Properties

Label 1680.3.n.c.1471.16
Level $1680$
Weight $3$
Character 1680.1471
Analytic conductor $45.777$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,3,Mod(1471,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.1471"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1680.n (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-48,0,0,0,48,0,0,0,-96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.7766844125\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7 x^{15} + 6 x^{14} + 115 x^{13} - 535 x^{12} + 605 x^{11} + 2453 x^{10} - 10997 x^{9} + \cdots + 92164 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{36} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1471.16
Root \(1.69504 + 2.74011i\) of defining polynomial
Character \(\chi\) \(=\) 1680.1471
Dual form 1680.3.n.c.1471.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{3} +2.23607 q^{5} +2.64575i q^{7} -3.00000 q^{9} +0.994379i q^{11} +11.7318 q^{13} +3.87298i q^{15} -14.5812 q^{17} -31.6374i q^{19} -4.58258 q^{21} -17.8342i q^{23} +5.00000 q^{25} -5.19615i q^{27} +49.5599 q^{29} -46.7254i q^{31} -1.72232 q^{33} +5.91608i q^{35} +47.1423 q^{37} +20.3200i q^{39} -5.75058 q^{41} +65.1579i q^{43} -6.70820 q^{45} -2.11270i q^{47} -7.00000 q^{49} -25.2554i q^{51} -2.48676 q^{53} +2.22350i q^{55} +54.7975 q^{57} +47.9819i q^{59} -31.0102 q^{61} -7.93725i q^{63} +26.2331 q^{65} -76.9087i q^{67} +30.8897 q^{69} -33.2482i q^{71} -48.1952 q^{73} +8.66025i q^{75} -2.63088 q^{77} -42.7205i q^{79} +9.00000 q^{81} -6.74079i q^{83} -32.6046 q^{85} +85.8403i q^{87} +150.734 q^{89} +31.0394i q^{91} +80.9307 q^{93} -70.7433i q^{95} +155.531 q^{97} -2.98314i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{9} + 48 q^{13} - 96 q^{17} + 80 q^{25} + 112 q^{29} + 48 q^{33} - 224 q^{37} + 160 q^{41} - 112 q^{49} - 96 q^{53} + 80 q^{61} - 80 q^{65} + 48 q^{69} - 48 q^{73} + 144 q^{81} - 160 q^{89}+ \cdots + 592 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) 2.23607 0.447214
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 0.994379i 0.0903981i 0.998978 + 0.0451991i \(0.0143922\pi\)
−0.998978 + 0.0451991i \(0.985608\pi\)
\(12\) 0 0
\(13\) 11.7318 0.902445 0.451222 0.892412i \(-0.350988\pi\)
0.451222 + 0.892412i \(0.350988\pi\)
\(14\) 0 0
\(15\) 3.87298i 0.258199i
\(16\) 0 0
\(17\) −14.5812 −0.857718 −0.428859 0.903372i \(-0.641084\pi\)
−0.428859 + 0.903372i \(0.641084\pi\)
\(18\) 0 0
\(19\) − 31.6374i − 1.66512i −0.553932 0.832562i \(-0.686873\pi\)
0.553932 0.832562i \(-0.313127\pi\)
\(20\) 0 0
\(21\) −4.58258 −0.218218
\(22\) 0 0
\(23\) − 17.8342i − 0.775399i −0.921786 0.387699i \(-0.873270\pi\)
0.921786 0.387699i \(-0.126730\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 0 0
\(27\) − 5.19615i − 0.192450i
\(28\) 0 0
\(29\) 49.5599 1.70896 0.854482 0.519481i \(-0.173875\pi\)
0.854482 + 0.519481i \(0.173875\pi\)
\(30\) 0 0
\(31\) − 46.7254i − 1.50727i −0.657293 0.753635i \(-0.728299\pi\)
0.657293 0.753635i \(-0.271701\pi\)
\(32\) 0 0
\(33\) −1.72232 −0.0521914
\(34\) 0 0
\(35\) 5.91608i 0.169031i
\(36\) 0 0
\(37\) 47.1423 1.27412 0.637058 0.770816i \(-0.280151\pi\)
0.637058 + 0.770816i \(0.280151\pi\)
\(38\) 0 0
\(39\) 20.3200i 0.521027i
\(40\) 0 0
\(41\) −5.75058 −0.140258 −0.0701290 0.997538i \(-0.522341\pi\)
−0.0701290 + 0.997538i \(0.522341\pi\)
\(42\) 0 0
\(43\) 65.1579i 1.51530i 0.652662 + 0.757650i \(0.273652\pi\)
−0.652662 + 0.757650i \(0.726348\pi\)
\(44\) 0 0
\(45\) −6.70820 −0.149071
\(46\) 0 0
\(47\) − 2.11270i − 0.0449511i −0.999747 0.0224755i \(-0.992845\pi\)
0.999747 0.0224755i \(-0.00715479\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) − 25.2554i − 0.495204i
\(52\) 0 0
\(53\) −2.48676 −0.0469199 −0.0234600 0.999725i \(-0.507468\pi\)
−0.0234600 + 0.999725i \(0.507468\pi\)
\(54\) 0 0
\(55\) 2.22350i 0.0404273i
\(56\) 0 0
\(57\) 54.7975 0.961360
\(58\) 0 0
\(59\) 47.9819i 0.813253i 0.913594 + 0.406627i \(0.133295\pi\)
−0.913594 + 0.406627i \(0.866705\pi\)
\(60\) 0 0
\(61\) −31.0102 −0.508364 −0.254182 0.967156i \(-0.581806\pi\)
−0.254182 + 0.967156i \(0.581806\pi\)
\(62\) 0 0
\(63\) − 7.93725i − 0.125988i
\(64\) 0 0
\(65\) 26.2331 0.403586
\(66\) 0 0
\(67\) − 76.9087i − 1.14789i −0.818893 0.573946i \(-0.805412\pi\)
0.818893 0.573946i \(-0.194588\pi\)
\(68\) 0 0
\(69\) 30.8897 0.447677
\(70\) 0 0
\(71\) − 33.2482i − 0.468285i −0.972202 0.234142i \(-0.924772\pi\)
0.972202 0.234142i \(-0.0752282\pi\)
\(72\) 0 0
\(73\) −48.1952 −0.660208 −0.330104 0.943945i \(-0.607084\pi\)
−0.330104 + 0.943945i \(0.607084\pi\)
\(74\) 0 0
\(75\) 8.66025i 0.115470i
\(76\) 0 0
\(77\) −2.63088 −0.0341673
\(78\) 0 0
\(79\) − 42.7205i − 0.540766i −0.962753 0.270383i \(-0.912850\pi\)
0.962753 0.270383i \(-0.0871503\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) − 6.74079i − 0.0812143i −0.999175 0.0406071i \(-0.987071\pi\)
0.999175 0.0406071i \(-0.0129292\pi\)
\(84\) 0 0
\(85\) −32.6046 −0.383583
\(86\) 0 0
\(87\) 85.8403i 0.986671i
\(88\) 0 0
\(89\) 150.734 1.69365 0.846823 0.531875i \(-0.178512\pi\)
0.846823 + 0.531875i \(0.178512\pi\)
\(90\) 0 0
\(91\) 31.0394i 0.341092i
\(92\) 0 0
\(93\) 80.9307 0.870222
\(94\) 0 0
\(95\) − 70.7433i − 0.744666i
\(96\) 0 0
\(97\) 155.531 1.60342 0.801708 0.597716i \(-0.203925\pi\)
0.801708 + 0.597716i \(0.203925\pi\)
\(98\) 0 0
\(99\) − 2.98314i − 0.0301327i
\(100\) 0 0
\(101\) 190.584 1.88697 0.943485 0.331415i \(-0.107526\pi\)
0.943485 + 0.331415i \(0.107526\pi\)
\(102\) 0 0
\(103\) 35.7042i 0.346643i 0.984865 + 0.173321i \(0.0554500\pi\)
−0.984865 + 0.173321i \(0.944550\pi\)
\(104\) 0 0
\(105\) −10.2470 −0.0975900
\(106\) 0 0
\(107\) − 102.527i − 0.958195i −0.877762 0.479098i \(-0.840964\pi\)
0.877762 0.479098i \(-0.159036\pi\)
\(108\) 0 0
\(109\) −30.2467 −0.277493 −0.138746 0.990328i \(-0.544307\pi\)
−0.138746 + 0.990328i \(0.544307\pi\)
\(110\) 0 0
\(111\) 81.6528i 0.735611i
\(112\) 0 0
\(113\) −190.193 −1.68312 −0.841561 0.540161i \(-0.818363\pi\)
−0.841561 + 0.540161i \(0.818363\pi\)
\(114\) 0 0
\(115\) − 39.8784i − 0.346769i
\(116\) 0 0
\(117\) −35.1953 −0.300815
\(118\) 0 0
\(119\) − 38.5782i − 0.324187i
\(120\) 0 0
\(121\) 120.011 0.991828
\(122\) 0 0
\(123\) − 9.96029i − 0.0809780i
\(124\) 0 0
\(125\) 11.1803 0.0894427
\(126\) 0 0
\(127\) 197.210i 1.55284i 0.630218 + 0.776418i \(0.282965\pi\)
−0.630218 + 0.776418i \(0.717035\pi\)
\(128\) 0 0
\(129\) −112.857 −0.874858
\(130\) 0 0
\(131\) 81.7886i 0.624340i 0.950026 + 0.312170i \(0.101056\pi\)
−0.950026 + 0.312170i \(0.898944\pi\)
\(132\) 0 0
\(133\) 83.7046 0.629358
\(134\) 0 0
\(135\) − 11.6190i − 0.0860663i
\(136\) 0 0
\(137\) 93.2266 0.680486 0.340243 0.940338i \(-0.389491\pi\)
0.340243 + 0.940338i \(0.389491\pi\)
\(138\) 0 0
\(139\) − 164.448i − 1.18308i −0.806277 0.591538i \(-0.798521\pi\)
0.806277 0.591538i \(-0.201479\pi\)
\(140\) 0 0
\(141\) 3.65930 0.0259525
\(142\) 0 0
\(143\) 11.6658i 0.0815793i
\(144\) 0 0
\(145\) 110.819 0.764272
\(146\) 0 0
\(147\) − 12.1244i − 0.0824786i
\(148\) 0 0
\(149\) −105.038 −0.704953 −0.352476 0.935821i \(-0.614660\pi\)
−0.352476 + 0.935821i \(0.614660\pi\)
\(150\) 0 0
\(151\) 39.2119i 0.259681i 0.991535 + 0.129841i \(0.0414466\pi\)
−0.991535 + 0.129841i \(0.958553\pi\)
\(152\) 0 0
\(153\) 43.7436 0.285906
\(154\) 0 0
\(155\) − 104.481i − 0.674071i
\(156\) 0 0
\(157\) −36.9481 −0.235338 −0.117669 0.993053i \(-0.537542\pi\)
−0.117669 + 0.993053i \(0.537542\pi\)
\(158\) 0 0
\(159\) − 4.30719i − 0.0270892i
\(160\) 0 0
\(161\) 47.1848 0.293073
\(162\) 0 0
\(163\) 70.6697i 0.433557i 0.976221 + 0.216778i \(0.0695549\pi\)
−0.976221 + 0.216778i \(0.930445\pi\)
\(164\) 0 0
\(165\) −3.85121 −0.0233407
\(166\) 0 0
\(167\) 251.441i 1.50563i 0.658231 + 0.752816i \(0.271305\pi\)
−0.658231 + 0.752816i \(0.728695\pi\)
\(168\) 0 0
\(169\) −31.3653 −0.185594
\(170\) 0 0
\(171\) 94.9121i 0.555041i
\(172\) 0 0
\(173\) 75.1537 0.434415 0.217207 0.976125i \(-0.430305\pi\)
0.217207 + 0.976125i \(0.430305\pi\)
\(174\) 0 0
\(175\) 13.2288i 0.0755929i
\(176\) 0 0
\(177\) −83.1072 −0.469532
\(178\) 0 0
\(179\) 136.861i 0.764584i 0.924042 + 0.382292i \(0.124865\pi\)
−0.924042 + 0.382292i \(0.875135\pi\)
\(180\) 0 0
\(181\) −59.7855 −0.330307 −0.165153 0.986268i \(-0.552812\pi\)
−0.165153 + 0.986268i \(0.552812\pi\)
\(182\) 0 0
\(183\) − 53.7112i − 0.293504i
\(184\) 0 0
\(185\) 105.413 0.569802
\(186\) 0 0
\(187\) − 14.4992i − 0.0775361i
\(188\) 0 0
\(189\) 13.7477 0.0727393
\(190\) 0 0
\(191\) 73.8672i 0.386739i 0.981126 + 0.193370i \(0.0619417\pi\)
−0.981126 + 0.193370i \(0.938058\pi\)
\(192\) 0 0
\(193\) 347.940 1.80280 0.901400 0.432987i \(-0.142540\pi\)
0.901400 + 0.432987i \(0.142540\pi\)
\(194\) 0 0
\(195\) 45.4370i 0.233010i
\(196\) 0 0
\(197\) 272.209 1.38177 0.690885 0.722965i \(-0.257221\pi\)
0.690885 + 0.722965i \(0.257221\pi\)
\(198\) 0 0
\(199\) − 196.370i − 0.986785i −0.869807 0.493392i \(-0.835757\pi\)
0.869807 0.493392i \(-0.164243\pi\)
\(200\) 0 0
\(201\) 133.210 0.662735
\(202\) 0 0
\(203\) 131.123i 0.645928i
\(204\) 0 0
\(205\) −12.8587 −0.0627253
\(206\) 0 0
\(207\) 53.5025i 0.258466i
\(208\) 0 0
\(209\) 31.4595 0.150524
\(210\) 0 0
\(211\) − 325.848i − 1.54430i −0.635439 0.772151i \(-0.719181\pi\)
0.635439 0.772151i \(-0.280819\pi\)
\(212\) 0 0
\(213\) 57.5876 0.270364
\(214\) 0 0
\(215\) 145.697i 0.677662i
\(216\) 0 0
\(217\) 123.624 0.569694
\(218\) 0 0
\(219\) − 83.4765i − 0.381171i
\(220\) 0 0
\(221\) −171.063 −0.774043
\(222\) 0 0
\(223\) − 319.693i − 1.43360i −0.697277 0.716801i \(-0.745605\pi\)
0.697277 0.716801i \(-0.254395\pi\)
\(224\) 0 0
\(225\) −15.0000 −0.0666667
\(226\) 0 0
\(227\) − 71.1456i − 0.313417i −0.987645 0.156708i \(-0.949912\pi\)
0.987645 0.156708i \(-0.0500883\pi\)
\(228\) 0 0
\(229\) −52.6230 −0.229795 −0.114897 0.993377i \(-0.536654\pi\)
−0.114897 + 0.993377i \(0.536654\pi\)
\(230\) 0 0
\(231\) − 4.55682i − 0.0197265i
\(232\) 0 0
\(233\) 268.024 1.15032 0.575158 0.818042i \(-0.304940\pi\)
0.575158 + 0.818042i \(0.304940\pi\)
\(234\) 0 0
\(235\) − 4.72414i − 0.0201027i
\(236\) 0 0
\(237\) 73.9941 0.312211
\(238\) 0 0
\(239\) 53.3789i 0.223343i 0.993745 + 0.111671i \(0.0356204\pi\)
−0.993745 + 0.111671i \(0.964380\pi\)
\(240\) 0 0
\(241\) 447.919 1.85859 0.929293 0.369343i \(-0.120417\pi\)
0.929293 + 0.369343i \(0.120417\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) −15.6525 −0.0638877
\(246\) 0 0
\(247\) − 371.163i − 1.50268i
\(248\) 0 0
\(249\) 11.6754 0.0468891
\(250\) 0 0
\(251\) 211.604i 0.843046i 0.906818 + 0.421523i \(0.138504\pi\)
−0.906818 + 0.421523i \(0.861496\pi\)
\(252\) 0 0
\(253\) 17.7339 0.0700946
\(254\) 0 0
\(255\) − 56.4727i − 0.221462i
\(256\) 0 0
\(257\) 289.044 1.12468 0.562342 0.826905i \(-0.309900\pi\)
0.562342 + 0.826905i \(0.309900\pi\)
\(258\) 0 0
\(259\) 124.727i 0.481571i
\(260\) 0 0
\(261\) −148.680 −0.569655
\(262\) 0 0
\(263\) 487.110i 1.85213i 0.377364 + 0.926065i \(0.376830\pi\)
−0.377364 + 0.926065i \(0.623170\pi\)
\(264\) 0 0
\(265\) −5.56056 −0.0209832
\(266\) 0 0
\(267\) 261.080i 0.977827i
\(268\) 0 0
\(269\) −210.980 −0.784313 −0.392157 0.919898i \(-0.628271\pi\)
−0.392157 + 0.919898i \(0.628271\pi\)
\(270\) 0 0
\(271\) 99.8457i 0.368434i 0.982886 + 0.184217i \(0.0589750\pi\)
−0.982886 + 0.184217i \(0.941025\pi\)
\(272\) 0 0
\(273\) −53.7618 −0.196930
\(274\) 0 0
\(275\) 4.97190i 0.0180796i
\(276\) 0 0
\(277\) 256.365 0.925504 0.462752 0.886488i \(-0.346862\pi\)
0.462752 + 0.886488i \(0.346862\pi\)
\(278\) 0 0
\(279\) 140.176i 0.502423i
\(280\) 0 0
\(281\) −307.325 −1.09368 −0.546842 0.837236i \(-0.684170\pi\)
−0.546842 + 0.837236i \(0.684170\pi\)
\(282\) 0 0
\(283\) − 141.756i − 0.500904i −0.968129 0.250452i \(-0.919421\pi\)
0.968129 0.250452i \(-0.0805793\pi\)
\(284\) 0 0
\(285\) 122.531 0.429933
\(286\) 0 0
\(287\) − 15.2146i − 0.0530125i
\(288\) 0 0
\(289\) −76.3886 −0.264320
\(290\) 0 0
\(291\) 269.388i 0.925733i
\(292\) 0 0
\(293\) −253.145 −0.863977 −0.431989 0.901879i \(-0.642188\pi\)
−0.431989 + 0.901879i \(0.642188\pi\)
\(294\) 0 0
\(295\) 107.291i 0.363698i
\(296\) 0 0
\(297\) 5.16695 0.0173971
\(298\) 0 0
\(299\) − 209.227i − 0.699754i
\(300\) 0 0
\(301\) −172.391 −0.572729
\(302\) 0 0
\(303\) 330.101i 1.08944i
\(304\) 0 0
\(305\) −69.3409 −0.227347
\(306\) 0 0
\(307\) − 225.087i − 0.733184i −0.930382 0.366592i \(-0.880525\pi\)
0.930382 0.366592i \(-0.119475\pi\)
\(308\) 0 0
\(309\) −61.8415 −0.200134
\(310\) 0 0
\(311\) − 480.911i − 1.54634i −0.634200 0.773169i \(-0.718670\pi\)
0.634200 0.773169i \(-0.281330\pi\)
\(312\) 0 0
\(313\) −336.694 −1.07570 −0.537849 0.843041i \(-0.680763\pi\)
−0.537849 + 0.843041i \(0.680763\pi\)
\(314\) 0 0
\(315\) − 17.7482i − 0.0563436i
\(316\) 0 0
\(317\) 82.9923 0.261805 0.130903 0.991395i \(-0.458212\pi\)
0.130903 + 0.991395i \(0.458212\pi\)
\(318\) 0 0
\(319\) 49.2814i 0.154487i
\(320\) 0 0
\(321\) 177.582 0.553214
\(322\) 0 0
\(323\) 461.311i 1.42821i
\(324\) 0 0
\(325\) 58.6589 0.180489
\(326\) 0 0
\(327\) − 52.3889i − 0.160211i
\(328\) 0 0
\(329\) 5.58968 0.0169899
\(330\) 0 0
\(331\) − 352.607i − 1.06528i −0.846343 0.532638i \(-0.821201\pi\)
0.846343 0.532638i \(-0.178799\pi\)
\(332\) 0 0
\(333\) −141.427 −0.424705
\(334\) 0 0
\(335\) − 171.973i − 0.513352i
\(336\) 0 0
\(337\) −205.523 −0.609860 −0.304930 0.952375i \(-0.598633\pi\)
−0.304930 + 0.952375i \(0.598633\pi\)
\(338\) 0 0
\(339\) − 329.424i − 0.971751i
\(340\) 0 0
\(341\) 46.4627 0.136254
\(342\) 0 0
\(343\) − 18.5203i − 0.0539949i
\(344\) 0 0
\(345\) 69.0714 0.200207
\(346\) 0 0
\(347\) 7.65489i 0.0220602i 0.999939 + 0.0110301i \(0.00351106\pi\)
−0.999939 + 0.0110301i \(0.996489\pi\)
\(348\) 0 0
\(349\) 12.6019 0.0361086 0.0180543 0.999837i \(-0.494253\pi\)
0.0180543 + 0.999837i \(0.494253\pi\)
\(350\) 0 0
\(351\) − 60.9601i − 0.173676i
\(352\) 0 0
\(353\) −189.511 −0.536858 −0.268429 0.963300i \(-0.586504\pi\)
−0.268429 + 0.963300i \(0.586504\pi\)
\(354\) 0 0
\(355\) − 74.3452i − 0.209423i
\(356\) 0 0
\(357\) 66.8195 0.187169
\(358\) 0 0
\(359\) − 34.5577i − 0.0962609i −0.998841 0.0481304i \(-0.984674\pi\)
0.998841 0.0481304i \(-0.0153263\pi\)
\(360\) 0 0
\(361\) −639.923 −1.77264
\(362\) 0 0
\(363\) 207.866i 0.572632i
\(364\) 0 0
\(365\) −107.768 −0.295254
\(366\) 0 0
\(367\) − 269.436i − 0.734158i −0.930190 0.367079i \(-0.880358\pi\)
0.930190 0.367079i \(-0.119642\pi\)
\(368\) 0 0
\(369\) 17.2517 0.0467526
\(370\) 0 0
\(371\) − 6.57934i − 0.0177341i
\(372\) 0 0
\(373\) −320.910 −0.860349 −0.430175 0.902746i \(-0.641548\pi\)
−0.430175 + 0.902746i \(0.641548\pi\)
\(374\) 0 0
\(375\) 19.3649i 0.0516398i
\(376\) 0 0
\(377\) 581.426 1.54225
\(378\) 0 0
\(379\) − 524.801i − 1.38470i −0.721562 0.692350i \(-0.756575\pi\)
0.721562 0.692350i \(-0.243425\pi\)
\(380\) 0 0
\(381\) −341.578 −0.896530
\(382\) 0 0
\(383\) 67.9966i 0.177537i 0.996052 + 0.0887684i \(0.0282931\pi\)
−0.996052 + 0.0887684i \(0.971707\pi\)
\(384\) 0 0
\(385\) −5.88283 −0.0152801
\(386\) 0 0
\(387\) − 195.474i − 0.505100i
\(388\) 0 0
\(389\) −653.486 −1.67991 −0.839957 0.542653i \(-0.817420\pi\)
−0.839957 + 0.542653i \(0.817420\pi\)
\(390\) 0 0
\(391\) 260.044i 0.665073i
\(392\) 0 0
\(393\) −141.662 −0.360463
\(394\) 0 0
\(395\) − 95.5260i − 0.241838i
\(396\) 0 0
\(397\) 171.786 0.432712 0.216356 0.976315i \(-0.430583\pi\)
0.216356 + 0.976315i \(0.430583\pi\)
\(398\) 0 0
\(399\) 144.981i 0.363360i
\(400\) 0 0
\(401\) 664.507 1.65712 0.828562 0.559897i \(-0.189159\pi\)
0.828562 + 0.559897i \(0.189159\pi\)
\(402\) 0 0
\(403\) − 548.172i − 1.36023i
\(404\) 0 0
\(405\) 20.1246 0.0496904
\(406\) 0 0
\(407\) 46.8773i 0.115178i
\(408\) 0 0
\(409\) −430.284 −1.05204 −0.526020 0.850472i \(-0.676316\pi\)
−0.526020 + 0.850472i \(0.676316\pi\)
\(410\) 0 0
\(411\) 161.473i 0.392879i
\(412\) 0 0
\(413\) −126.948 −0.307381
\(414\) 0 0
\(415\) − 15.0729i − 0.0363201i
\(416\) 0 0
\(417\) 284.832 0.683049
\(418\) 0 0
\(419\) − 40.8289i − 0.0974437i −0.998812 0.0487218i \(-0.984485\pi\)
0.998812 0.0487218i \(-0.0155148\pi\)
\(420\) 0 0
\(421\) −548.381 −1.30257 −0.651284 0.758834i \(-0.725769\pi\)
−0.651284 + 0.758834i \(0.725769\pi\)
\(422\) 0 0
\(423\) 6.33810i 0.0149837i
\(424\) 0 0
\(425\) −72.9060 −0.171544
\(426\) 0 0
\(427\) − 82.0453i − 0.192143i
\(428\) 0 0
\(429\) −20.2058 −0.0470998
\(430\) 0 0
\(431\) 519.249i 1.20475i 0.798212 + 0.602377i \(0.205779\pi\)
−0.798212 + 0.602377i \(0.794221\pi\)
\(432\) 0 0
\(433\) 26.0559 0.0601752 0.0300876 0.999547i \(-0.490421\pi\)
0.0300876 + 0.999547i \(0.490421\pi\)
\(434\) 0 0
\(435\) 191.945i 0.441253i
\(436\) 0 0
\(437\) −564.226 −1.29114
\(438\) 0 0
\(439\) − 779.712i − 1.77611i −0.459739 0.888054i \(-0.652057\pi\)
0.459739 0.888054i \(-0.347943\pi\)
\(440\) 0 0
\(441\) 21.0000 0.0476190
\(442\) 0 0
\(443\) − 559.509i − 1.26300i −0.775376 0.631500i \(-0.782440\pi\)
0.775376 0.631500i \(-0.217560\pi\)
\(444\) 0 0
\(445\) 337.053 0.757421
\(446\) 0 0
\(447\) − 181.931i − 0.407005i
\(448\) 0 0
\(449\) −138.772 −0.309070 −0.154535 0.987987i \(-0.549388\pi\)
−0.154535 + 0.987987i \(0.549388\pi\)
\(450\) 0 0
\(451\) − 5.71825i − 0.0126791i
\(452\) 0 0
\(453\) −67.9170 −0.149927
\(454\) 0 0
\(455\) 69.4062i 0.152541i
\(456\) 0 0
\(457\) 154.391 0.337837 0.168918 0.985630i \(-0.445973\pi\)
0.168918 + 0.985630i \(0.445973\pi\)
\(458\) 0 0
\(459\) 75.7661i 0.165068i
\(460\) 0 0
\(461\) 48.2176 0.104594 0.0522968 0.998632i \(-0.483346\pi\)
0.0522968 + 0.998632i \(0.483346\pi\)
\(462\) 0 0
\(463\) 236.896i 0.511654i 0.966723 + 0.255827i \(0.0823477\pi\)
−0.966723 + 0.255827i \(0.917652\pi\)
\(464\) 0 0
\(465\) 180.967 0.389175
\(466\) 0 0
\(467\) 549.126i 1.17586i 0.808912 + 0.587929i \(0.200057\pi\)
−0.808912 + 0.587929i \(0.799943\pi\)
\(468\) 0 0
\(469\) 203.481 0.433862
\(470\) 0 0
\(471\) − 63.9960i − 0.135873i
\(472\) 0 0
\(473\) −64.7916 −0.136980
\(474\) 0 0
\(475\) − 158.187i − 0.333025i
\(476\) 0 0
\(477\) 7.46027 0.0156400
\(478\) 0 0
\(479\) 563.264i 1.17592i 0.808892 + 0.587958i \(0.200068\pi\)
−0.808892 + 0.587958i \(0.799932\pi\)
\(480\) 0 0
\(481\) 553.063 1.14982
\(482\) 0 0
\(483\) 81.7264i 0.169206i
\(484\) 0 0
\(485\) 347.779 0.717070
\(486\) 0 0
\(487\) 195.019i 0.400450i 0.979750 + 0.200225i \(0.0641673\pi\)
−0.979750 + 0.200225i \(0.935833\pi\)
\(488\) 0 0
\(489\) −122.404 −0.250314
\(490\) 0 0
\(491\) 829.328i 1.68906i 0.535509 + 0.844530i \(0.320120\pi\)
−0.535509 + 0.844530i \(0.679880\pi\)
\(492\) 0 0
\(493\) −722.644 −1.46581
\(494\) 0 0
\(495\) − 6.67050i − 0.0134758i
\(496\) 0 0
\(497\) 87.9665 0.176995
\(498\) 0 0
\(499\) − 117.062i − 0.234593i −0.993097 0.117296i \(-0.962577\pi\)
0.993097 0.117296i \(-0.0374227\pi\)
\(500\) 0 0
\(501\) −435.508 −0.869277
\(502\) 0 0
\(503\) − 570.038i − 1.13328i −0.823966 0.566639i \(-0.808244\pi\)
0.823966 0.566639i \(-0.191756\pi\)
\(504\) 0 0
\(505\) 426.159 0.843879
\(506\) 0 0
\(507\) − 54.3263i − 0.107152i
\(508\) 0 0
\(509\) −903.167 −1.77439 −0.887197 0.461390i \(-0.847351\pi\)
−0.887197 + 0.461390i \(0.847351\pi\)
\(510\) 0 0
\(511\) − 127.512i − 0.249535i
\(512\) 0 0
\(513\) −164.393 −0.320453
\(514\) 0 0
\(515\) 79.8371i 0.155023i
\(516\) 0 0
\(517\) 2.10083 0.00406349
\(518\) 0 0
\(519\) 130.170i 0.250809i
\(520\) 0 0
\(521\) −910.593 −1.74778 −0.873890 0.486124i \(-0.838410\pi\)
−0.873890 + 0.486124i \(0.838410\pi\)
\(522\) 0 0
\(523\) − 460.293i − 0.880101i −0.897973 0.440051i \(-0.854961\pi\)
0.897973 0.440051i \(-0.145039\pi\)
\(524\) 0 0
\(525\) −22.9129 −0.0436436
\(526\) 0 0
\(527\) 681.312i 1.29281i
\(528\) 0 0
\(529\) 210.942 0.398757
\(530\) 0 0
\(531\) − 143.946i − 0.271084i
\(532\) 0 0
\(533\) −67.4645 −0.126575
\(534\) 0 0
\(535\) − 229.257i − 0.428518i
\(536\) 0 0
\(537\) −237.049 −0.441433
\(538\) 0 0
\(539\) − 6.96066i − 0.0129140i
\(540\) 0 0
\(541\) −628.342 −1.16144 −0.580722 0.814102i \(-0.697230\pi\)
−0.580722 + 0.814102i \(0.697230\pi\)
\(542\) 0 0
\(543\) − 103.552i − 0.190703i
\(544\) 0 0
\(545\) −67.6337 −0.124099
\(546\) 0 0
\(547\) − 408.278i − 0.746395i −0.927752 0.373197i \(-0.878261\pi\)
0.927752 0.373197i \(-0.121739\pi\)
\(548\) 0 0
\(549\) 93.0306 0.169455
\(550\) 0 0
\(551\) − 1567.95i − 2.84564i
\(552\) 0 0
\(553\) 113.028 0.204390
\(554\) 0 0
\(555\) 182.581i 0.328975i
\(556\) 0 0
\(557\) −338.823 −0.608299 −0.304149 0.952624i \(-0.598372\pi\)
−0.304149 + 0.952624i \(0.598372\pi\)
\(558\) 0 0
\(559\) 764.418i 1.36747i
\(560\) 0 0
\(561\) 25.1134 0.0447655
\(562\) 0 0
\(563\) − 109.818i − 0.195058i −0.995233 0.0975289i \(-0.968906\pi\)
0.995233 0.0975289i \(-0.0310938\pi\)
\(564\) 0 0
\(565\) −425.284 −0.752715
\(566\) 0 0
\(567\) 23.8118i 0.0419961i
\(568\) 0 0
\(569\) −472.870 −0.831054 −0.415527 0.909581i \(-0.636403\pi\)
−0.415527 + 0.909581i \(0.636403\pi\)
\(570\) 0 0
\(571\) 528.480i 0.925534i 0.886480 + 0.462767i \(0.153143\pi\)
−0.886480 + 0.462767i \(0.846857\pi\)
\(572\) 0 0
\(573\) −127.942 −0.223284
\(574\) 0 0
\(575\) − 89.1709i − 0.155080i
\(576\) 0 0
\(577\) 783.886 1.35855 0.679277 0.733882i \(-0.262293\pi\)
0.679277 + 0.733882i \(0.262293\pi\)
\(578\) 0 0
\(579\) 602.651i 1.04085i
\(580\) 0 0
\(581\) 17.8344 0.0306961
\(582\) 0 0
\(583\) − 2.47278i − 0.00424148i
\(584\) 0 0
\(585\) −78.6992 −0.134529
\(586\) 0 0
\(587\) 1128.14i 1.92187i 0.276776 + 0.960934i \(0.410734\pi\)
−0.276776 + 0.960934i \(0.589266\pi\)
\(588\) 0 0
\(589\) −1478.27 −2.50979
\(590\) 0 0
\(591\) 471.479i 0.797765i
\(592\) 0 0
\(593\) −286.239 −0.482696 −0.241348 0.970439i \(-0.577590\pi\)
−0.241348 + 0.970439i \(0.577590\pi\)
\(594\) 0 0
\(595\) − 86.2636i − 0.144981i
\(596\) 0 0
\(597\) 340.123 0.569720
\(598\) 0 0
\(599\) − 510.217i − 0.851781i −0.904775 0.425891i \(-0.859961\pi\)
0.904775 0.425891i \(-0.140039\pi\)
\(600\) 0 0
\(601\) −425.581 −0.708122 −0.354061 0.935222i \(-0.615199\pi\)
−0.354061 + 0.935222i \(0.615199\pi\)
\(602\) 0 0
\(603\) 230.726i 0.382630i
\(604\) 0 0
\(605\) 268.353 0.443559
\(606\) 0 0
\(607\) − 611.987i − 1.00822i −0.863641 0.504108i \(-0.831821\pi\)
0.863641 0.504108i \(-0.168179\pi\)
\(608\) 0 0
\(609\) −227.112 −0.372926
\(610\) 0 0
\(611\) − 24.7857i − 0.0405659i
\(612\) 0 0
\(613\) −713.054 −1.16322 −0.581610 0.813468i \(-0.697577\pi\)
−0.581610 + 0.813468i \(0.697577\pi\)
\(614\) 0 0
\(615\) − 22.2719i − 0.0362144i
\(616\) 0 0
\(617\) 883.052 1.43120 0.715601 0.698509i \(-0.246153\pi\)
0.715601 + 0.698509i \(0.246153\pi\)
\(618\) 0 0
\(619\) − 1011.23i − 1.63365i −0.576888 0.816823i \(-0.695733\pi\)
0.576888 0.816823i \(-0.304267\pi\)
\(620\) 0 0
\(621\) −92.6691 −0.149226
\(622\) 0 0
\(623\) 398.806i 0.640138i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 54.4895i 0.0869051i
\(628\) 0 0
\(629\) −687.391 −1.09283
\(630\) 0 0
\(631\) 797.511i 1.26388i 0.775016 + 0.631942i \(0.217742\pi\)
−0.775016 + 0.631942i \(0.782258\pi\)
\(632\) 0 0
\(633\) 564.385 0.891603
\(634\) 0 0
\(635\) 440.975i 0.694449i
\(636\) 0 0
\(637\) −82.1225 −0.128921
\(638\) 0 0
\(639\) 99.7446i 0.156095i
\(640\) 0 0
\(641\) 930.805 1.45211 0.726057 0.687634i \(-0.241351\pi\)
0.726057 + 0.687634i \(0.241351\pi\)
\(642\) 0 0
\(643\) 823.306i 1.28041i 0.768202 + 0.640207i \(0.221152\pi\)
−0.768202 + 0.640207i \(0.778848\pi\)
\(644\) 0 0
\(645\) −252.355 −0.391249
\(646\) 0 0
\(647\) − 1090.05i − 1.68477i −0.538873 0.842387i \(-0.681150\pi\)
0.538873 0.842387i \(-0.318850\pi\)
\(648\) 0 0
\(649\) −47.7122 −0.0735166
\(650\) 0 0
\(651\) 214.122i 0.328913i
\(652\) 0 0
\(653\) −488.199 −0.747626 −0.373813 0.927504i \(-0.621950\pi\)
−0.373813 + 0.927504i \(0.621950\pi\)
\(654\) 0 0
\(655\) 182.885i 0.279214i
\(656\) 0 0
\(657\) 144.585 0.220069
\(658\) 0 0
\(659\) 989.416i 1.50139i 0.660649 + 0.750695i \(0.270281\pi\)
−0.660649 + 0.750695i \(0.729719\pi\)
\(660\) 0 0
\(661\) 488.091 0.738413 0.369206 0.929347i \(-0.379630\pi\)
0.369206 + 0.929347i \(0.379630\pi\)
\(662\) 0 0
\(663\) − 296.291i − 0.446894i
\(664\) 0 0
\(665\) 187.169 0.281457
\(666\) 0 0
\(667\) − 883.861i − 1.32513i
\(668\) 0 0
\(669\) 553.725 0.827691
\(670\) 0 0
\(671\) − 30.8359i − 0.0459551i
\(672\) 0 0
\(673\) −244.295 −0.362994 −0.181497 0.983391i \(-0.558094\pi\)
−0.181497 + 0.983391i \(0.558094\pi\)
\(674\) 0 0
\(675\) − 25.9808i − 0.0384900i
\(676\) 0 0
\(677\) 794.825 1.17404 0.587020 0.809573i \(-0.300301\pi\)
0.587020 + 0.809573i \(0.300301\pi\)
\(678\) 0 0
\(679\) 411.497i 0.606034i
\(680\) 0 0
\(681\) 123.228 0.180951
\(682\) 0 0
\(683\) 321.002i 0.469989i 0.971997 + 0.234994i \(0.0755072\pi\)
−0.971997 + 0.234994i \(0.924493\pi\)
\(684\) 0 0
\(685\) 208.461 0.304323
\(686\) 0 0
\(687\) − 91.1457i − 0.132672i
\(688\) 0 0
\(689\) −29.1741 −0.0423427
\(690\) 0 0
\(691\) − 82.7256i − 0.119719i −0.998207 0.0598593i \(-0.980935\pi\)
0.998207 0.0598593i \(-0.0190652\pi\)
\(692\) 0 0
\(693\) 7.89264 0.0113891
\(694\) 0 0
\(695\) − 367.716i − 0.529088i
\(696\) 0 0
\(697\) 83.8503 0.120302
\(698\) 0 0
\(699\) 464.231i 0.664136i
\(700\) 0 0
\(701\) 110.691 0.157905 0.0789523 0.996878i \(-0.474843\pi\)
0.0789523 + 0.996878i \(0.474843\pi\)
\(702\) 0 0
\(703\) − 1491.46i − 2.12156i
\(704\) 0 0
\(705\) 8.18245 0.0116063
\(706\) 0 0
\(707\) 504.238i 0.713208i
\(708\) 0 0
\(709\) −857.208 −1.20904 −0.604519 0.796590i \(-0.706635\pi\)
−0.604519 + 0.796590i \(0.706635\pi\)
\(710\) 0 0
\(711\) 128.162i 0.180255i
\(712\) 0 0
\(713\) −833.308 −1.16873
\(714\) 0 0
\(715\) 26.0856i 0.0364834i
\(716\) 0 0
\(717\) −92.4550 −0.128947
\(718\) 0 0
\(719\) 437.760i 0.608845i 0.952537 + 0.304423i \(0.0984635\pi\)
−0.952537 + 0.304423i \(0.901536\pi\)
\(720\) 0 0
\(721\) −94.4645 −0.131019
\(722\) 0 0
\(723\) 775.819i 1.07306i
\(724\) 0 0
\(725\) 247.800 0.341793
\(726\) 0 0
\(727\) 1046.25i 1.43913i 0.694426 + 0.719564i \(0.255658\pi\)
−0.694426 + 0.719564i \(0.744342\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) − 950.080i − 1.29970i
\(732\) 0 0
\(733\) −30.8518 −0.0420898 −0.0210449 0.999779i \(-0.506699\pi\)
−0.0210449 + 0.999779i \(0.506699\pi\)
\(734\) 0 0
\(735\) − 27.1109i − 0.0368856i
\(736\) 0 0
\(737\) 76.4764 0.103767
\(738\) 0 0
\(739\) 281.630i 0.381097i 0.981678 + 0.190548i \(0.0610266\pi\)
−0.981678 + 0.190548i \(0.938973\pi\)
\(740\) 0 0
\(741\) 642.873 0.867574
\(742\) 0 0
\(743\) 883.156i 1.18863i 0.804231 + 0.594317i \(0.202578\pi\)
−0.804231 + 0.594317i \(0.797422\pi\)
\(744\) 0 0
\(745\) −234.872 −0.315264
\(746\) 0 0
\(747\) 20.2224i 0.0270714i
\(748\) 0 0
\(749\) 271.261 0.362164
\(750\) 0 0
\(751\) − 1165.59i − 1.55205i −0.630705 0.776023i \(-0.717234\pi\)
0.630705 0.776023i \(-0.282766\pi\)
\(752\) 0 0
\(753\) −366.510 −0.486733
\(754\) 0 0
\(755\) 87.6805i 0.116133i
\(756\) 0 0
\(757\) −240.068 −0.317131 −0.158566 0.987348i \(-0.550687\pi\)
−0.158566 + 0.987348i \(0.550687\pi\)
\(758\) 0 0
\(759\) 30.7161i 0.0404691i
\(760\) 0 0
\(761\) −88.8965 −0.116815 −0.0584077 0.998293i \(-0.518602\pi\)
−0.0584077 + 0.998293i \(0.518602\pi\)
\(762\) 0 0
\(763\) − 80.0253i − 0.104882i
\(764\) 0 0
\(765\) 97.8137 0.127861
\(766\) 0 0
\(767\) 562.914i 0.733916i
\(768\) 0 0
\(769\) −1048.03 −1.36285 −0.681427 0.731886i \(-0.738640\pi\)
−0.681427 + 0.731886i \(0.738640\pi\)
\(770\) 0 0
\(771\) 500.638i 0.649337i
\(772\) 0 0
\(773\) 328.781 0.425331 0.212666 0.977125i \(-0.431786\pi\)
0.212666 + 0.977125i \(0.431786\pi\)
\(774\) 0 0
\(775\) − 233.627i − 0.301454i
\(776\) 0 0
\(777\) −216.033 −0.278035
\(778\) 0 0
\(779\) 181.933i 0.233547i
\(780\) 0 0
\(781\) 33.0613 0.0423320
\(782\) 0 0
\(783\) − 257.521i − 0.328890i
\(784\) 0 0
\(785\) −82.6185 −0.105247
\(786\) 0 0
\(787\) − 757.713i − 0.962787i −0.876505 0.481393i \(-0.840131\pi\)
0.876505 0.481393i \(-0.159869\pi\)
\(788\) 0 0
\(789\) −843.700 −1.06933
\(790\) 0 0
\(791\) − 503.203i − 0.636161i
\(792\) 0 0
\(793\) −363.805 −0.458770
\(794\) 0 0
\(795\) − 9.63117i − 0.0121147i
\(796\) 0 0
\(797\) −315.973 −0.396453 −0.198227 0.980156i \(-0.563518\pi\)
−0.198227 + 0.980156i \(0.563518\pi\)
\(798\) 0 0
\(799\) 30.8057i 0.0385553i
\(800\) 0 0
\(801\) −452.203 −0.564549
\(802\) 0 0
\(803\) − 47.9243i − 0.0596815i
\(804\) 0 0
\(805\) 105.508 0.131066
\(806\) 0 0
\(807\) − 365.429i − 0.452823i
\(808\) 0 0
\(809\) −686.413 −0.848471 −0.424235 0.905552i \(-0.639457\pi\)
−0.424235 + 0.905552i \(0.639457\pi\)
\(810\) 0 0
\(811\) − 480.889i − 0.592958i −0.955039 0.296479i \(-0.904187\pi\)
0.955039 0.296479i \(-0.0958125\pi\)
\(812\) 0 0
\(813\) −172.938 −0.212716
\(814\) 0 0
\(815\) 158.022i 0.193892i
\(816\) 0 0
\(817\) 2061.42 2.52316
\(818\) 0 0
\(819\) − 93.1181i − 0.113697i
\(820\) 0 0
\(821\) −1147.09 −1.39719 −0.698593 0.715519i \(-0.746190\pi\)
−0.698593 + 0.715519i \(0.746190\pi\)
\(822\) 0 0
\(823\) 509.637i 0.619243i 0.950860 + 0.309621i \(0.100202\pi\)
−0.950860 + 0.309621i \(0.899798\pi\)
\(824\) 0 0
\(825\) −8.61158 −0.0104383
\(826\) 0 0
\(827\) 15.6299i 0.0188995i 0.999955 + 0.00944974i \(0.00300799\pi\)
−0.999955 + 0.00944974i \(0.996992\pi\)
\(828\) 0 0
\(829\) 133.845 0.161454 0.0807268 0.996736i \(-0.474276\pi\)
0.0807268 + 0.996736i \(0.474276\pi\)
\(830\) 0 0
\(831\) 444.036i 0.534340i
\(832\) 0 0
\(833\) 102.068 0.122531
\(834\) 0 0
\(835\) 562.238i 0.673339i
\(836\) 0 0
\(837\) −242.792 −0.290074
\(838\) 0 0
\(839\) 818.045i 0.975024i 0.873116 + 0.487512i \(0.162095\pi\)
−0.873116 + 0.487512i \(0.837905\pi\)
\(840\) 0 0
\(841\) 1615.19 1.92056
\(842\) 0 0
\(843\) − 532.303i − 0.631439i
\(844\) 0 0
\(845\) −70.1350 −0.0830000
\(846\) 0 0
\(847\) 317.520i 0.374876i
\(848\) 0 0
\(849\) 245.528 0.289197
\(850\) 0 0
\(851\) − 840.744i − 0.987948i
\(852\) 0 0
\(853\) 1142.17 1.33901 0.669503 0.742810i \(-0.266507\pi\)
0.669503 + 0.742810i \(0.266507\pi\)
\(854\) 0 0
\(855\) 212.230i 0.248222i
\(856\) 0 0
\(857\) 1259.18 1.46929 0.734645 0.678452i \(-0.237349\pi\)
0.734645 + 0.678452i \(0.237349\pi\)
\(858\) 0 0
\(859\) 535.939i 0.623910i 0.950097 + 0.311955i \(0.100984\pi\)
−0.950097 + 0.311955i \(0.899016\pi\)
\(860\) 0 0
\(861\) 26.3524 0.0306068
\(862\) 0 0
\(863\) − 1375.51i − 1.59387i −0.604065 0.796935i \(-0.706453\pi\)
0.604065 0.796935i \(-0.293547\pi\)
\(864\) 0 0
\(865\) 168.049 0.194276
\(866\) 0 0
\(867\) − 132.309i − 0.152605i
\(868\) 0 0
\(869\) 42.4804 0.0488842
\(870\) 0 0
\(871\) − 902.276i − 1.03591i
\(872\) 0 0
\(873\) −466.594 −0.534472
\(874\) 0 0
\(875\) 29.5804i 0.0338062i
\(876\) 0 0
\(877\) 445.165 0.507600 0.253800 0.967257i \(-0.418319\pi\)
0.253800 + 0.967257i \(0.418319\pi\)
\(878\) 0 0
\(879\) − 438.461i − 0.498817i
\(880\) 0 0
\(881\) −518.052 −0.588027 −0.294014 0.955801i \(-0.594991\pi\)
−0.294014 + 0.955801i \(0.594991\pi\)
\(882\) 0 0
\(883\) 549.847i 0.622703i 0.950295 + 0.311351i \(0.100782\pi\)
−0.950295 + 0.311351i \(0.899218\pi\)
\(884\) 0 0
\(885\) −185.833 −0.209981
\(886\) 0 0
\(887\) − 92.7547i − 0.104571i −0.998632 0.0522856i \(-0.983349\pi\)
0.998632 0.0522856i \(-0.0166506\pi\)
\(888\) 0 0
\(889\) −521.769 −0.586917
\(890\) 0 0
\(891\) 8.94941i 0.0100442i
\(892\) 0 0
\(893\) −66.8403 −0.0748491
\(894\) 0 0
\(895\) 306.030i 0.341932i
\(896\) 0 0
\(897\) 362.391 0.404003
\(898\) 0 0
\(899\) − 2315.71i − 2.57587i
\(900\) 0 0
\(901\) 36.2599 0.0402441
\(902\) 0 0
\(903\) − 298.591i − 0.330665i
\(904\) 0 0
\(905\) −133.684 −0.147718
\(906\) 0 0
\(907\) − 468.980i − 0.517067i −0.966002 0.258533i \(-0.916761\pi\)
0.966002 0.258533i \(-0.0832392\pi\)
\(908\) 0 0
\(909\) −571.752 −0.628990
\(910\) 0 0
\(911\) − 988.736i − 1.08533i −0.839949 0.542665i \(-0.817415\pi\)
0.839949 0.542665i \(-0.182585\pi\)
\(912\) 0 0
\(913\) 6.70290 0.00734162
\(914\) 0 0
\(915\) − 120.102i − 0.131259i
\(916\) 0 0
\(917\) −216.392 −0.235978
\(918\) 0 0
\(919\) − 90.9640i − 0.0989815i −0.998775 0.0494908i \(-0.984240\pi\)
0.998775 0.0494908i \(-0.0157598\pi\)
\(920\) 0 0
\(921\) 389.863 0.423304
\(922\) 0 0
\(923\) − 390.061i − 0.422601i
\(924\) 0 0
\(925\) 235.711 0.254823
\(926\) 0 0
\(927\) − 107.113i − 0.115548i
\(928\) 0 0
\(929\) 148.918 0.160299 0.0801497 0.996783i \(-0.474460\pi\)
0.0801497 + 0.996783i \(0.474460\pi\)
\(930\) 0 0
\(931\) 221.462i 0.237875i
\(932\) 0 0
\(933\) 832.963 0.892779
\(934\) 0 0
\(935\) − 32.4213i − 0.0346752i
\(936\) 0 0
\(937\) 671.087 0.716208 0.358104 0.933682i \(-0.383423\pi\)
0.358104 + 0.933682i \(0.383423\pi\)
\(938\) 0 0
\(939\) − 583.171i − 0.621055i
\(940\) 0 0
\(941\) −1521.48 −1.61688 −0.808439 0.588580i \(-0.799687\pi\)
−0.808439 + 0.588580i \(0.799687\pi\)
\(942\) 0 0
\(943\) 102.557i 0.108756i
\(944\) 0 0
\(945\) 30.7409 0.0325300
\(946\) 0 0
\(947\) 1390.42i 1.46823i 0.679024 + 0.734116i \(0.262403\pi\)
−0.679024 + 0.734116i \(0.737597\pi\)
\(948\) 0 0
\(949\) −565.415 −0.595801
\(950\) 0 0
\(951\) 143.747i 0.151153i
\(952\) 0 0
\(953\) −987.802 −1.03652 −0.518259 0.855224i \(-0.673420\pi\)
−0.518259 + 0.855224i \(0.673420\pi\)
\(954\) 0 0
\(955\) 165.172i 0.172955i
\(956\) 0 0
\(957\) −85.3579 −0.0891932
\(958\) 0 0
\(959\) 246.654i 0.257200i
\(960\) 0 0
\(961\) −1222.26 −1.27186
\(962\) 0 0
\(963\) 307.581i 0.319398i
\(964\) 0 0
\(965\) 778.019 0.806237
\(966\) 0 0
\(967\) 740.025i 0.765279i 0.923898 + 0.382639i \(0.124985\pi\)
−0.923898 + 0.382639i \(0.875015\pi\)
\(968\) 0 0
\(969\) −799.014 −0.824576
\(970\) 0 0
\(971\) − 58.6445i − 0.0603960i −0.999544 0.0301980i \(-0.990386\pi\)
0.999544 0.0301980i \(-0.00961378\pi\)
\(972\) 0 0
\(973\) 435.087 0.447161
\(974\) 0 0
\(975\) 101.600i 0.104205i
\(976\) 0 0
\(977\) 1644.71 1.68343 0.841714 0.539923i \(-0.181547\pi\)
0.841714 + 0.539923i \(0.181547\pi\)
\(978\) 0 0
\(979\) 149.887i 0.153102i
\(980\) 0 0
\(981\) 90.7402 0.0924976
\(982\) 0 0
\(983\) 738.274i 0.751042i 0.926814 + 0.375521i \(0.122536\pi\)
−0.926814 + 0.375521i \(0.877464\pi\)
\(984\) 0 0
\(985\) 608.677 0.617946
\(986\) 0 0
\(987\) 9.68161i 0.00980913i
\(988\) 0 0
\(989\) 1162.04 1.17496
\(990\) 0 0
\(991\) 838.030i 0.845640i 0.906214 + 0.422820i \(0.138960\pi\)
−0.906214 + 0.422820i \(0.861040\pi\)
\(992\) 0 0
\(993\) 610.733 0.615038
\(994\) 0 0
\(995\) − 439.097i − 0.441303i
\(996\) 0 0
\(997\) 1206.20 1.20983 0.604913 0.796291i \(-0.293208\pi\)
0.604913 + 0.796291i \(0.293208\pi\)
\(998\) 0 0
\(999\) − 244.959i − 0.245204i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.3.n.c.1471.16 yes 16
4.3 odd 2 inner 1680.3.n.c.1471.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.3.n.c.1471.5 16 4.3 odd 2 inner
1680.3.n.c.1471.16 yes 16 1.1 even 1 trivial