Properties

Label 1680.3.n.c.1471.14
Level $1680$
Weight $3$
Character 1680.1471
Analytic conductor $45.777$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,3,Mod(1471,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.1471"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1680.n (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-48,0,0,0,48,0,0,0,-96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.7766844125\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7 x^{15} + 6 x^{14} + 115 x^{13} - 535 x^{12} + 605 x^{11} + 2453 x^{10} - 10997 x^{9} + \cdots + 92164 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{36} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1471.14
Root \(2.52830 + 0.173365i\) of defining polynomial
Character \(\chi\) \(=\) 1680.1471
Dual form 1680.3.n.c.1471.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{3} +2.23607 q^{5} -2.64575i q^{7} -3.00000 q^{9} +8.79995i q^{11} -9.38422 q^{13} +3.87298i q^{15} +1.25490 q^{17} +17.2362i q^{19} +4.58258 q^{21} +4.11360i q^{23} +5.00000 q^{25} -5.19615i q^{27} +10.3954 q^{29} -44.7612i q^{31} -15.2420 q^{33} -5.91608i q^{35} -45.8730 q^{37} -16.2539i q^{39} -47.7876 q^{41} +14.7389i q^{43} -6.70820 q^{45} +32.1352i q^{47} -7.00000 q^{49} +2.17355i q^{51} -15.9421 q^{53} +19.6773i q^{55} -29.8539 q^{57} +34.8978i q^{59} -44.2374 q^{61} +7.93725i q^{63} -20.9837 q^{65} +93.7730i q^{67} -7.12496 q^{69} -2.89105i q^{71} -17.8725 q^{73} +8.66025i q^{75} +23.2825 q^{77} -43.7268i q^{79} +9.00000 q^{81} -34.8743i q^{83} +2.80604 q^{85} +18.0054i q^{87} +104.018 q^{89} +24.8283i q^{91} +77.5287 q^{93} +38.5413i q^{95} -110.722 q^{97} -26.3998i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{9} + 48 q^{13} - 96 q^{17} + 80 q^{25} + 112 q^{29} + 48 q^{33} - 224 q^{37} + 160 q^{41} - 112 q^{49} - 96 q^{53} + 80 q^{61} - 80 q^{65} + 48 q^{69} - 48 q^{73} + 144 q^{81} - 160 q^{89}+ \cdots + 592 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) 2.23607 0.447214
\(6\) 0 0
\(7\) − 2.64575i − 0.377964i
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 8.79995i 0.799995i 0.916516 + 0.399998i \(0.130989\pi\)
−0.916516 + 0.399998i \(0.869011\pi\)
\(12\) 0 0
\(13\) −9.38422 −0.721863 −0.360931 0.932592i \(-0.617541\pi\)
−0.360931 + 0.932592i \(0.617541\pi\)
\(14\) 0 0
\(15\) 3.87298i 0.258199i
\(16\) 0 0
\(17\) 1.25490 0.0738176 0.0369088 0.999319i \(-0.488249\pi\)
0.0369088 + 0.999319i \(0.488249\pi\)
\(18\) 0 0
\(19\) 17.2362i 0.907167i 0.891214 + 0.453583i \(0.149855\pi\)
−0.891214 + 0.453583i \(0.850145\pi\)
\(20\) 0 0
\(21\) 4.58258 0.218218
\(22\) 0 0
\(23\) 4.11360i 0.178852i 0.995993 + 0.0894260i \(0.0285033\pi\)
−0.995993 + 0.0894260i \(0.971497\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 0 0
\(27\) − 5.19615i − 0.192450i
\(28\) 0 0
\(29\) 10.3954 0.358463 0.179231 0.983807i \(-0.442639\pi\)
0.179231 + 0.983807i \(0.442639\pi\)
\(30\) 0 0
\(31\) − 44.7612i − 1.44391i −0.691940 0.721955i \(-0.743244\pi\)
0.691940 0.721955i \(-0.256756\pi\)
\(32\) 0 0
\(33\) −15.2420 −0.461877
\(34\) 0 0
\(35\) − 5.91608i − 0.169031i
\(36\) 0 0
\(37\) −45.8730 −1.23981 −0.619905 0.784677i \(-0.712829\pi\)
−0.619905 + 0.784677i \(0.712829\pi\)
\(38\) 0 0
\(39\) − 16.2539i − 0.416768i
\(40\) 0 0
\(41\) −47.7876 −1.16555 −0.582776 0.812633i \(-0.698033\pi\)
−0.582776 + 0.812633i \(0.698033\pi\)
\(42\) 0 0
\(43\) 14.7389i 0.342765i 0.985205 + 0.171382i \(0.0548234\pi\)
−0.985205 + 0.171382i \(0.945177\pi\)
\(44\) 0 0
\(45\) −6.70820 −0.149071
\(46\) 0 0
\(47\) 32.1352i 0.683727i 0.939750 + 0.341863i \(0.111058\pi\)
−0.939750 + 0.341863i \(0.888942\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) 2.17355i 0.0426186i
\(52\) 0 0
\(53\) −15.9421 −0.300794 −0.150397 0.988626i \(-0.548055\pi\)
−0.150397 + 0.988626i \(0.548055\pi\)
\(54\) 0 0
\(55\) 19.6773i 0.357769i
\(56\) 0 0
\(57\) −29.8539 −0.523753
\(58\) 0 0
\(59\) 34.8978i 0.591489i 0.955267 + 0.295744i \(0.0955677\pi\)
−0.955267 + 0.295744i \(0.904432\pi\)
\(60\) 0 0
\(61\) −44.2374 −0.725204 −0.362602 0.931944i \(-0.618112\pi\)
−0.362602 + 0.931944i \(0.618112\pi\)
\(62\) 0 0
\(63\) 7.93725i 0.125988i
\(64\) 0 0
\(65\) −20.9837 −0.322827
\(66\) 0 0
\(67\) 93.7730i 1.39960i 0.714340 + 0.699798i \(0.246727\pi\)
−0.714340 + 0.699798i \(0.753273\pi\)
\(68\) 0 0
\(69\) −7.12496 −0.103260
\(70\) 0 0
\(71\) − 2.89105i − 0.0407191i −0.999793 0.0203595i \(-0.993519\pi\)
0.999793 0.0203595i \(-0.00648109\pi\)
\(72\) 0 0
\(73\) −17.8725 −0.244829 −0.122414 0.992479i \(-0.539064\pi\)
−0.122414 + 0.992479i \(0.539064\pi\)
\(74\) 0 0
\(75\) 8.66025i 0.115470i
\(76\) 0 0
\(77\) 23.2825 0.302370
\(78\) 0 0
\(79\) − 43.7268i − 0.553504i −0.960941 0.276752i \(-0.910742\pi\)
0.960941 0.276752i \(-0.0892581\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) − 34.8743i − 0.420173i −0.977683 0.210086i \(-0.932626\pi\)
0.977683 0.210086i \(-0.0673745\pi\)
\(84\) 0 0
\(85\) 2.80604 0.0330122
\(86\) 0 0
\(87\) 18.0054i 0.206959i
\(88\) 0 0
\(89\) 104.018 1.16875 0.584373 0.811485i \(-0.301340\pi\)
0.584373 + 0.811485i \(0.301340\pi\)
\(90\) 0 0
\(91\) 24.8283i 0.272839i
\(92\) 0 0
\(93\) 77.5287 0.833641
\(94\) 0 0
\(95\) 38.5413i 0.405697i
\(96\) 0 0
\(97\) −110.722 −1.14146 −0.570731 0.821137i \(-0.693340\pi\)
−0.570731 + 0.821137i \(0.693340\pi\)
\(98\) 0 0
\(99\) − 26.3998i − 0.266665i
\(100\) 0 0
\(101\) −128.652 −1.27379 −0.636893 0.770952i \(-0.719781\pi\)
−0.636893 + 0.770952i \(0.719781\pi\)
\(102\) 0 0
\(103\) − 9.30677i − 0.0903570i −0.998979 0.0451785i \(-0.985614\pi\)
0.998979 0.0451785i \(-0.0143857\pi\)
\(104\) 0 0
\(105\) 10.2470 0.0975900
\(106\) 0 0
\(107\) − 1.12107i − 0.0104773i −0.999986 0.00523867i \(-0.998332\pi\)
0.999986 0.00523867i \(-0.00166753\pi\)
\(108\) 0 0
\(109\) −154.428 −1.41677 −0.708384 0.705827i \(-0.750575\pi\)
−0.708384 + 0.705827i \(0.750575\pi\)
\(110\) 0 0
\(111\) − 79.4543i − 0.715805i
\(112\) 0 0
\(113\) −118.217 −1.04617 −0.523085 0.852280i \(-0.675219\pi\)
−0.523085 + 0.852280i \(0.675219\pi\)
\(114\) 0 0
\(115\) 9.19828i 0.0799851i
\(116\) 0 0
\(117\) 28.1527 0.240621
\(118\) 0 0
\(119\) − 3.32015i − 0.0279004i
\(120\) 0 0
\(121\) 43.5609 0.360008
\(122\) 0 0
\(123\) − 82.7706i − 0.672932i
\(124\) 0 0
\(125\) 11.1803 0.0894427
\(126\) 0 0
\(127\) 62.0975i 0.488957i 0.969655 + 0.244478i \(0.0786167\pi\)
−0.969655 + 0.244478i \(0.921383\pi\)
\(128\) 0 0
\(129\) −25.5285 −0.197895
\(130\) 0 0
\(131\) 54.4183i 0.415407i 0.978192 + 0.207704i \(0.0665989\pi\)
−0.978192 + 0.207704i \(0.933401\pi\)
\(132\) 0 0
\(133\) 45.6026 0.342877
\(134\) 0 0
\(135\) − 11.6190i − 0.0860663i
\(136\) 0 0
\(137\) −119.071 −0.869131 −0.434565 0.900640i \(-0.643098\pi\)
−0.434565 + 0.900640i \(0.643098\pi\)
\(138\) 0 0
\(139\) 197.091i 1.41792i 0.705250 + 0.708959i \(0.250835\pi\)
−0.705250 + 0.708959i \(0.749165\pi\)
\(140\) 0 0
\(141\) −55.6597 −0.394750
\(142\) 0 0
\(143\) − 82.5806i − 0.577487i
\(144\) 0 0
\(145\) 23.2449 0.160309
\(146\) 0 0
\(147\) − 12.1244i − 0.0824786i
\(148\) 0 0
\(149\) −48.8826 −0.328071 −0.164036 0.986454i \(-0.552451\pi\)
−0.164036 + 0.986454i \(0.552451\pi\)
\(150\) 0 0
\(151\) 1.21455i 0.00804336i 0.999992 + 0.00402168i \(0.00128014\pi\)
−0.999992 + 0.00402168i \(0.998720\pi\)
\(152\) 0 0
\(153\) −3.76470 −0.0246059
\(154\) 0 0
\(155\) − 100.089i − 0.645736i
\(156\) 0 0
\(157\) −102.408 −0.652281 −0.326140 0.945321i \(-0.605748\pi\)
−0.326140 + 0.945321i \(0.605748\pi\)
\(158\) 0 0
\(159\) − 27.6125i − 0.173664i
\(160\) 0 0
\(161\) 10.8836 0.0675997
\(162\) 0 0
\(163\) − 135.591i − 0.831849i −0.909399 0.415925i \(-0.863458\pi\)
0.909399 0.415925i \(-0.136542\pi\)
\(164\) 0 0
\(165\) −34.0820 −0.206558
\(166\) 0 0
\(167\) − 208.183i − 1.24661i −0.781981 0.623303i \(-0.785790\pi\)
0.781981 0.623303i \(-0.214210\pi\)
\(168\) 0 0
\(169\) −80.9365 −0.478914
\(170\) 0 0
\(171\) − 51.7085i − 0.302389i
\(172\) 0 0
\(173\) −188.537 −1.08981 −0.544904 0.838499i \(-0.683434\pi\)
−0.544904 + 0.838499i \(0.683434\pi\)
\(174\) 0 0
\(175\) − 13.2288i − 0.0755929i
\(176\) 0 0
\(177\) −60.4448 −0.341496
\(178\) 0 0
\(179\) 79.3279i 0.443172i 0.975141 + 0.221586i \(0.0711234\pi\)
−0.975141 + 0.221586i \(0.928877\pi\)
\(180\) 0 0
\(181\) 157.255 0.868814 0.434407 0.900717i \(-0.356958\pi\)
0.434407 + 0.900717i \(0.356958\pi\)
\(182\) 0 0
\(183\) − 76.6215i − 0.418697i
\(184\) 0 0
\(185\) −102.575 −0.554460
\(186\) 0 0
\(187\) 11.0430i 0.0590537i
\(188\) 0 0
\(189\) −13.7477 −0.0727393
\(190\) 0 0
\(191\) − 207.530i − 1.08654i −0.839557 0.543271i \(-0.817186\pi\)
0.839557 0.543271i \(-0.182814\pi\)
\(192\) 0 0
\(193\) −25.2788 −0.130978 −0.0654891 0.997853i \(-0.520861\pi\)
−0.0654891 + 0.997853i \(0.520861\pi\)
\(194\) 0 0
\(195\) − 36.3449i − 0.186384i
\(196\) 0 0
\(197\) −198.866 −1.00947 −0.504735 0.863274i \(-0.668410\pi\)
−0.504735 + 0.863274i \(0.668410\pi\)
\(198\) 0 0
\(199\) 75.2401i 0.378091i 0.981968 + 0.189045i \(0.0605393\pi\)
−0.981968 + 0.189045i \(0.939461\pi\)
\(200\) 0 0
\(201\) −162.420 −0.808058
\(202\) 0 0
\(203\) − 27.5037i − 0.135486i
\(204\) 0 0
\(205\) −106.856 −0.521251
\(206\) 0 0
\(207\) − 12.3408i − 0.0596174i
\(208\) 0 0
\(209\) −151.677 −0.725729
\(210\) 0 0
\(211\) 76.3853i 0.362016i 0.983482 + 0.181008i \(0.0579359\pi\)
−0.983482 + 0.181008i \(0.942064\pi\)
\(212\) 0 0
\(213\) 5.00745 0.0235092
\(214\) 0 0
\(215\) 32.9572i 0.153289i
\(216\) 0 0
\(217\) −118.427 −0.545746
\(218\) 0 0
\(219\) − 30.9561i − 0.141352i
\(220\) 0 0
\(221\) −11.7762 −0.0532861
\(222\) 0 0
\(223\) 112.706i 0.505409i 0.967544 + 0.252704i \(0.0813200\pi\)
−0.967544 + 0.252704i \(0.918680\pi\)
\(224\) 0 0
\(225\) −15.0000 −0.0666667
\(226\) 0 0
\(227\) − 363.020i − 1.59921i −0.600527 0.799604i \(-0.705043\pi\)
0.600527 0.799604i \(-0.294957\pi\)
\(228\) 0 0
\(229\) 331.342 1.44691 0.723453 0.690374i \(-0.242554\pi\)
0.723453 + 0.690374i \(0.242554\pi\)
\(230\) 0 0
\(231\) 40.3264i 0.174573i
\(232\) 0 0
\(233\) 217.379 0.932957 0.466478 0.884533i \(-0.345523\pi\)
0.466478 + 0.884533i \(0.345523\pi\)
\(234\) 0 0
\(235\) 71.8564i 0.305772i
\(236\) 0 0
\(237\) 75.7371 0.319566
\(238\) 0 0
\(239\) 240.882i 1.00787i 0.863740 + 0.503937i \(0.168116\pi\)
−0.863740 + 0.503937i \(0.831884\pi\)
\(240\) 0 0
\(241\) −179.376 −0.744297 −0.372148 0.928173i \(-0.621379\pi\)
−0.372148 + 0.928173i \(0.621379\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) −15.6525 −0.0638877
\(246\) 0 0
\(247\) − 161.748i − 0.654850i
\(248\) 0 0
\(249\) 60.4041 0.242587
\(250\) 0 0
\(251\) − 111.351i − 0.443629i −0.975089 0.221814i \(-0.928802\pi\)
0.975089 0.221814i \(-0.0711979\pi\)
\(252\) 0 0
\(253\) −36.1994 −0.143081
\(254\) 0 0
\(255\) 4.86020i 0.0190596i
\(256\) 0 0
\(257\) −341.799 −1.32996 −0.664978 0.746863i \(-0.731559\pi\)
−0.664978 + 0.746863i \(0.731559\pi\)
\(258\) 0 0
\(259\) 121.368i 0.468604i
\(260\) 0 0
\(261\) −31.1863 −0.119488
\(262\) 0 0
\(263\) 92.5794i 0.352013i 0.984389 + 0.176006i \(0.0563180\pi\)
−0.984389 + 0.176006i \(0.943682\pi\)
\(264\) 0 0
\(265\) −35.6476 −0.134519
\(266\) 0 0
\(267\) 180.165i 0.674776i
\(268\) 0 0
\(269\) 168.803 0.627522 0.313761 0.949502i \(-0.398411\pi\)
0.313761 + 0.949502i \(0.398411\pi\)
\(270\) 0 0
\(271\) 65.5407i 0.241847i 0.992662 + 0.120924i \(0.0385857\pi\)
−0.992662 + 0.120924i \(0.961414\pi\)
\(272\) 0 0
\(273\) −43.0039 −0.157523
\(274\) 0 0
\(275\) 43.9997i 0.159999i
\(276\) 0 0
\(277\) −124.917 −0.450964 −0.225482 0.974247i \(-0.572396\pi\)
−0.225482 + 0.974247i \(0.572396\pi\)
\(278\) 0 0
\(279\) 134.284i 0.481303i
\(280\) 0 0
\(281\) 135.699 0.482913 0.241457 0.970412i \(-0.422375\pi\)
0.241457 + 0.970412i \(0.422375\pi\)
\(282\) 0 0
\(283\) 198.538i 0.701549i 0.936460 + 0.350775i \(0.114082\pi\)
−0.936460 + 0.350775i \(0.885918\pi\)
\(284\) 0 0
\(285\) −66.7554 −0.234230
\(286\) 0 0
\(287\) 126.434i 0.440537i
\(288\) 0 0
\(289\) −287.425 −0.994551
\(290\) 0 0
\(291\) − 191.776i − 0.659024i
\(292\) 0 0
\(293\) 79.6878 0.271972 0.135986 0.990711i \(-0.456580\pi\)
0.135986 + 0.990711i \(0.456580\pi\)
\(294\) 0 0
\(295\) 78.0339i 0.264522i
\(296\) 0 0
\(297\) 45.7259 0.153959
\(298\) 0 0
\(299\) − 38.6029i − 0.129107i
\(300\) 0 0
\(301\) 38.9954 0.129553
\(302\) 0 0
\(303\) − 222.833i − 0.735421i
\(304\) 0 0
\(305\) −98.9179 −0.324321
\(306\) 0 0
\(307\) 322.160i 1.04938i 0.851293 + 0.524690i \(0.175819\pi\)
−0.851293 + 0.524690i \(0.824181\pi\)
\(308\) 0 0
\(309\) 16.1198 0.0521676
\(310\) 0 0
\(311\) − 168.522i − 0.541870i −0.962598 0.270935i \(-0.912667\pi\)
0.962598 0.270935i \(-0.0873328\pi\)
\(312\) 0 0
\(313\) 2.78345 0.00889282 0.00444641 0.999990i \(-0.498585\pi\)
0.00444641 + 0.999990i \(0.498585\pi\)
\(314\) 0 0
\(315\) 17.7482i 0.0563436i
\(316\) 0 0
\(317\) 304.673 0.961115 0.480557 0.876963i \(-0.340434\pi\)
0.480557 + 0.876963i \(0.340434\pi\)
\(318\) 0 0
\(319\) 91.4792i 0.286769i
\(320\) 0 0
\(321\) 1.94176 0.00604909
\(322\) 0 0
\(323\) 21.6296i 0.0669648i
\(324\) 0 0
\(325\) −46.9211 −0.144373
\(326\) 0 0
\(327\) − 267.477i − 0.817971i
\(328\) 0 0
\(329\) 85.0216 0.258424
\(330\) 0 0
\(331\) 432.011i 1.30517i 0.757716 + 0.652584i \(0.226315\pi\)
−0.757716 + 0.652584i \(0.773685\pi\)
\(332\) 0 0
\(333\) 137.619 0.413270
\(334\) 0 0
\(335\) 209.683i 0.625919i
\(336\) 0 0
\(337\) −594.368 −1.76370 −0.881851 0.471528i \(-0.843703\pi\)
−0.881851 + 0.471528i \(0.843703\pi\)
\(338\) 0 0
\(339\) − 204.758i − 0.604007i
\(340\) 0 0
\(341\) 393.896 1.15512
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) 0 0
\(345\) −15.9319 −0.0461794
\(346\) 0 0
\(347\) − 216.608i − 0.624231i −0.950044 0.312115i \(-0.898962\pi\)
0.950044 0.312115i \(-0.101038\pi\)
\(348\) 0 0
\(349\) 454.046 1.30099 0.650496 0.759510i \(-0.274561\pi\)
0.650496 + 0.759510i \(0.274561\pi\)
\(350\) 0 0
\(351\) 48.7618i 0.138923i
\(352\) 0 0
\(353\) 8.40161 0.0238006 0.0119003 0.999929i \(-0.496212\pi\)
0.0119003 + 0.999929i \(0.496212\pi\)
\(354\) 0 0
\(355\) − 6.46459i − 0.0182101i
\(356\) 0 0
\(357\) 5.75067 0.0161083
\(358\) 0 0
\(359\) − 173.200i − 0.482451i −0.970469 0.241226i \(-0.922451\pi\)
0.970469 0.241226i \(-0.0775494\pi\)
\(360\) 0 0
\(361\) 63.9143 0.177048
\(362\) 0 0
\(363\) 75.4498i 0.207851i
\(364\) 0 0
\(365\) −39.9641 −0.109491
\(366\) 0 0
\(367\) 380.268i 1.03615i 0.855335 + 0.518076i \(0.173352\pi\)
−0.855335 + 0.518076i \(0.826648\pi\)
\(368\) 0 0
\(369\) 143.363 0.388517
\(370\) 0 0
\(371\) 42.1788i 0.113690i
\(372\) 0 0
\(373\) 215.367 0.577391 0.288696 0.957421i \(-0.406778\pi\)
0.288696 + 0.957421i \(0.406778\pi\)
\(374\) 0 0
\(375\) 19.3649i 0.0516398i
\(376\) 0 0
\(377\) −97.5529 −0.258761
\(378\) 0 0
\(379\) 322.776i 0.851652i 0.904805 + 0.425826i \(0.140016\pi\)
−0.904805 + 0.425826i \(0.859984\pi\)
\(380\) 0 0
\(381\) −107.556 −0.282299
\(382\) 0 0
\(383\) − 637.804i − 1.66528i −0.553811 0.832642i \(-0.686827\pi\)
0.553811 0.832642i \(-0.313173\pi\)
\(384\) 0 0
\(385\) 52.0612 0.135224
\(386\) 0 0
\(387\) − 44.2167i − 0.114255i
\(388\) 0 0
\(389\) 581.065 1.49374 0.746870 0.664970i \(-0.231556\pi\)
0.746870 + 0.664970i \(0.231556\pi\)
\(390\) 0 0
\(391\) 5.16215i 0.0132024i
\(392\) 0 0
\(393\) −94.2553 −0.239835
\(394\) 0 0
\(395\) − 97.7762i − 0.247535i
\(396\) 0 0
\(397\) 370.929 0.934329 0.467165 0.884170i \(-0.345276\pi\)
0.467165 + 0.884170i \(0.345276\pi\)
\(398\) 0 0
\(399\) 78.9861i 0.197960i
\(400\) 0 0
\(401\) −75.4668 −0.188197 −0.0940983 0.995563i \(-0.529997\pi\)
−0.0940983 + 0.995563i \(0.529997\pi\)
\(402\) 0 0
\(403\) 420.049i 1.04230i
\(404\) 0 0
\(405\) 20.1246 0.0496904
\(406\) 0 0
\(407\) − 403.680i − 0.991842i
\(408\) 0 0
\(409\) 598.394 1.46307 0.731533 0.681806i \(-0.238805\pi\)
0.731533 + 0.681806i \(0.238805\pi\)
\(410\) 0 0
\(411\) − 206.237i − 0.501793i
\(412\) 0 0
\(413\) 92.3310 0.223562
\(414\) 0 0
\(415\) − 77.9813i − 0.187907i
\(416\) 0 0
\(417\) −341.371 −0.818635
\(418\) 0 0
\(419\) − 422.299i − 1.00787i −0.863740 0.503937i \(-0.831884\pi\)
0.863740 0.503937i \(-0.168116\pi\)
\(420\) 0 0
\(421\) −42.6375 −0.101277 −0.0506383 0.998717i \(-0.516126\pi\)
−0.0506383 + 0.998717i \(0.516126\pi\)
\(422\) 0 0
\(423\) − 96.4055i − 0.227909i
\(424\) 0 0
\(425\) 6.27449 0.0147635
\(426\) 0 0
\(427\) 117.041i 0.274101i
\(428\) 0 0
\(429\) 143.034 0.333412
\(430\) 0 0
\(431\) 796.932i 1.84903i 0.381145 + 0.924515i \(0.375530\pi\)
−0.381145 + 0.924515i \(0.624470\pi\)
\(432\) 0 0
\(433\) 489.393 1.13024 0.565119 0.825009i \(-0.308830\pi\)
0.565119 + 0.825009i \(0.308830\pi\)
\(434\) 0 0
\(435\) 40.2613i 0.0925547i
\(436\) 0 0
\(437\) −70.9027 −0.162249
\(438\) 0 0
\(439\) 514.652i 1.17233i 0.810193 + 0.586164i \(0.199363\pi\)
−0.810193 + 0.586164i \(0.800637\pi\)
\(440\) 0 0
\(441\) 21.0000 0.0476190
\(442\) 0 0
\(443\) − 450.951i − 1.01795i −0.860782 0.508974i \(-0.830025\pi\)
0.860782 0.508974i \(-0.169975\pi\)
\(444\) 0 0
\(445\) 232.592 0.522679
\(446\) 0 0
\(447\) − 84.6671i − 0.189412i
\(448\) 0 0
\(449\) −255.396 −0.568812 −0.284406 0.958704i \(-0.591796\pi\)
−0.284406 + 0.958704i \(0.591796\pi\)
\(450\) 0 0
\(451\) − 420.528i − 0.932436i
\(452\) 0 0
\(453\) −2.10366 −0.00464384
\(454\) 0 0
\(455\) 55.5178i 0.122017i
\(456\) 0 0
\(457\) −354.776 −0.776314 −0.388157 0.921593i \(-0.626888\pi\)
−0.388157 + 0.921593i \(0.626888\pi\)
\(458\) 0 0
\(459\) − 6.52064i − 0.0142062i
\(460\) 0 0
\(461\) 771.084 1.67263 0.836316 0.548247i \(-0.184705\pi\)
0.836316 + 0.548247i \(0.184705\pi\)
\(462\) 0 0
\(463\) 167.817i 0.362455i 0.983441 + 0.181227i \(0.0580070\pi\)
−0.983441 + 0.181227i \(0.941993\pi\)
\(464\) 0 0
\(465\) 173.359 0.372816
\(466\) 0 0
\(467\) 91.5618i 0.196064i 0.995183 + 0.0980319i \(0.0312547\pi\)
−0.995183 + 0.0980319i \(0.968745\pi\)
\(468\) 0 0
\(469\) 248.100 0.528998
\(470\) 0 0
\(471\) − 177.376i − 0.376594i
\(472\) 0 0
\(473\) −129.701 −0.274210
\(474\) 0 0
\(475\) 86.1809i 0.181433i
\(476\) 0 0
\(477\) 47.8263 0.100265
\(478\) 0 0
\(479\) − 457.015i − 0.954102i −0.878876 0.477051i \(-0.841706\pi\)
0.878876 0.477051i \(-0.158294\pi\)
\(480\) 0 0
\(481\) 430.482 0.894973
\(482\) 0 0
\(483\) 18.8509i 0.0390287i
\(484\) 0 0
\(485\) −247.582 −0.510478
\(486\) 0 0
\(487\) 144.211i 0.296122i 0.988978 + 0.148061i \(0.0473032\pi\)
−0.988978 + 0.148061i \(0.952697\pi\)
\(488\) 0 0
\(489\) 234.851 0.480268
\(490\) 0 0
\(491\) 285.763i 0.582002i 0.956723 + 0.291001i \(0.0939883\pi\)
−0.956723 + 0.291001i \(0.906012\pi\)
\(492\) 0 0
\(493\) 13.0452 0.0264608
\(494\) 0 0
\(495\) − 59.0318i − 0.119256i
\(496\) 0 0
\(497\) −7.64901 −0.0153904
\(498\) 0 0
\(499\) 576.622i 1.15556i 0.816194 + 0.577778i \(0.196080\pi\)
−0.816194 + 0.577778i \(0.803920\pi\)
\(500\) 0 0
\(501\) 360.584 0.719728
\(502\) 0 0
\(503\) 574.430i 1.14201i 0.820948 + 0.571004i \(0.193446\pi\)
−0.820948 + 0.571004i \(0.806554\pi\)
\(504\) 0 0
\(505\) −287.676 −0.569655
\(506\) 0 0
\(507\) − 140.186i − 0.276501i
\(508\) 0 0
\(509\) 525.130 1.03169 0.515845 0.856682i \(-0.327478\pi\)
0.515845 + 0.856682i \(0.327478\pi\)
\(510\) 0 0
\(511\) 47.2862i 0.0925365i
\(512\) 0 0
\(513\) 89.5618 0.174584
\(514\) 0 0
\(515\) − 20.8106i − 0.0404089i
\(516\) 0 0
\(517\) −282.788 −0.546978
\(518\) 0 0
\(519\) − 326.555i − 0.629201i
\(520\) 0 0
\(521\) −403.662 −0.774783 −0.387392 0.921915i \(-0.626624\pi\)
−0.387392 + 0.921915i \(0.626624\pi\)
\(522\) 0 0
\(523\) 65.2733i 0.124806i 0.998051 + 0.0624028i \(0.0198763\pi\)
−0.998051 + 0.0624028i \(0.980124\pi\)
\(524\) 0 0
\(525\) 22.9129 0.0436436
\(526\) 0 0
\(527\) − 56.1707i − 0.106586i
\(528\) 0 0
\(529\) 512.078 0.968012
\(530\) 0 0
\(531\) − 104.694i − 0.197163i
\(532\) 0 0
\(533\) 448.449 0.841368
\(534\) 0 0
\(535\) − 2.50680i − 0.00468561i
\(536\) 0 0
\(537\) −137.400 −0.255866
\(538\) 0 0
\(539\) − 61.5996i − 0.114285i
\(540\) 0 0
\(541\) −41.6239 −0.0769388 −0.0384694 0.999260i \(-0.512248\pi\)
−0.0384694 + 0.999260i \(0.512248\pi\)
\(542\) 0 0
\(543\) 272.374i 0.501610i
\(544\) 0 0
\(545\) −345.311 −0.633598
\(546\) 0 0
\(547\) 932.793i 1.70529i 0.522492 + 0.852644i \(0.325002\pi\)
−0.522492 + 0.852644i \(0.674998\pi\)
\(548\) 0 0
\(549\) 132.712 0.241735
\(550\) 0 0
\(551\) 179.177i 0.325186i
\(552\) 0 0
\(553\) −115.690 −0.209205
\(554\) 0 0
\(555\) − 177.665i − 0.320118i
\(556\) 0 0
\(557\) −439.314 −0.788715 −0.394358 0.918957i \(-0.629033\pi\)
−0.394358 + 0.918957i \(0.629033\pi\)
\(558\) 0 0
\(559\) − 138.313i − 0.247429i
\(560\) 0 0
\(561\) −19.1271 −0.0340947
\(562\) 0 0
\(563\) − 954.938i − 1.69616i −0.529869 0.848080i \(-0.677759\pi\)
0.529869 0.848080i \(-0.322241\pi\)
\(564\) 0 0
\(565\) −264.342 −0.467862
\(566\) 0 0
\(567\) − 23.8118i − 0.0419961i
\(568\) 0 0
\(569\) 930.534 1.63539 0.817693 0.575655i \(-0.195253\pi\)
0.817693 + 0.575655i \(0.195253\pi\)
\(570\) 0 0
\(571\) 194.324i 0.340322i 0.985416 + 0.170161i \(0.0544288\pi\)
−0.985416 + 0.170161i \(0.945571\pi\)
\(572\) 0 0
\(573\) 359.452 0.627316
\(574\) 0 0
\(575\) 20.5680i 0.0357704i
\(576\) 0 0
\(577\) −276.445 −0.479107 −0.239554 0.970883i \(-0.577001\pi\)
−0.239554 + 0.970883i \(0.577001\pi\)
\(578\) 0 0
\(579\) − 43.7841i − 0.0756203i
\(580\) 0 0
\(581\) −92.2688 −0.158810
\(582\) 0 0
\(583\) − 140.290i − 0.240634i
\(584\) 0 0
\(585\) 62.9512 0.107609
\(586\) 0 0
\(587\) 518.590i 0.883458i 0.897149 + 0.441729i \(0.145635\pi\)
−0.897149 + 0.441729i \(0.854365\pi\)
\(588\) 0 0
\(589\) 771.512 1.30987
\(590\) 0 0
\(591\) − 344.445i − 0.582818i
\(592\) 0 0
\(593\) 427.203 0.720410 0.360205 0.932873i \(-0.382707\pi\)
0.360205 + 0.932873i \(0.382707\pi\)
\(594\) 0 0
\(595\) − 7.42408i − 0.0124774i
\(596\) 0 0
\(597\) −130.320 −0.218291
\(598\) 0 0
\(599\) 217.842i 0.363676i 0.983329 + 0.181838i \(0.0582046\pi\)
−0.983329 + 0.181838i \(0.941795\pi\)
\(600\) 0 0
\(601\) −402.101 −0.669053 −0.334527 0.942386i \(-0.608576\pi\)
−0.334527 + 0.942386i \(0.608576\pi\)
\(602\) 0 0
\(603\) − 281.319i − 0.466532i
\(604\) 0 0
\(605\) 97.4052 0.161000
\(606\) 0 0
\(607\) − 467.555i − 0.770272i −0.922860 0.385136i \(-0.874155\pi\)
0.922860 0.385136i \(-0.125845\pi\)
\(608\) 0 0
\(609\) 47.6378 0.0782230
\(610\) 0 0
\(611\) − 301.563i − 0.493557i
\(612\) 0 0
\(613\) 483.990 0.789543 0.394772 0.918779i \(-0.370824\pi\)
0.394772 + 0.918779i \(0.370824\pi\)
\(614\) 0 0
\(615\) − 185.081i − 0.300944i
\(616\) 0 0
\(617\) −36.8122 −0.0596632 −0.0298316 0.999555i \(-0.509497\pi\)
−0.0298316 + 0.999555i \(0.509497\pi\)
\(618\) 0 0
\(619\) − 1044.96i − 1.68814i −0.536234 0.844069i \(-0.680154\pi\)
0.536234 0.844069i \(-0.319846\pi\)
\(620\) 0 0
\(621\) 21.3749 0.0344201
\(622\) 0 0
\(623\) − 275.207i − 0.441745i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) − 262.713i − 0.419000i
\(628\) 0 0
\(629\) −57.5659 −0.0915198
\(630\) 0 0
\(631\) 727.116i 1.15232i 0.817336 + 0.576161i \(0.195450\pi\)
−0.817336 + 0.576161i \(0.804550\pi\)
\(632\) 0 0
\(633\) −132.303 −0.209010
\(634\) 0 0
\(635\) 138.854i 0.218668i
\(636\) 0 0
\(637\) 65.6895 0.103123
\(638\) 0 0
\(639\) 8.67316i 0.0135730i
\(640\) 0 0
\(641\) −905.378 −1.41245 −0.706223 0.707989i \(-0.749603\pi\)
−0.706223 + 0.707989i \(0.749603\pi\)
\(642\) 0 0
\(643\) 413.042i 0.642366i 0.947017 + 0.321183i \(0.104081\pi\)
−0.947017 + 0.321183i \(0.895919\pi\)
\(644\) 0 0
\(645\) −57.0835 −0.0885015
\(646\) 0 0
\(647\) − 596.729i − 0.922301i −0.887322 0.461150i \(-0.847437\pi\)
0.887322 0.461150i \(-0.152563\pi\)
\(648\) 0 0
\(649\) −307.099 −0.473188
\(650\) 0 0
\(651\) − 205.122i − 0.315087i
\(652\) 0 0
\(653\) 1026.13 1.57141 0.785704 0.618602i \(-0.212301\pi\)
0.785704 + 0.618602i \(0.212301\pi\)
\(654\) 0 0
\(655\) 121.683i 0.185776i
\(656\) 0 0
\(657\) 53.6175 0.0816096
\(658\) 0 0
\(659\) − 396.535i − 0.601723i −0.953668 0.300861i \(-0.902726\pi\)
0.953668 0.300861i \(-0.0972741\pi\)
\(660\) 0 0
\(661\) 718.231 1.08658 0.543291 0.839544i \(-0.317178\pi\)
0.543291 + 0.839544i \(0.317178\pi\)
\(662\) 0 0
\(663\) − 20.3970i − 0.0307648i
\(664\) 0 0
\(665\) 101.971 0.153339
\(666\) 0 0
\(667\) 42.7626i 0.0641118i
\(668\) 0 0
\(669\) −195.213 −0.291798
\(670\) 0 0
\(671\) − 389.287i − 0.580159i
\(672\) 0 0
\(673\) 554.302 0.823629 0.411814 0.911268i \(-0.364895\pi\)
0.411814 + 0.911268i \(0.364895\pi\)
\(674\) 0 0
\(675\) − 25.9808i − 0.0384900i
\(676\) 0 0
\(677\) −129.171 −0.190799 −0.0953994 0.995439i \(-0.530413\pi\)
−0.0953994 + 0.995439i \(0.530413\pi\)
\(678\) 0 0
\(679\) 292.942i 0.431432i
\(680\) 0 0
\(681\) 628.770 0.923304
\(682\) 0 0
\(683\) 443.991i 0.650060i 0.945704 + 0.325030i \(0.105374\pi\)
−0.945704 + 0.325030i \(0.894626\pi\)
\(684\) 0 0
\(685\) −266.251 −0.388687
\(686\) 0 0
\(687\) 573.900i 0.835372i
\(688\) 0 0
\(689\) 149.604 0.217132
\(690\) 0 0
\(691\) − 306.527i − 0.443600i −0.975092 0.221800i \(-0.928807\pi\)
0.975092 0.221800i \(-0.0711932\pi\)
\(692\) 0 0
\(693\) −69.8474 −0.100790
\(694\) 0 0
\(695\) 440.708i 0.634112i
\(696\) 0 0
\(697\) −59.9686 −0.0860382
\(698\) 0 0
\(699\) 376.511i 0.538643i
\(700\) 0 0
\(701\) 1004.44 1.43287 0.716436 0.697653i \(-0.245772\pi\)
0.716436 + 0.697653i \(0.245772\pi\)
\(702\) 0 0
\(703\) − 790.675i − 1.12471i
\(704\) 0 0
\(705\) −124.459 −0.176537
\(706\) 0 0
\(707\) 340.382i 0.481446i
\(708\) 0 0
\(709\) 125.899 0.177572 0.0887862 0.996051i \(-0.471701\pi\)
0.0887862 + 0.996051i \(0.471701\pi\)
\(710\) 0 0
\(711\) 131.180i 0.184501i
\(712\) 0 0
\(713\) 184.130 0.258246
\(714\) 0 0
\(715\) − 184.656i − 0.258260i
\(716\) 0 0
\(717\) −417.220 −0.581896
\(718\) 0 0
\(719\) − 1117.32i − 1.55399i −0.629506 0.776995i \(-0.716743\pi\)
0.629506 0.776995i \(-0.283257\pi\)
\(720\) 0 0
\(721\) −24.6234 −0.0341517
\(722\) 0 0
\(723\) − 310.688i − 0.429720i
\(724\) 0 0
\(725\) 51.9771 0.0716926
\(726\) 0 0
\(727\) 380.280i 0.523082i 0.965192 + 0.261541i \(0.0842306\pi\)
−0.965192 + 0.261541i \(0.915769\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 18.4958i 0.0253021i
\(732\) 0 0
\(733\) −31.7992 −0.0433822 −0.0216911 0.999765i \(-0.506905\pi\)
−0.0216911 + 0.999765i \(0.506905\pi\)
\(734\) 0 0
\(735\) − 27.1109i − 0.0368856i
\(736\) 0 0
\(737\) −825.197 −1.11967
\(738\) 0 0
\(739\) 180.660i 0.244465i 0.992501 + 0.122233i \(0.0390054\pi\)
−0.992501 + 0.122233i \(0.960995\pi\)
\(740\) 0 0
\(741\) 280.156 0.378078
\(742\) 0 0
\(743\) 1232.99i 1.65948i 0.558152 + 0.829738i \(0.311510\pi\)
−0.558152 + 0.829738i \(0.688490\pi\)
\(744\) 0 0
\(745\) −109.305 −0.146718
\(746\) 0 0
\(747\) 104.623i 0.140058i
\(748\) 0 0
\(749\) −2.96608 −0.00396006
\(750\) 0 0
\(751\) − 233.664i − 0.311137i −0.987825 0.155569i \(-0.950279\pi\)
0.987825 0.155569i \(-0.0497210\pi\)
\(752\) 0 0
\(753\) 192.865 0.256129
\(754\) 0 0
\(755\) 2.71581i 0.00359710i
\(756\) 0 0
\(757\) 191.053 0.252381 0.126191 0.992006i \(-0.459725\pi\)
0.126191 + 0.992006i \(0.459725\pi\)
\(758\) 0 0
\(759\) − 62.6993i − 0.0826077i
\(760\) 0 0
\(761\) 494.084 0.649256 0.324628 0.945842i \(-0.394761\pi\)
0.324628 + 0.945842i \(0.394761\pi\)
\(762\) 0 0
\(763\) 408.577i 0.535488i
\(764\) 0 0
\(765\) −8.41811 −0.0110041
\(766\) 0 0
\(767\) − 327.489i − 0.426974i
\(768\) 0 0
\(769\) −26.7946 −0.0348434 −0.0174217 0.999848i \(-0.505546\pi\)
−0.0174217 + 0.999848i \(0.505546\pi\)
\(770\) 0 0
\(771\) − 592.013i − 0.767850i
\(772\) 0 0
\(773\) 258.308 0.334164 0.167082 0.985943i \(-0.446566\pi\)
0.167082 + 0.985943i \(0.446566\pi\)
\(774\) 0 0
\(775\) − 223.806i − 0.288782i
\(776\) 0 0
\(777\) −210.216 −0.270549
\(778\) 0 0
\(779\) − 823.676i − 1.05735i
\(780\) 0 0
\(781\) 25.4411 0.0325751
\(782\) 0 0
\(783\) − 54.0162i − 0.0689862i
\(784\) 0 0
\(785\) −228.991 −0.291709
\(786\) 0 0
\(787\) − 1051.45i − 1.33602i −0.744151 0.668012i \(-0.767146\pi\)
0.744151 0.668012i \(-0.232854\pi\)
\(788\) 0 0
\(789\) −160.352 −0.203235
\(790\) 0 0
\(791\) 312.774i 0.395415i
\(792\) 0 0
\(793\) 415.134 0.523498
\(794\) 0 0
\(795\) − 61.7435i − 0.0776648i
\(796\) 0 0
\(797\) −646.015 −0.810558 −0.405279 0.914193i \(-0.632826\pi\)
−0.405279 + 0.914193i \(0.632826\pi\)
\(798\) 0 0
\(799\) 40.3264i 0.0504710i
\(800\) 0 0
\(801\) −312.055 −0.389582
\(802\) 0 0
\(803\) − 157.277i − 0.195862i
\(804\) 0 0
\(805\) 24.3364 0.0302315
\(806\) 0 0
\(807\) 292.376i 0.362300i
\(808\) 0 0
\(809\) 981.931 1.21376 0.606880 0.794794i \(-0.292421\pi\)
0.606880 + 0.794794i \(0.292421\pi\)
\(810\) 0 0
\(811\) − 24.1176i − 0.0297381i −0.999889 0.0148691i \(-0.995267\pi\)
0.999889 0.0148691i \(-0.00473314\pi\)
\(812\) 0 0
\(813\) −113.520 −0.139631
\(814\) 0 0
\(815\) − 303.192i − 0.372014i
\(816\) 0 0
\(817\) −254.042 −0.310945
\(818\) 0 0
\(819\) − 74.4849i − 0.0909462i
\(820\) 0 0
\(821\) 465.783 0.567336 0.283668 0.958923i \(-0.408449\pi\)
0.283668 + 0.958923i \(0.408449\pi\)
\(822\) 0 0
\(823\) 720.915i 0.875960i 0.898985 + 0.437980i \(0.144306\pi\)
−0.898985 + 0.437980i \(0.855694\pi\)
\(824\) 0 0
\(825\) −76.2098 −0.0923755
\(826\) 0 0
\(827\) 90.1914i 0.109059i 0.998512 + 0.0545293i \(0.0173658\pi\)
−0.998512 + 0.0545293i \(0.982634\pi\)
\(828\) 0 0
\(829\) 1037.66 1.25170 0.625850 0.779943i \(-0.284752\pi\)
0.625850 + 0.779943i \(0.284752\pi\)
\(830\) 0 0
\(831\) − 216.363i − 0.260364i
\(832\) 0 0
\(833\) −8.78429 −0.0105454
\(834\) 0 0
\(835\) − 465.512i − 0.557499i
\(836\) 0 0
\(837\) −232.586 −0.277880
\(838\) 0 0
\(839\) 1230.91i 1.46712i 0.679625 + 0.733559i \(0.262142\pi\)
−0.679625 + 0.733559i \(0.737858\pi\)
\(840\) 0 0
\(841\) −732.935 −0.871504
\(842\) 0 0
\(843\) 235.037i 0.278810i
\(844\) 0 0
\(845\) −180.979 −0.214177
\(846\) 0 0
\(847\) − 115.251i − 0.136070i
\(848\) 0 0
\(849\) −343.879 −0.405040
\(850\) 0 0
\(851\) − 188.703i − 0.221743i
\(852\) 0 0
\(853\) −354.911 −0.416074 −0.208037 0.978121i \(-0.566707\pi\)
−0.208037 + 0.978121i \(0.566707\pi\)
\(854\) 0 0
\(855\) − 115.624i − 0.135232i
\(856\) 0 0
\(857\) −1706.61 −1.99138 −0.995689 0.0927500i \(-0.970434\pi\)
−0.995689 + 0.0927500i \(0.970434\pi\)
\(858\) 0 0
\(859\) 646.956i 0.753150i 0.926386 + 0.376575i \(0.122898\pi\)
−0.926386 + 0.376575i \(0.877102\pi\)
\(860\) 0 0
\(861\) −218.990 −0.254344
\(862\) 0 0
\(863\) 664.063i 0.769482i 0.923025 + 0.384741i \(0.125709\pi\)
−0.923025 + 0.384741i \(0.874291\pi\)
\(864\) 0 0
\(865\) −421.581 −0.487377
\(866\) 0 0
\(867\) − 497.835i − 0.574204i
\(868\) 0 0
\(869\) 384.794 0.442801
\(870\) 0 0
\(871\) − 879.986i − 1.01032i
\(872\) 0 0
\(873\) 332.166 0.380487
\(874\) 0 0
\(875\) − 29.5804i − 0.0338062i
\(876\) 0 0
\(877\) −634.315 −0.723278 −0.361639 0.932318i \(-0.617783\pi\)
−0.361639 + 0.932318i \(0.617783\pi\)
\(878\) 0 0
\(879\) 138.023i 0.157023i
\(880\) 0 0
\(881\) −638.388 −0.724618 −0.362309 0.932058i \(-0.618011\pi\)
−0.362309 + 0.932058i \(0.618011\pi\)
\(882\) 0 0
\(883\) 1427.58i 1.61673i 0.588679 + 0.808367i \(0.299648\pi\)
−0.588679 + 0.808367i \(0.700352\pi\)
\(884\) 0 0
\(885\) −135.159 −0.152722
\(886\) 0 0
\(887\) − 509.818i − 0.574767i −0.957816 0.287383i \(-0.907215\pi\)
0.957816 0.287383i \(-0.0927854\pi\)
\(888\) 0 0
\(889\) 164.295 0.184808
\(890\) 0 0
\(891\) 79.1995i 0.0888883i
\(892\) 0 0
\(893\) −553.887 −0.620254
\(894\) 0 0
\(895\) 177.383i 0.198193i
\(896\) 0 0
\(897\) 66.8622 0.0745398
\(898\) 0 0
\(899\) − 465.311i − 0.517588i
\(900\) 0 0
\(901\) −20.0057 −0.0222039
\(902\) 0 0
\(903\) 67.5421i 0.0747974i
\(904\) 0 0
\(905\) 351.634 0.388545
\(906\) 0 0
\(907\) 1238.64i 1.36564i 0.730586 + 0.682821i \(0.239247\pi\)
−0.730586 + 0.682821i \(0.760753\pi\)
\(908\) 0 0
\(909\) 385.957 0.424595
\(910\) 0 0
\(911\) 1396.21i 1.53261i 0.642478 + 0.766304i \(0.277906\pi\)
−0.642478 + 0.766304i \(0.722094\pi\)
\(912\) 0 0
\(913\) 306.892 0.336136
\(914\) 0 0
\(915\) − 171.331i − 0.187247i
\(916\) 0 0
\(917\) 143.977 0.157009
\(918\) 0 0
\(919\) − 251.692i − 0.273876i −0.990580 0.136938i \(-0.956274\pi\)
0.990580 0.136938i \(-0.0437261\pi\)
\(920\) 0 0
\(921\) −557.997 −0.605860
\(922\) 0 0
\(923\) 27.1303i 0.0293936i
\(924\) 0 0
\(925\) −229.365 −0.247962
\(926\) 0 0
\(927\) 27.9203i 0.0301190i
\(928\) 0 0
\(929\) 374.998 0.403657 0.201829 0.979421i \(-0.435312\pi\)
0.201829 + 0.979421i \(0.435312\pi\)
\(930\) 0 0
\(931\) − 120.653i − 0.129595i
\(932\) 0 0
\(933\) 291.888 0.312849
\(934\) 0 0
\(935\) 24.6930i 0.0264096i
\(936\) 0 0
\(937\) −530.104 −0.565746 −0.282873 0.959157i \(-0.591287\pi\)
−0.282873 + 0.959157i \(0.591287\pi\)
\(938\) 0 0
\(939\) 4.82108i 0.00513427i
\(940\) 0 0
\(941\) 991.428 1.05359 0.526795 0.849992i \(-0.323394\pi\)
0.526795 + 0.849992i \(0.323394\pi\)
\(942\) 0 0
\(943\) − 196.579i − 0.208461i
\(944\) 0 0
\(945\) −30.7409 −0.0325300
\(946\) 0 0
\(947\) − 1520.18i − 1.60526i −0.596476 0.802631i \(-0.703433\pi\)
0.596476 0.802631i \(-0.296567\pi\)
\(948\) 0 0
\(949\) 167.719 0.176733
\(950\) 0 0
\(951\) 527.710i 0.554900i
\(952\) 0 0
\(953\) −76.4275 −0.0801967 −0.0400984 0.999196i \(-0.512767\pi\)
−0.0400984 + 0.999196i \(0.512767\pi\)
\(954\) 0 0
\(955\) − 464.050i − 0.485917i
\(956\) 0 0
\(957\) −158.447 −0.165566
\(958\) 0 0
\(959\) 315.032i 0.328501i
\(960\) 0 0
\(961\) −1042.56 −1.08487
\(962\) 0 0
\(963\) 3.36322i 0.00349244i
\(964\) 0 0
\(965\) −56.5251 −0.0585752
\(966\) 0 0
\(967\) 111.839i 0.115655i 0.998327 + 0.0578276i \(0.0184174\pi\)
−0.998327 + 0.0578276i \(0.981583\pi\)
\(968\) 0 0
\(969\) −37.4636 −0.0386622
\(970\) 0 0
\(971\) 612.000i 0.630278i 0.949045 + 0.315139i \(0.102051\pi\)
−0.949045 + 0.315139i \(0.897949\pi\)
\(972\) 0 0
\(973\) 521.453 0.535923
\(974\) 0 0
\(975\) − 81.2697i − 0.0833535i
\(976\) 0 0
\(977\) −384.848 −0.393907 −0.196954 0.980413i \(-0.563105\pi\)
−0.196954 + 0.980413i \(0.563105\pi\)
\(978\) 0 0
\(979\) 915.357i 0.934992i
\(980\) 0 0
\(981\) 463.283 0.472256
\(982\) 0 0
\(983\) − 75.5987i − 0.0769061i −0.999260 0.0384531i \(-0.987757\pi\)
0.999260 0.0384531i \(-0.0122430\pi\)
\(984\) 0 0
\(985\) −444.677 −0.451449
\(986\) 0 0
\(987\) 147.262i 0.149201i
\(988\) 0 0
\(989\) −60.6299 −0.0613042
\(990\) 0 0
\(991\) 784.734i 0.791860i 0.918281 + 0.395930i \(0.129578\pi\)
−0.918281 + 0.395930i \(0.870422\pi\)
\(992\) 0 0
\(993\) −748.265 −0.753539
\(994\) 0 0
\(995\) 168.242i 0.169087i
\(996\) 0 0
\(997\) −195.160 −0.195747 −0.0978737 0.995199i \(-0.531204\pi\)
−0.0978737 + 0.995199i \(0.531204\pi\)
\(998\) 0 0
\(999\) 238.363i 0.238602i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.3.n.c.1471.14 yes 16
4.3 odd 2 inner 1680.3.n.c.1471.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.3.n.c.1471.7 16 4.3 odd 2 inner
1680.3.n.c.1471.14 yes 16 1.1 even 1 trivial