Properties

Label 1680.3.n.c
Level $1680$
Weight $3$
Character orbit 1680.n
Analytic conductor $45.777$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,3,Mod(1471,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.1471"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1680.n (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-48,0,0,0,48,0,0,0,-96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.7766844125\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7 x^{15} + 6 x^{14} + 115 x^{13} - 535 x^{12} + 605 x^{11} + 2453 x^{10} - 10997 x^{9} + \cdots + 92164 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{36} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{7} q^{3} + \beta_1 q^{5} + \beta_{8} q^{7} - 3 q^{9} + ( - \beta_{13} + \beta_{10} + \beta_{7}) q^{11} + ( - \beta_{3} - \beta_1 + 3) q^{13} - \beta_{10} q^{15} + ( - \beta_{5} - 2 \beta_{2} - 6) q^{17}+ \cdots + (3 \beta_{13} - 3 \beta_{10} - 3 \beta_{7}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{9} + 48 q^{13} - 96 q^{17} + 80 q^{25} + 112 q^{29} + 48 q^{33} - 224 q^{37} + 160 q^{41} - 112 q^{49} - 96 q^{53} + 80 q^{61} - 80 q^{65} + 48 q^{69} - 48 q^{73} + 144 q^{81} - 160 q^{89}+ \cdots + 592 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 7 x^{15} + 6 x^{14} + 115 x^{13} - 535 x^{12} + 605 x^{11} + 2453 x^{10} - 10997 x^{9} + \cdots + 92164 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 20\!\cdots\!92 \nu^{15} + \cdots - 37\!\cdots\!72 ) / 72\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 13\!\cdots\!08 \nu^{15} + \cdots - 96\!\cdots\!44 ) / 33\!\cdots\!44 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 58\!\cdots\!88 \nu^{15} + \cdots - 58\!\cdots\!68 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 56\!\cdots\!91 \nu^{15} + \cdots - 13\!\cdots\!64 ) / 65\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 65\!\cdots\!12 \nu^{15} + \cdots + 66\!\cdots\!52 ) / 52\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 40\!\cdots\!28 \nu^{15} + \cdots - 49\!\cdots\!53 ) / 18\!\cdots\!15 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 44\!\cdots\!59 \nu^{15} + \cdots + 28\!\cdots\!04 ) / 14\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 159676076414873 \nu^{15} - 914285067944359 \nu^{14} - 234643800713243 \nu^{13} + \cdots - 10\!\cdots\!88 ) / 36\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 58\!\cdots\!08 \nu^{15} + \cdots + 84\!\cdots\!28 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 58391035384283 \nu^{15} - 340284802097573 \nu^{14} - 48306108152577 \nu^{13} + \cdots - 44\!\cdots\!44 ) / 98\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 129747753771601 \nu^{15} + 742677923572096 \nu^{14} + 152615443805654 \nu^{13} + \cdots + 96\!\cdots\!48 ) / 13\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 64\!\cdots\!61 \nu^{15} + \cdots - 48\!\cdots\!16 ) / 41\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 98\!\cdots\!23 \nu^{15} + \cdots - 70\!\cdots\!88 ) / 41\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 20\!\cdots\!07 \nu^{15} + \cdots - 12\!\cdots\!16 ) / 83\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 14\!\cdots\!31 \nu^{15} + \cdots - 11\!\cdots\!96 ) / 41\!\cdots\!20 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{15} - \beta_{13} + \beta_{11} - \beta_{10} + \beta_{9} + \beta_{8} - \beta_{7} + \beta_{6} + \cdots + 7 ) / 16 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2 \beta_{15} - \beta_{14} - 2 \beta_{13} - \beta_{12} - 3 \beta_{11} - 11 \beta_{10} - \beta_{9} + \cdots + 37 ) / 16 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2 \beta_{15} + 2 \beta_{14} - 5 \beta_{13} + \beta_{12} - \beta_{11} - 3 \beta_{10} + 2 \beta_{9} + \cdots - 64 ) / 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 11 \beta_{15} + 14 \beta_{14} - 3 \beta_{13} - 42 \beta_{12} - 89 \beta_{11} - 47 \beta_{10} + \cdots + 217 ) / 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 33 \beta_{15} + 87 \beta_{14} - 81 \beta_{13} + 81 \beta_{12} + 30 \beta_{11} + 380 \beta_{10} + \cdots - 1248 ) / 16 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 19 \beta_{15} - 64 \beta_{14} + 176 \beta_{13} - 233 \beta_{12} - 435 \beta_{11} - 561 \beta_{10} + \cdots + 2762 ) / 8 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 423 \beta_{15} + 119 \beta_{14} - 1111 \beta_{13} + 2645 \beta_{12} + 4676 \beta_{11} + 4390 \beta_{10} + \cdots - 9856 ) / 16 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 1328 \beta_{15} - 4633 \beta_{14} + 6452 \beta_{13} - 6717 \beta_{12} - 8663 \beta_{11} - 24751 \beta_{10} + \cdots + 31353 ) / 16 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 4454 \beta_{15} + 3465 \beta_{14} - 8911 \beta_{13} + 20022 \beta_{12} + 32525 \beta_{11} + \cdots - 77590 ) / 8 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 11115 \beta_{15} - 33205 \beta_{14} + 100195 \beta_{13} - 139335 \beta_{12} - 242310 \beta_{11} + \cdots + 113372 ) / 16 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 133383 \beta_{15} + 203759 \beta_{14} - 311607 \beta_{13} + 522253 \beta_{12} + 741676 \beta_{11} + \cdots + 468904 ) / 16 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( 178955 \beta_{15} - 253481 \beta_{14} + 619966 \beta_{13} - 1057108 \beta_{12} - 1755745 \beta_{11} + \cdots + 291494 ) / 8 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 944021 \beta_{15} + 2001617 \beta_{14} - 5179833 \beta_{13} + 7671535 \beta_{12} + 12608688 \beta_{11} + \cdots + 29076756 ) / 16 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 6730869 \beta_{15} - 9138859 \beta_{14} + 15290033 \beta_{13} - 27361685 \beta_{12} - 41377686 \beta_{11} + \cdots - 119257066 ) / 16 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 13819491 \beta_{15} + 27012609 \beta_{14} - 64884807 \beta_{13} + 98023347 \beta_{12} + \cdots + 504064602 ) / 16 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1471.1
−0.825539 + 0.794836i
1.27200 0.118428i
−0.656837 1.70180i
2.51939 + 1.56062i
1.69504 2.74011i
0.754146 + 0.969255i
2.52830 0.173365i
−3.78650 + 0.542965i
2.51939 1.56062i
−0.656837 + 1.70180i
1.27200 + 0.118428i
−0.825539 0.794836i
−3.78650 0.542965i
2.52830 + 0.173365i
0.754146 0.969255i
1.69504 + 2.74011i
0 1.73205i 0 −2.23607 0 2.64575i 0 −3.00000 0
1471.2 0 1.73205i 0 −2.23607 0 2.64575i 0 −3.00000 0
1471.3 0 1.73205i 0 −2.23607 0 2.64575i 0 −3.00000 0
1471.4 0 1.73205i 0 −2.23607 0 2.64575i 0 −3.00000 0
1471.5 0 1.73205i 0 2.23607 0 2.64575i 0 −3.00000 0
1471.6 0 1.73205i 0 2.23607 0 2.64575i 0 −3.00000 0
1471.7 0 1.73205i 0 2.23607 0 2.64575i 0 −3.00000 0
1471.8 0 1.73205i 0 2.23607 0 2.64575i 0 −3.00000 0
1471.9 0 1.73205i 0 −2.23607 0 2.64575i 0 −3.00000 0
1471.10 0 1.73205i 0 −2.23607 0 2.64575i 0 −3.00000 0
1471.11 0 1.73205i 0 −2.23607 0 2.64575i 0 −3.00000 0
1471.12 0 1.73205i 0 −2.23607 0 2.64575i 0 −3.00000 0
1471.13 0 1.73205i 0 2.23607 0 2.64575i 0 −3.00000 0
1471.14 0 1.73205i 0 2.23607 0 2.64575i 0 −3.00000 0
1471.15 0 1.73205i 0 2.23607 0 2.64575i 0 −3.00000 0
1471.16 0 1.73205i 0 2.23607 0 2.64575i 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1471.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1680.3.n.c 16
4.b odd 2 1 inner 1680.3.n.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1680.3.n.c 16 1.a even 1 1 trivial
1680.3.n.c 16 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{16} + 1184 T_{11}^{14} + 549632 T_{11}^{12} + 129339392 T_{11}^{10} + 16624844800 T_{11}^{8} + \cdots + 470560911917056 \) acting on \(S_{3}^{\mathrm{new}}(1680, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( (T^{2} + 3)^{8} \) Copy content Toggle raw display
$5$ \( (T^{2} - 5)^{8} \) Copy content Toggle raw display
$7$ \( (T^{2} + 7)^{8} \) Copy content Toggle raw display
$11$ \( T^{16} + \cdots + 470560911917056 \) Copy content Toggle raw display
$13$ \( (T^{8} - 24 T^{7} + \cdots - 91821824)^{2} \) Copy content Toggle raw display
$17$ \( (T^{8} + 48 T^{7} + \cdots + 12887296)^{2} \) Copy content Toggle raw display
$19$ \( T^{16} + \cdots + 21\!\cdots\!36 \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 92\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( (T^{8} - 56 T^{7} + \cdots + 258183424)^{2} \) Copy content Toggle raw display
$31$ \( T^{16} + \cdots + 83\!\cdots\!76 \) Copy content Toggle raw display
$37$ \( (T^{8} + 112 T^{7} + \cdots - 198934225664)^{2} \) Copy content Toggle raw display
$41$ \( (T^{8} + \cdots + 1175024800000)^{2} \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots + 42\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 10\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( (T^{8} + 48 T^{7} + \cdots + 146263348480)^{2} \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 35\!\cdots\!96 \) Copy content Toggle raw display
$61$ \( (T^{8} + \cdots + 19981935575296)^{2} \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 51\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots + 92\!\cdots\!96 \) Copy content Toggle raw display
$73$ \( (T^{8} + 24 T^{7} + \cdots - 356882398976)^{2} \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 92\!\cdots\!56 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 37\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( (T^{8} + \cdots + 83\!\cdots\!24)^{2} \) Copy content Toggle raw display
$97$ \( (T^{8} + \cdots + 134282266337536)^{2} \) Copy content Toggle raw display
show more
show less