-0.215604\pi\)
0.779243 + 0.626722i \(0.215604\pi\)
\(774\) 0 0
\(775\) 13.1753i 0.0170004i
\(776\) 0 0
\(777\) 131.642 0.169423
\(778\) 0 0
\(779\) − 963.572i − 1.23693i
\(780\) 0 0
\(781\) −507.484 −0.649787
\(782\) 0 0
\(783\) 241.766i 0.308769i
\(784\) 0 0
\(785\) −459.109 −0.584853
\(786\) 0 0
\(787\) − 1360.26i − 1.72841i −0.503141 0.864205i \(-0.667822\pi\)
0.503141 0.864205i \(-0.332178\pi\)
\(788\) 0 0
\(789\) −48.3430 −0.0612713
\(790\) 0 0
\(791\) 569.530i 0.720013i
\(792\) 0 0
\(793\) −50.9099 −0.0641991
\(794\) 0 0
\(795\) − 152.601i − 0.191951i
\(796\) 0 0
\(797\) −848.626 −1.06478 −0.532388 0.846501i \(-0.678705\pi\)
−0.532388 + 0.846501i \(0.678705\pi\)
\(798\) 0 0
\(799\) 9.23081i 0.0115530i
\(800\) 0 0
\(801\) −282.093 −0.352176
\(802\) 0 0
\(803\) 493.263i 0.614276i
\(804\) 0 0
\(805\) −108.501 −0.134783
\(806\) 0 0
\(807\) 70.8274i 0.0877663i
\(808\) 0 0
\(809\) 1247.56 1.54211 0.771053 0.636771i \(-0.219730\pi\)
0.771053 + 0.636771i \(0.219730\pi\)
\(810\) 0 0
\(811\) 1358.85i 1.67552i 0.546036 + 0.837762i \(0.316136\pi\)
−0.546036 + 0.837762i \(0.683864\pi\)
\(812\) 0 0
\(813\) 67.1609 0.0826088
\(814\) 0 0
\(815\) − 456.579i − 0.560219i
\(816\) 0 0
\(817\) 1054.13 1.29025
\(818\) 0 0
\(819\) 98.5629i 0.120345i
\(820\) 0 0
\(821\) 1170.58 1.42580 0.712900 0.701266i \(-0.247381\pi\)
0.712900 + 0.701266i \(0.247381\pi\)
\(822\) 0 0
\(823\) − 604.336i − 0.734308i −0.930160 0.367154i \(-0.880332\pi\)
0.930160 0.367154i \(-0.119668\pi\)
\(824\) 0 0
\(825\) 44.2064 0.0535835
\(826\) 0 0
\(827\) 271.951i 0.328841i 0.986390 + 0.164420i \(0.0525753\pi\)
−0.986390 + 0.164420i \(0.947425\pi\)
\(828\) 0 0
\(829\) −1131.33 −1.36469 −0.682347 0.731029i \(-0.739041\pi\)
−0.682347 + 0.731029i \(0.739041\pi\)
\(830\) 0 0
\(831\) 669.497i 0.805652i
\(832\) 0 0
\(833\) 182.531 0.219124
\(834\) 0 0
\(835\) − 46.5930i − 0.0558000i
\(836\) 0 0
\(837\) −13.6922 −0.0163586
\(838\) 0 0
\(839\) 1076.26i 1.28279i 0.767210 + 0.641396i \(0.221644\pi\)
−0.767210 + 0.641396i \(0.778356\pi\)
\(840\) 0 0
\(841\) 1323.85 1.57414
\(842\) 0 0
\(843\) − 618.974i − 0.734252i
\(844\) 0 0
\(845\) 33.0923 0.0391625
\(846\) 0 0
\(847\) 251.198i 0.296574i
\(848\) 0 0
\(849\) −428.712 −0.504961
\(850\) 0 0
\(851\) − 526.844i − 0.619088i
\(852\) 0 0
\(853\) 255.300 0.299296 0.149648 0.988739i \(-0.452186\pi\)
0.149648 + 0.988739i \(0.452186\pi\)
\(854\) 0 0
\(855\) − 104.538i − 0.122267i
\(856\) 0 0
\(857\) −589.026 −0.687312 −0.343656 0.939096i \(-0.611665\pi\)
−0.343656 + 0.939096i \(0.611665\pi\)
\(858\) 0 0
\(859\) − 966.822i − 1.12552i −0.826620 0.562760i \(-0.809740\pi\)
0.826620 0.562760i \(-0.190260\pi\)
\(860\) 0 0
\(861\) 283.352 0.329096
\(862\) 0 0
\(863\) − 934.859i − 1.08327i −0.840615 0.541633i \(-0.817806\pi\)
0.840615 0.541633i \(-0.182194\pi\)
\(864\) 0 0
\(865\) 288.787 0.333858
\(866\) 0 0
\(867\) − 677.142i − 0.781017i
\(868\) 0 0
\(869\) 414.280 0.476731
\(870\) 0 0
\(871\) − 1095.07i − 1.25725i
\(872\) 0 0
\(873\) −9.28850 −0.0106397
\(874\) 0 0
\(875\) − 29.5804i − 0.0338062i
\(876\) 0 0
\(877\) −675.488 −0.770225 −0.385113 0.922870i \(-0.625837\pi\)
−0.385113 + 0.922870i \(0.625837\pi\)
\(878\) 0 0
\(879\) 151.919i 0.172832i
\(880\) 0 0
\(881\) 895.222 1.01614 0.508071 0.861315i \(-0.330359\pi\)
0.508071 + 0.861315i \(0.330359\pi\)
\(882\) 0 0
\(883\) 778.770i 0.881959i 0.897517 + 0.440979i \(0.145369\pi\)
−0.897517 + 0.440979i \(0.854631\pi\)
\(884\) 0 0
\(885\) 90.8322 0.102635
\(886\) 0 0
\(887\) 1121.57i 1.26445i 0.774783 + 0.632227i \(0.217859\pi\)
−0.774783 + 0.632227i \(0.782141\pi\)
\(888\) 0 0
\(889\) 573.249 0.644824
\(890\) 0 0
\(891\) 45.9406i 0.0515608i
\(892\) 0 0
\(893\) −5.51658 −0.00617758
\(894\) 0 0
\(895\) 750.398i 0.838434i
\(896\) 0 0
\(897\) 394.459 0.439754
\(898\) 0 0
\(899\) 122.604i 0.136378i
\(900\) 0 0
\(901\) 1027.43 1.14032
\(902\) 0 0
\(903\) 309.982i 0.343280i
\(904\) 0 0
\(905\) 336.772 0.372124
\(906\) 0 0
\(907\) − 441.365i − 0.486621i −0.969948 0.243310i \(-0.921767\pi\)
0.969948 0.243310i \(-0.0782334\pi\)
\(908\) 0 0
\(909\) 290.346 0.319413
\(910\) 0 0
\(911\) 411.453i 0.451650i 0.974168 + 0.225825i \(0.0725077\pi\)
−0.974168 + 0.225825i \(0.927492\pi\)
\(912\) 0 0
\(913\) 496.902 0.544252
\(914\) 0 0
\(915\) 15.8783i 0.0173534i
\(916\) 0 0
\(917\) 371.798 0.405450
\(918\) 0 0
\(919\) 910.962i 0.991254i 0.868536 + 0.495627i \(0.165062\pi\)
−0.868536 + 0.495627i \(0.834938\pi\)
\(920\) 0 0
\(921\) 418.961 0.454898
\(922\) 0 0
\(923\) − 1234.56i − 1.33755i
\(924\) 0 0
\(925\) 143.633 0.155279
\(926\) 0 0
\(927\) − 519.853i − 0.560791i
\(928\) 0 0
\(929\) 762.270 0.820528 0.410264 0.911967i \(-0.365437\pi\)
0.410264 + 0.911967i \(0.365437\pi\)
\(930\) 0 0
\(931\) 109.085i 0.117170i
\(932\) 0 0
\(933\) −480.664 −0.515181
\(934\) 0 0
\(935\) 297.631i 0.318321i
\(936\) 0 0
\(937\) 834.729 0.890853 0.445427 0.895318i \(-0.353052\pi\)
0.445427 + 0.895318i \(0.353052\pi\)
\(938\) 0 0
\(939\) 80.5971i 0.0858329i
\(940\) 0 0
\(941\) −276.685 −0.294033 −0.147017 0.989134i \(-0.546967\pi\)
−0.147017 + 0.989134i \(0.546967\pi\)
\(942\) 0 0
\(943\) − 1134.00i − 1.20255i
\(944\) 0 0
\(945\) 30.7409 0.0325300
\(946\) 0 0
\(947\) − 268.037i − 0.283038i −0.989936 0.141519i \(-0.954801\pi\)
0.989936 0.141519i \(-0.0451987\pi\)
\(948\) 0 0
\(949\) −1199.96 −1.26445
\(950\) 0 0
\(951\) 713.024i 0.749762i
\(952\) 0 0
\(953\) 952.185 0.999145 0.499572 0.866272i \(-0.333490\pi\)
0.499572 + 0.866272i \(0.333490\pi\)
\(954\) 0 0
\(955\) 554.173i 0.580286i
\(956\) 0 0
\(957\) 411.366 0.429850
\(958\) 0 0
\(959\) 153.825i 0.160401i
\(960\) 0 0
\(961\) 954.056 0.992775
\(962\) 0 0
\(963\) − 334.855i − 0.347721i
\(964\) 0 0
\(965\) −442.863 −0.458925
\(966\) 0 0
\(967\) 284.006i 0.293698i 0.989159 + 0.146849i \(0.0469131\pi\)
−0.989159 + 0.146849i \(0.953087\pi\)
\(968\) 0 0
\(969\) 703.828 0.726345
\(970\) 0 0
\(971\) − 388.559i − 0.400164i −0.979779 0.200082i \(-0.935879\pi\)
0.979779 0.200082i \(-0.0641208\pi\)
\(972\) 0 0
\(973\) −592.165 −0.608597
\(974\) 0 0
\(975\) 107.541i 0.110298i
\(976\) 0 0
\(977\) −304.974 −0.312153 −0.156077 0.987745i \(-0.549885\pi\)
−0.156077 + 0.987745i \(0.549885\pi\)
\(978\) 0 0
\(979\) 479.983i 0.490279i
\(980\) 0 0
\(981\) −416.198 −0.424259
\(982\) 0 0
\(983\) 770.648i 0.783976i 0.919970 + 0.391988i \(0.128212\pi\)
−0.919970 + 0.391988i \(0.871788\pi\)
\(984\) 0 0
\(985\) −161.710 −0.164172
\(986\) 0 0
\(987\) − 1.62223i − 0.00164359i
\(988\) 0 0
\(989\) 1240.58 1.25438
\(990\) 0 0
\(991\) − 1234.76i − 1.24597i −0.782232 0.622987i \(-0.785919\pi\)
0.782232 0.622987i \(-0.214081\pi\)
\(992\) 0 0
\(993\) −184.589 −0.185891
\(994\) 0 0
\(995\) 488.091i 0.490544i
\(996\) 0 0
\(997\) −1515.67 −1.52023 −0.760117 0.649786i \(-0.774858\pi\)
−0.760117 + 0.649786i \(0.774858\pi\)
\(998\) 0 0
\(999\) 149.268i 0.149417i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.3.n.c.1471.4 16
4.3 odd 2 inner 1680.3.n.c.1471.9 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.3.n.c.1471.4 16 1.1 even 1 trivial
1680.3.n.c.1471.9 yes 16 4.3 odd 2 inner