Properties

Label 1680.3.n.c.1471.13
Level $1680$
Weight $3$
Character 1680.1471
Analytic conductor $45.777$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,3,Mod(1471,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.1471"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1680.n (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-48,0,0,0,48,0,0,0,-96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.7766844125\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7 x^{15} + 6 x^{14} + 115 x^{13} - 535 x^{12} + 605 x^{11} + 2453 x^{10} - 10997 x^{9} + \cdots + 92164 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{36} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1471.13
Root \(-3.78650 - 0.542965i\) of defining polynomial
Character \(\chi\) \(=\) 1680.1471
Dual form 1680.3.n.c.1471.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{3} +2.23607 q^{5} -2.64575i q^{7} -3.00000 q^{9} -20.0100i q^{11} +10.9121 q^{13} +3.87298i q^{15} -31.5852 q^{17} -0.112511i q^{19} +4.58258 q^{21} -13.6919i q^{23} +5.00000 q^{25} -5.19615i q^{27} -57.8012 q^{29} +59.4742i q^{31} +34.6584 q^{33} -5.91608i q^{35} -50.3894 q^{37} +18.9003i q^{39} +35.7441 q^{41} +60.1583i q^{43} -6.70820 q^{45} +21.4131i q^{47} -7.00000 q^{49} -54.7072i q^{51} -30.4859 q^{53} -44.7438i q^{55} +0.194874 q^{57} +91.0394i q^{59} -66.0447 q^{61} +7.93725i q^{63} +24.4002 q^{65} -30.7105i q^{67} +23.7151 q^{69} +67.8742i q^{71} -0.812277 q^{73} +8.66025i q^{75} -52.9415 q^{77} +70.9483i q^{79} +9.00000 q^{81} +67.1123i q^{83} -70.6267 q^{85} -100.115i q^{87} -128.939 q^{89} -28.8707i q^{91} -103.012 q^{93} -0.251581i q^{95} +74.2913 q^{97} +60.0300i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{9} + 48 q^{13} - 96 q^{17} + 80 q^{25} + 112 q^{29} + 48 q^{33} - 224 q^{37} + 160 q^{41} - 112 q^{49} - 96 q^{53} + 80 q^{61} - 80 q^{65} + 48 q^{69} - 48 q^{73} + 144 q^{81} - 160 q^{89}+ \cdots + 592 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) 2.23607 0.447214
\(6\) 0 0
\(7\) − 2.64575i − 0.377964i
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) − 20.0100i − 1.81909i −0.415603 0.909546i \(-0.636429\pi\)
0.415603 0.909546i \(-0.363571\pi\)
\(12\) 0 0
\(13\) 10.9121 0.839391 0.419695 0.907665i \(-0.362137\pi\)
0.419695 + 0.907665i \(0.362137\pi\)
\(14\) 0 0
\(15\) 3.87298i 0.258199i
\(16\) 0 0
\(17\) −31.5852 −1.85795 −0.928977 0.370139i \(-0.879310\pi\)
−0.928977 + 0.370139i \(0.879310\pi\)
\(18\) 0 0
\(19\) − 0.112511i − 0.00592161i −0.999996 0.00296081i \(-0.999058\pi\)
0.999996 0.00296081i \(-0.000942455\pi\)
\(20\) 0 0
\(21\) 4.58258 0.218218
\(22\) 0 0
\(23\) − 13.6919i − 0.595302i −0.954675 0.297651i \(-0.903797\pi\)
0.954675 0.297651i \(-0.0962031\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 0 0
\(27\) − 5.19615i − 0.192450i
\(28\) 0 0
\(29\) −57.8012 −1.99314 −0.996572 0.0827280i \(-0.973637\pi\)
−0.996572 + 0.0827280i \(0.973637\pi\)
\(30\) 0 0
\(31\) 59.4742i 1.91852i 0.282519 + 0.959262i \(0.408830\pi\)
−0.282519 + 0.959262i \(0.591170\pi\)
\(32\) 0 0
\(33\) 34.6584 1.05025
\(34\) 0 0
\(35\) − 5.91608i − 0.169031i
\(36\) 0 0
\(37\) −50.3894 −1.36188 −0.680938 0.732341i \(-0.738428\pi\)
−0.680938 + 0.732341i \(0.738428\pi\)
\(38\) 0 0
\(39\) 18.9003i 0.484623i
\(40\) 0 0
\(41\) 35.7441 0.871807 0.435904 0.899993i \(-0.356429\pi\)
0.435904 + 0.899993i \(0.356429\pi\)
\(42\) 0 0
\(43\) 60.1583i 1.39903i 0.714617 + 0.699515i \(0.246601\pi\)
−0.714617 + 0.699515i \(0.753399\pi\)
\(44\) 0 0
\(45\) −6.70820 −0.149071
\(46\) 0 0
\(47\) 21.4131i 0.455597i 0.973708 + 0.227799i \(0.0731528\pi\)
−0.973708 + 0.227799i \(0.926847\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) − 54.7072i − 1.07269i
\(52\) 0 0
\(53\) −30.4859 −0.575206 −0.287603 0.957750i \(-0.592858\pi\)
−0.287603 + 0.957750i \(0.592858\pi\)
\(54\) 0 0
\(55\) − 44.7438i − 0.813523i
\(56\) 0 0
\(57\) 0.194874 0.00341884
\(58\) 0 0
\(59\) 91.0394i 1.54304i 0.636205 + 0.771520i \(0.280503\pi\)
−0.636205 + 0.771520i \(0.719497\pi\)
\(60\) 0 0
\(61\) −66.0447 −1.08270 −0.541350 0.840797i \(-0.682087\pi\)
−0.541350 + 0.840797i \(0.682087\pi\)
\(62\) 0 0
\(63\) 7.93725i 0.125988i
\(64\) 0 0
\(65\) 24.4002 0.375387
\(66\) 0 0
\(67\) − 30.7105i − 0.458366i −0.973383 0.229183i \(-0.926395\pi\)
0.973383 0.229183i \(-0.0736055\pi\)
\(68\) 0 0
\(69\) 23.7151 0.343698
\(70\) 0 0
\(71\) 67.8742i 0.955975i 0.878367 + 0.477988i \(0.158634\pi\)
−0.878367 + 0.477988i \(0.841366\pi\)
\(72\) 0 0
\(73\) −0.812277 −0.0111271 −0.00556354 0.999985i \(-0.501771\pi\)
−0.00556354 + 0.999985i \(0.501771\pi\)
\(74\) 0 0
\(75\) 8.66025i 0.115470i
\(76\) 0 0
\(77\) −52.9415 −0.687552
\(78\) 0 0
\(79\) 70.9483i 0.898080i 0.893512 + 0.449040i \(0.148234\pi\)
−0.893512 + 0.449040i \(0.851766\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 67.1123i 0.808582i 0.914630 + 0.404291i \(0.132482\pi\)
−0.914630 + 0.404291i \(0.867518\pi\)
\(84\) 0 0
\(85\) −70.6267 −0.830902
\(86\) 0 0
\(87\) − 100.115i − 1.15074i
\(88\) 0 0
\(89\) −128.939 −1.44876 −0.724378 0.689403i \(-0.757873\pi\)
−0.724378 + 0.689403i \(0.757873\pi\)
\(90\) 0 0
\(91\) − 28.8707i − 0.317260i
\(92\) 0 0
\(93\) −103.012 −1.10766
\(94\) 0 0
\(95\) − 0.251581i − 0.00264823i
\(96\) 0 0
\(97\) 74.2913 0.765890 0.382945 0.923771i \(-0.374910\pi\)
0.382945 + 0.923771i \(0.374910\pi\)
\(98\) 0 0
\(99\) 60.0300i 0.606364i
\(100\) 0 0
\(101\) 99.3982 0.984140 0.492070 0.870556i \(-0.336240\pi\)
0.492070 + 0.870556i \(0.336240\pi\)
\(102\) 0 0
\(103\) − 110.380i − 1.07165i −0.844330 0.535824i \(-0.820001\pi\)
0.844330 0.535824i \(-0.179999\pi\)
\(104\) 0 0
\(105\) 10.2470 0.0975900
\(106\) 0 0
\(107\) − 118.521i − 1.10767i −0.832625 0.553837i \(-0.813163\pi\)
0.832625 0.553837i \(-0.186837\pi\)
\(108\) 0 0
\(109\) 97.8209 0.897440 0.448720 0.893673i \(-0.351880\pi\)
0.448720 + 0.893673i \(0.351880\pi\)
\(110\) 0 0
\(111\) − 87.2770i − 0.786279i
\(112\) 0 0
\(113\) −114.146 −1.01014 −0.505069 0.863079i \(-0.668533\pi\)
−0.505069 + 0.863079i \(0.668533\pi\)
\(114\) 0 0
\(115\) − 30.6161i − 0.266227i
\(116\) 0 0
\(117\) −32.7362 −0.279797
\(118\) 0 0
\(119\) 83.5666i 0.702240i
\(120\) 0 0
\(121\) −279.401 −2.30910
\(122\) 0 0
\(123\) 61.9106i 0.503338i
\(124\) 0 0
\(125\) 11.1803 0.0894427
\(126\) 0 0
\(127\) − 95.0784i − 0.748649i −0.927298 0.374324i \(-0.877875\pi\)
0.927298 0.374324i \(-0.122125\pi\)
\(128\) 0 0
\(129\) −104.197 −0.807731
\(130\) 0 0
\(131\) − 180.343i − 1.37667i −0.725395 0.688333i \(-0.758343\pi\)
0.725395 0.688333i \(-0.241657\pi\)
\(132\) 0 0
\(133\) −0.297675 −0.00223816
\(134\) 0 0
\(135\) − 11.6190i − 0.0860663i
\(136\) 0 0
\(137\) −120.582 −0.880160 −0.440080 0.897959i \(-0.645050\pi\)
−0.440080 + 0.897959i \(0.645050\pi\)
\(138\) 0 0
\(139\) 113.931i 0.819648i 0.912165 + 0.409824i \(0.134410\pi\)
−0.912165 + 0.409824i \(0.865590\pi\)
\(140\) 0 0
\(141\) −37.0885 −0.263039
\(142\) 0 0
\(143\) − 218.351i − 1.52693i
\(144\) 0 0
\(145\) −129.247 −0.891361
\(146\) 0 0
\(147\) − 12.1244i − 0.0824786i
\(148\) 0 0
\(149\) 266.069 1.78570 0.892848 0.450359i \(-0.148704\pi\)
0.892848 + 0.450359i \(0.148704\pi\)
\(150\) 0 0
\(151\) 164.754i 1.09109i 0.838083 + 0.545543i \(0.183677\pi\)
−0.838083 + 0.545543i \(0.816323\pi\)
\(152\) 0 0
\(153\) 94.7556 0.619318
\(154\) 0 0
\(155\) 132.988i 0.857990i
\(156\) 0 0
\(157\) −65.3640 −0.416331 −0.208166 0.978094i \(-0.566749\pi\)
−0.208166 + 0.978094i \(0.566749\pi\)
\(158\) 0 0
\(159\) − 52.8031i − 0.332095i
\(160\) 0 0
\(161\) −36.2255 −0.225003
\(162\) 0 0
\(163\) − 100.406i − 0.615988i −0.951388 0.307994i \(-0.900342\pi\)
0.951388 0.307994i \(-0.0996576\pi\)
\(164\) 0 0
\(165\) 77.4985 0.469688
\(166\) 0 0
\(167\) 185.759i 1.11233i 0.831071 + 0.556166i \(0.187728\pi\)
−0.831071 + 0.556166i \(0.812272\pi\)
\(168\) 0 0
\(169\) −49.9265 −0.295423
\(170\) 0 0
\(171\) 0.337532i 0.00197387i
\(172\) 0 0
\(173\) 244.698 1.41444 0.707219 0.706995i \(-0.249950\pi\)
0.707219 + 0.706995i \(0.249950\pi\)
\(174\) 0 0
\(175\) − 13.2288i − 0.0755929i
\(176\) 0 0
\(177\) −157.685 −0.890875
\(178\) 0 0
\(179\) − 258.423i − 1.44370i −0.692049 0.721851i \(-0.743292\pi\)
0.692049 0.721851i \(-0.256708\pi\)
\(180\) 0 0
\(181\) −174.426 −0.963680 −0.481840 0.876259i \(-0.660031\pi\)
−0.481840 + 0.876259i \(0.660031\pi\)
\(182\) 0 0
\(183\) − 114.393i − 0.625097i
\(184\) 0 0
\(185\) −112.674 −0.609049
\(186\) 0 0
\(187\) 632.020i 3.37979i
\(188\) 0 0
\(189\) −13.7477 −0.0727393
\(190\) 0 0
\(191\) − 214.311i − 1.12205i −0.827799 0.561025i \(-0.810407\pi\)
0.827799 0.561025i \(-0.189593\pi\)
\(192\) 0 0
\(193\) 11.8636 0.0614693 0.0307346 0.999528i \(-0.490215\pi\)
0.0307346 + 0.999528i \(0.490215\pi\)
\(194\) 0 0
\(195\) 42.2623i 0.216730i
\(196\) 0 0
\(197\) −158.345 −0.803780 −0.401890 0.915688i \(-0.631647\pi\)
−0.401890 + 0.915688i \(0.631647\pi\)
\(198\) 0 0
\(199\) − 26.9522i − 0.135438i −0.997704 0.0677192i \(-0.978428\pi\)
0.997704 0.0677192i \(-0.0215722\pi\)
\(200\) 0 0
\(201\) 53.1922 0.264638
\(202\) 0 0
\(203\) 152.928i 0.753338i
\(204\) 0 0
\(205\) 79.9262 0.389884
\(206\) 0 0
\(207\) 41.0758i 0.198434i
\(208\) 0 0
\(209\) −2.25134 −0.0107720
\(210\) 0 0
\(211\) 2.10546i 0.00997850i 0.999988 + 0.00498925i \(0.00158813\pi\)
−0.999988 + 0.00498925i \(0.998412\pi\)
\(212\) 0 0
\(213\) −117.562 −0.551933
\(214\) 0 0
\(215\) 134.518i 0.625666i
\(216\) 0 0
\(217\) 157.354 0.725134
\(218\) 0 0
\(219\) − 1.40691i − 0.00642423i
\(220\) 0 0
\(221\) −344.660 −1.55955
\(222\) 0 0
\(223\) − 209.024i − 0.937326i −0.883377 0.468663i \(-0.844736\pi\)
0.883377 0.468663i \(-0.155264\pi\)
\(224\) 0 0
\(225\) −15.0000 −0.0666667
\(226\) 0 0
\(227\) − 60.4048i − 0.266101i −0.991109 0.133050i \(-0.957523\pi\)
0.991109 0.133050i \(-0.0424772\pi\)
\(228\) 0 0
\(229\) −178.853 −0.781020 −0.390510 0.920599i \(-0.627701\pi\)
−0.390510 + 0.920599i \(0.627701\pi\)
\(230\) 0 0
\(231\) − 91.6974i − 0.396958i
\(232\) 0 0
\(233\) −276.663 −1.18739 −0.593697 0.804688i \(-0.702332\pi\)
−0.593697 + 0.804688i \(0.702332\pi\)
\(234\) 0 0
\(235\) 47.8811i 0.203749i
\(236\) 0 0
\(237\) −122.886 −0.518507
\(238\) 0 0
\(239\) − 450.512i − 1.88499i −0.334225 0.942493i \(-0.608475\pi\)
0.334225 0.942493i \(-0.391525\pi\)
\(240\) 0 0
\(241\) −203.628 −0.844931 −0.422465 0.906379i \(-0.638835\pi\)
−0.422465 + 0.906379i \(0.638835\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) −15.6525 −0.0638877
\(246\) 0 0
\(247\) − 1.22773i − 0.00497055i
\(248\) 0 0
\(249\) −116.242 −0.466835
\(250\) 0 0
\(251\) − 22.9426i − 0.0914047i −0.998955 0.0457023i \(-0.985447\pi\)
0.998955 0.0457023i \(-0.0145526\pi\)
\(252\) 0 0
\(253\) −273.976 −1.08291
\(254\) 0 0
\(255\) − 122.329i − 0.479721i
\(256\) 0 0
\(257\) −244.168 −0.950070 −0.475035 0.879967i \(-0.657565\pi\)
−0.475035 + 0.879967i \(0.657565\pi\)
\(258\) 0 0
\(259\) 133.318i 0.514741i
\(260\) 0 0
\(261\) 173.404 0.664381
\(262\) 0 0
\(263\) − 247.769i − 0.942087i −0.882110 0.471043i \(-0.843877\pi\)
0.882110 0.471043i \(-0.156123\pi\)
\(264\) 0 0
\(265\) −68.1686 −0.257240
\(266\) 0 0
\(267\) − 223.329i − 0.836440i
\(268\) 0 0
\(269\) 145.210 0.539813 0.269907 0.962886i \(-0.413007\pi\)
0.269907 + 0.962886i \(0.413007\pi\)
\(270\) 0 0
\(271\) 4.19355i 0.0154744i 0.999970 + 0.00773718i \(0.00246285\pi\)
−0.999970 + 0.00773718i \(0.997537\pi\)
\(272\) 0 0
\(273\) 50.0054 0.183170
\(274\) 0 0
\(275\) − 100.050i − 0.363818i
\(276\) 0 0
\(277\) −181.335 −0.654637 −0.327319 0.944914i \(-0.606145\pi\)
−0.327319 + 0.944914i \(0.606145\pi\)
\(278\) 0 0
\(279\) − 178.423i − 0.639508i
\(280\) 0 0
\(281\) −101.242 −0.360290 −0.180145 0.983640i \(-0.557657\pi\)
−0.180145 + 0.983640i \(0.557657\pi\)
\(282\) 0 0
\(283\) 84.8156i 0.299702i 0.988709 + 0.149851i \(0.0478793\pi\)
−0.988709 + 0.149851i \(0.952121\pi\)
\(284\) 0 0
\(285\) 0.435752 0.00152895
\(286\) 0 0
\(287\) − 94.5700i − 0.329512i
\(288\) 0 0
\(289\) 708.625 2.45199
\(290\) 0 0
\(291\) 128.676i 0.442187i
\(292\) 0 0
\(293\) −365.052 −1.24591 −0.622955 0.782258i \(-0.714068\pi\)
−0.622955 + 0.782258i \(0.714068\pi\)
\(294\) 0 0
\(295\) 203.570i 0.690068i
\(296\) 0 0
\(297\) −103.975 −0.350084
\(298\) 0 0
\(299\) − 149.408i − 0.499691i
\(300\) 0 0
\(301\) 159.164 0.528784
\(302\) 0 0
\(303\) 172.163i 0.568194i
\(304\) 0 0
\(305\) −147.680 −0.484198
\(306\) 0 0
\(307\) 161.988i 0.527649i 0.964571 + 0.263825i \(0.0849840\pi\)
−0.964571 + 0.263825i \(0.915016\pi\)
\(308\) 0 0
\(309\) 191.183 0.618716
\(310\) 0 0
\(311\) 142.246i 0.457384i 0.973499 + 0.228692i \(0.0734448\pi\)
−0.973499 + 0.228692i \(0.926555\pi\)
\(312\) 0 0
\(313\) 500.375 1.59864 0.799321 0.600905i \(-0.205193\pi\)
0.799321 + 0.600905i \(0.205193\pi\)
\(314\) 0 0
\(315\) 17.7482i 0.0563436i
\(316\) 0 0
\(317\) 178.879 0.564286 0.282143 0.959372i \(-0.408955\pi\)
0.282143 + 0.959372i \(0.408955\pi\)
\(318\) 0 0
\(319\) 1156.60i 3.62571i
\(320\) 0 0
\(321\) 205.285 0.639516
\(322\) 0 0
\(323\) 3.55367i 0.0110021i
\(324\) 0 0
\(325\) 54.5604 0.167878
\(326\) 0 0
\(327\) 169.431i 0.518137i
\(328\) 0 0
\(329\) 56.6537 0.172200
\(330\) 0 0
\(331\) 0.490839i 0.00148290i 1.00000 0.000741449i \(0.000236010\pi\)
−1.00000 0.000741449i \(0.999764\pi\)
\(332\) 0 0
\(333\) 151.168 0.453959
\(334\) 0 0
\(335\) − 68.6709i − 0.204988i
\(336\) 0 0
\(337\) −447.909 −1.32911 −0.664553 0.747241i \(-0.731378\pi\)
−0.664553 + 0.747241i \(0.731378\pi\)
\(338\) 0 0
\(339\) − 197.706i − 0.583204i
\(340\) 0 0
\(341\) 1190.08 3.48997
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) 0 0
\(345\) 53.0286 0.153706
\(346\) 0 0
\(347\) − 397.388i − 1.14521i −0.819831 0.572606i \(-0.805933\pi\)
0.819831 0.572606i \(-0.194067\pi\)
\(348\) 0 0
\(349\) 649.279 1.86040 0.930200 0.367054i \(-0.119634\pi\)
0.930200 + 0.367054i \(0.119634\pi\)
\(350\) 0 0
\(351\) − 56.7008i − 0.161541i
\(352\) 0 0
\(353\) 9.28745 0.0263101 0.0131550 0.999913i \(-0.495813\pi\)
0.0131550 + 0.999913i \(0.495813\pi\)
\(354\) 0 0
\(355\) 151.771i 0.427525i
\(356\) 0 0
\(357\) −144.742 −0.405439
\(358\) 0 0
\(359\) 317.216i 0.883609i 0.897111 + 0.441805i \(0.145662\pi\)
−0.897111 + 0.441805i \(0.854338\pi\)
\(360\) 0 0
\(361\) 360.987 0.999965
\(362\) 0 0
\(363\) − 483.936i − 1.33316i
\(364\) 0 0
\(365\) −1.81631 −0.00497618
\(366\) 0 0
\(367\) − 446.161i − 1.21570i −0.794053 0.607849i \(-0.792033\pi\)
0.794053 0.607849i \(-0.207967\pi\)
\(368\) 0 0
\(369\) −107.232 −0.290602
\(370\) 0 0
\(371\) 80.6581i 0.217407i
\(372\) 0 0
\(373\) 114.126 0.305969 0.152985 0.988229i \(-0.451112\pi\)
0.152985 + 0.988229i \(0.451112\pi\)
\(374\) 0 0
\(375\) 19.3649i 0.0516398i
\(376\) 0 0
\(377\) −630.731 −1.67303
\(378\) 0 0
\(379\) 228.631i 0.603249i 0.953427 + 0.301624i \(0.0975289\pi\)
−0.953427 + 0.301624i \(0.902471\pi\)
\(380\) 0 0
\(381\) 164.681 0.432233
\(382\) 0 0
\(383\) − 373.966i − 0.976414i −0.872728 0.488207i \(-0.837651\pi\)
0.872728 0.488207i \(-0.162349\pi\)
\(384\) 0 0
\(385\) −118.381 −0.307483
\(386\) 0 0
\(387\) − 180.475i − 0.466344i
\(388\) 0 0
\(389\) −506.048 −1.30090 −0.650448 0.759551i \(-0.725419\pi\)
−0.650448 + 0.759551i \(0.725419\pi\)
\(390\) 0 0
\(391\) 432.463i 1.10604i
\(392\) 0 0
\(393\) 312.364 0.794818
\(394\) 0 0
\(395\) 158.645i 0.401634i
\(396\) 0 0
\(397\) 314.380 0.791888 0.395944 0.918275i \(-0.370417\pi\)
0.395944 + 0.918275i \(0.370417\pi\)
\(398\) 0 0
\(399\) − 0.515588i − 0.00129220i
\(400\) 0 0
\(401\) −67.3041 −0.167841 −0.0839203 0.996472i \(-0.526744\pi\)
−0.0839203 + 0.996472i \(0.526744\pi\)
\(402\) 0 0
\(403\) 648.988i 1.61039i
\(404\) 0 0
\(405\) 20.1246 0.0496904
\(406\) 0 0
\(407\) 1008.29i 2.47738i
\(408\) 0 0
\(409\) −703.321 −1.71961 −0.859805 0.510622i \(-0.829415\pi\)
−0.859805 + 0.510622i \(0.829415\pi\)
\(410\) 0 0
\(411\) − 208.854i − 0.508161i
\(412\) 0 0
\(413\) 240.868 0.583214
\(414\) 0 0
\(415\) 150.068i 0.361609i
\(416\) 0 0
\(417\) −197.334 −0.473224
\(418\) 0 0
\(419\) 396.598i 0.946535i 0.880919 + 0.473267i \(0.156926\pi\)
−0.880919 + 0.473267i \(0.843074\pi\)
\(420\) 0 0
\(421\) 512.979 1.21848 0.609239 0.792987i \(-0.291475\pi\)
0.609239 + 0.792987i \(0.291475\pi\)
\(422\) 0 0
\(423\) − 64.2392i − 0.151866i
\(424\) 0 0
\(425\) −157.926 −0.371591
\(426\) 0 0
\(427\) 174.738i 0.409222i
\(428\) 0 0
\(429\) 378.195 0.881573
\(430\) 0 0
\(431\) 492.946i 1.14373i 0.820349 + 0.571863i \(0.193779\pi\)
−0.820349 + 0.571863i \(0.806221\pi\)
\(432\) 0 0
\(433\) −664.110 −1.53374 −0.766871 0.641801i \(-0.778187\pi\)
−0.766871 + 0.641801i \(0.778187\pi\)
\(434\) 0 0
\(435\) − 223.863i − 0.514628i
\(436\) 0 0
\(437\) −1.54049 −0.00352515
\(438\) 0 0
\(439\) − 775.746i − 1.76707i −0.468361 0.883537i \(-0.655155\pi\)
0.468361 0.883537i \(-0.344845\pi\)
\(440\) 0 0
\(441\) 21.0000 0.0476190
\(442\) 0 0
\(443\) − 110.881i − 0.250295i −0.992138 0.125148i \(-0.960060\pi\)
0.992138 0.125148i \(-0.0399405\pi\)
\(444\) 0 0
\(445\) −288.317 −0.647903
\(446\) 0 0
\(447\) 460.844i 1.03097i
\(448\) 0 0
\(449\) 786.476 1.75162 0.875808 0.482659i \(-0.160329\pi\)
0.875808 + 0.482659i \(0.160329\pi\)
\(450\) 0 0
\(451\) − 715.240i − 1.58590i
\(452\) 0 0
\(453\) −285.362 −0.629939
\(454\) 0 0
\(455\) − 64.5567i − 0.141883i
\(456\) 0 0
\(457\) −539.266 −1.18001 −0.590007 0.807398i \(-0.700875\pi\)
−0.590007 + 0.807398i \(0.700875\pi\)
\(458\) 0 0
\(459\) 164.122i 0.357563i
\(460\) 0 0
\(461\) 162.303 0.352067 0.176033 0.984384i \(-0.443673\pi\)
0.176033 + 0.984384i \(0.443673\pi\)
\(462\) 0 0
\(463\) 813.003i 1.75595i 0.478710 + 0.877973i \(0.341104\pi\)
−0.478710 + 0.877973i \(0.658896\pi\)
\(464\) 0 0
\(465\) −230.343 −0.495361
\(466\) 0 0
\(467\) − 922.032i − 1.97437i −0.159569 0.987187i \(-0.551010\pi\)
0.159569 0.987187i \(-0.448990\pi\)
\(468\) 0 0
\(469\) −81.2525 −0.173246
\(470\) 0 0
\(471\) − 113.214i − 0.240369i
\(472\) 0 0
\(473\) 1203.77 2.54497
\(474\) 0 0
\(475\) − 0.562553i − 0.00118432i
\(476\) 0 0
\(477\) 91.4577 0.191735
\(478\) 0 0
\(479\) − 232.951i − 0.486328i −0.969985 0.243164i \(-0.921815\pi\)
0.969985 0.243164i \(-0.0781854\pi\)
\(480\) 0 0
\(481\) −549.853 −1.14315
\(482\) 0 0
\(483\) − 62.7443i − 0.129905i
\(484\) 0 0
\(485\) 166.120 0.342516
\(486\) 0 0
\(487\) − 313.380i − 0.643491i −0.946826 0.321745i \(-0.895731\pi\)
0.946826 0.321745i \(-0.104269\pi\)
\(488\) 0 0
\(489\) 173.908 0.355641
\(490\) 0 0
\(491\) 237.064i 0.482819i 0.970423 + 0.241410i \(0.0776098\pi\)
−0.970423 + 0.241410i \(0.922390\pi\)
\(492\) 0 0
\(493\) 1825.66 3.70317
\(494\) 0 0
\(495\) 134.231i 0.271174i
\(496\) 0 0
\(497\) 179.578 0.361325
\(498\) 0 0
\(499\) − 393.596i − 0.788770i −0.918945 0.394385i \(-0.870958\pi\)
0.918945 0.394385i \(-0.129042\pi\)
\(500\) 0 0
\(501\) −321.745 −0.642205
\(502\) 0 0
\(503\) − 571.089i − 1.13537i −0.823248 0.567683i \(-0.807840\pi\)
0.823248 0.567683i \(-0.192160\pi\)
\(504\) 0 0
\(505\) 222.261 0.440121
\(506\) 0 0
\(507\) − 86.4752i − 0.170563i
\(508\) 0 0
\(509\) 269.146 0.528774 0.264387 0.964417i \(-0.414830\pi\)
0.264387 + 0.964417i \(0.414830\pi\)
\(510\) 0 0
\(511\) 2.14908i 0.00420564i
\(512\) 0 0
\(513\) −0.584622 −0.00113961
\(514\) 0 0
\(515\) − 246.816i − 0.479255i
\(516\) 0 0
\(517\) 428.476 0.828774
\(518\) 0 0
\(519\) 423.829i 0.816626i
\(520\) 0 0
\(521\) −212.098 −0.407098 −0.203549 0.979065i \(-0.565248\pi\)
−0.203549 + 0.979065i \(0.565248\pi\)
\(522\) 0 0
\(523\) 441.249i 0.843688i 0.906668 + 0.421844i \(0.138617\pi\)
−0.906668 + 0.421844i \(0.861383\pi\)
\(524\) 0 0
\(525\) 22.9129 0.0436436
\(526\) 0 0
\(527\) − 1878.51i − 3.56453i
\(528\) 0 0
\(529\) 341.531 0.645616
\(530\) 0 0
\(531\) − 273.118i − 0.514347i
\(532\) 0 0
\(533\) 390.042 0.731787
\(534\) 0 0
\(535\) − 265.021i − 0.495367i
\(536\) 0 0
\(537\) 447.601 0.833522
\(538\) 0 0
\(539\) 140.070i 0.259870i
\(540\) 0 0
\(541\) −197.182 −0.364478 −0.182239 0.983254i \(-0.558334\pi\)
−0.182239 + 0.983254i \(0.558334\pi\)
\(542\) 0 0
\(543\) − 302.115i − 0.556381i
\(544\) 0 0
\(545\) 218.734 0.401347
\(546\) 0 0
\(547\) 1026.06i 1.87580i 0.346908 + 0.937899i \(0.387232\pi\)
−0.346908 + 0.937899i \(0.612768\pi\)
\(548\) 0 0
\(549\) 198.134 0.360900
\(550\) 0 0
\(551\) 6.50325i 0.0118026i
\(552\) 0 0
\(553\) 187.712 0.339442
\(554\) 0 0
\(555\) − 195.157i − 0.351635i
\(556\) 0 0
\(557\) 314.481 0.564598 0.282299 0.959326i \(-0.408903\pi\)
0.282299 + 0.959326i \(0.408903\pi\)
\(558\) 0 0
\(559\) 656.453i 1.17433i
\(560\) 0 0
\(561\) −1094.69 −1.95132
\(562\) 0 0
\(563\) − 552.861i − 0.981991i −0.871162 0.490996i \(-0.836633\pi\)
0.871162 0.490996i \(-0.163367\pi\)
\(564\) 0 0
\(565\) −255.237 −0.451748
\(566\) 0 0
\(567\) − 23.8118i − 0.0419961i
\(568\) 0 0
\(569\) 948.437 1.66685 0.833425 0.552633i \(-0.186377\pi\)
0.833425 + 0.552633i \(0.186377\pi\)
\(570\) 0 0
\(571\) 404.335i 0.708118i 0.935223 + 0.354059i \(0.115199\pi\)
−0.935223 + 0.354059i \(0.884801\pi\)
\(572\) 0 0
\(573\) 371.198 0.647816
\(574\) 0 0
\(575\) − 68.4597i − 0.119060i
\(576\) 0 0
\(577\) −859.682 −1.48992 −0.744959 0.667111i \(-0.767531\pi\)
−0.744959 + 0.667111i \(0.767531\pi\)
\(578\) 0 0
\(579\) 20.5483i 0.0354893i
\(580\) 0 0
\(581\) 177.562 0.305615
\(582\) 0 0
\(583\) 610.024i 1.04635i
\(584\) 0 0
\(585\) −73.2005 −0.125129
\(586\) 0 0
\(587\) − 142.567i − 0.242874i −0.992599 0.121437i \(-0.961250\pi\)
0.992599 0.121437i \(-0.0387502\pi\)
\(588\) 0 0
\(589\) 6.69148 0.0113608
\(590\) 0 0
\(591\) − 274.261i − 0.464062i
\(592\) 0 0
\(593\) −453.633 −0.764980 −0.382490 0.923960i \(-0.624933\pi\)
−0.382490 + 0.923960i \(0.624933\pi\)
\(594\) 0 0
\(595\) 186.861i 0.314051i
\(596\) 0 0
\(597\) 46.6826 0.0781954
\(598\) 0 0
\(599\) − 37.1329i − 0.0619915i −0.999520 0.0309957i \(-0.990132\pi\)
0.999520 0.0309957i \(-0.00986783\pi\)
\(600\) 0 0
\(601\) 182.536 0.303721 0.151861 0.988402i \(-0.451474\pi\)
0.151861 + 0.988402i \(0.451474\pi\)
\(602\) 0 0
\(603\) 92.1316i 0.152789i
\(604\) 0 0
\(605\) −624.759 −1.03266
\(606\) 0 0
\(607\) − 374.869i − 0.617576i −0.951131 0.308788i \(-0.900077\pi\)
0.951131 0.308788i \(-0.0999234\pi\)
\(608\) 0 0
\(609\) −264.878 −0.434940
\(610\) 0 0
\(611\) 233.661i 0.382424i
\(612\) 0 0
\(613\) 419.852 0.684913 0.342456 0.939534i \(-0.388741\pi\)
0.342456 + 0.939534i \(0.388741\pi\)
\(614\) 0 0
\(615\) 138.436i 0.225100i
\(616\) 0 0
\(617\) −212.859 −0.344990 −0.172495 0.985010i \(-0.555183\pi\)
−0.172495 + 0.985010i \(0.555183\pi\)
\(618\) 0 0
\(619\) 307.647i 0.497007i 0.968631 + 0.248504i \(0.0799388\pi\)
−0.968631 + 0.248504i \(0.920061\pi\)
\(620\) 0 0
\(621\) −71.1454 −0.114566
\(622\) 0 0
\(623\) 341.141i 0.547578i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) − 3.89943i − 0.00621919i
\(628\) 0 0
\(629\) 1591.56 2.53030
\(630\) 0 0
\(631\) − 194.008i − 0.307461i −0.988113 0.153731i \(-0.950871\pi\)
0.988113 0.153731i \(-0.0491288\pi\)
\(632\) 0 0
\(633\) −3.64677 −0.00576109
\(634\) 0 0
\(635\) − 212.602i − 0.334806i
\(636\) 0 0
\(637\) −76.3846 −0.119913
\(638\) 0 0
\(639\) − 203.623i − 0.318658i
\(640\) 0 0
\(641\) 420.553 0.656089 0.328045 0.944662i \(-0.393610\pi\)
0.328045 + 0.944662i \(0.393610\pi\)
\(642\) 0 0
\(643\) 544.105i 0.846197i 0.906084 + 0.423099i \(0.139058\pi\)
−0.906084 + 0.423099i \(0.860942\pi\)
\(644\) 0 0
\(645\) −232.992 −0.361228
\(646\) 0 0
\(647\) − 109.115i − 0.168648i −0.996438 0.0843239i \(-0.973127\pi\)
0.996438 0.0843239i \(-0.0268730\pi\)
\(648\) 0 0
\(649\) 1821.70 2.80693
\(650\) 0 0
\(651\) 272.545i 0.418656i
\(652\) 0 0
\(653\) −84.5159 −0.129427 −0.0647135 0.997904i \(-0.520613\pi\)
−0.0647135 + 0.997904i \(0.520613\pi\)
\(654\) 0 0
\(655\) − 403.260i − 0.615664i
\(656\) 0 0
\(657\) 2.43683 0.00370903
\(658\) 0 0
\(659\) − 68.3917i − 0.103781i −0.998653 0.0518905i \(-0.983475\pi\)
0.998653 0.0518905i \(-0.0165247\pi\)
\(660\) 0 0
\(661\) 925.213 1.39972 0.699858 0.714282i \(-0.253247\pi\)
0.699858 + 0.714282i \(0.253247\pi\)
\(662\) 0 0
\(663\) − 596.969i − 0.900406i
\(664\) 0 0
\(665\) −0.665622 −0.00100094
\(666\) 0 0
\(667\) 791.410i 1.18652i
\(668\) 0 0
\(669\) 362.040 0.541166
\(670\) 0 0
\(671\) 1321.56i 1.96953i
\(672\) 0 0
\(673\) −1135.50 −1.68723 −0.843614 0.536951i \(-0.819576\pi\)
−0.843614 + 0.536951i \(0.819576\pi\)
\(674\) 0 0
\(675\) − 25.9808i − 0.0384900i
\(676\) 0 0
\(677\) −750.183 −1.10810 −0.554050 0.832484i \(-0.686918\pi\)
−0.554050 + 0.832484i \(0.686918\pi\)
\(678\) 0 0
\(679\) − 196.556i − 0.289479i
\(680\) 0 0
\(681\) 104.624 0.153633
\(682\) 0 0
\(683\) 541.257i 0.792471i 0.918149 + 0.396235i \(0.129684\pi\)
−0.918149 + 0.396235i \(0.870316\pi\)
\(684\) 0 0
\(685\) −269.629 −0.393619
\(686\) 0 0
\(687\) − 309.783i − 0.450922i
\(688\) 0 0
\(689\) −332.665 −0.482823
\(690\) 0 0
\(691\) 300.995i 0.435594i 0.975994 + 0.217797i \(0.0698871\pi\)
−0.975994 + 0.217797i \(0.930113\pi\)
\(692\) 0 0
\(693\) 158.825 0.229184
\(694\) 0 0
\(695\) 254.758i 0.366558i
\(696\) 0 0
\(697\) −1128.98 −1.61978
\(698\) 0 0
\(699\) − 479.194i − 0.685543i
\(700\) 0 0
\(701\) −672.761 −0.959716 −0.479858 0.877346i \(-0.659312\pi\)
−0.479858 + 0.877346i \(0.659312\pi\)
\(702\) 0 0
\(703\) 5.66934i 0.00806450i
\(704\) 0 0
\(705\) −82.9325 −0.117635
\(706\) 0 0
\(707\) − 262.983i − 0.371970i
\(708\) 0 0
\(709\) −65.4502 −0.0923135 −0.0461567 0.998934i \(-0.514697\pi\)
−0.0461567 + 0.998934i \(0.514697\pi\)
\(710\) 0 0
\(711\) − 212.845i − 0.299360i
\(712\) 0 0
\(713\) 814.317 1.14210
\(714\) 0 0
\(715\) − 488.247i − 0.682864i
\(716\) 0 0
\(717\) 780.309 1.08830
\(718\) 0 0
\(719\) 854.235i 1.18809i 0.804433 + 0.594044i \(0.202469\pi\)
−0.804433 + 0.594044i \(0.797531\pi\)
\(720\) 0 0
\(721\) −292.037 −0.405045
\(722\) 0 0
\(723\) − 352.695i − 0.487821i
\(724\) 0 0
\(725\) −289.006 −0.398629
\(726\) 0 0
\(727\) − 117.161i − 0.161157i −0.996748 0.0805786i \(-0.974323\pi\)
0.996748 0.0805786i \(-0.0256768\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) − 1900.11i − 2.59933i
\(732\) 0 0
\(733\) −71.3372 −0.0973222 −0.0486611 0.998815i \(-0.515495\pi\)
−0.0486611 + 0.998815i \(0.515495\pi\)
\(734\) 0 0
\(735\) − 27.1109i − 0.0368856i
\(736\) 0 0
\(737\) −614.518 −0.833811
\(738\) 0 0
\(739\) − 528.835i − 0.715609i −0.933796 0.357805i \(-0.883525\pi\)
0.933796 0.357805i \(-0.116475\pi\)
\(740\) 0 0
\(741\) 2.12648 0.00286975
\(742\) 0 0
\(743\) 762.107i 1.02572i 0.858473 + 0.512858i \(0.171413\pi\)
−0.858473 + 0.512858i \(0.828587\pi\)
\(744\) 0 0
\(745\) 594.947 0.798587
\(746\) 0 0
\(747\) − 201.337i − 0.269527i
\(748\) 0 0
\(749\) −313.577 −0.418661
\(750\) 0 0
\(751\) − 632.536i − 0.842258i −0.907001 0.421129i \(-0.861634\pi\)
0.907001 0.421129i \(-0.138366\pi\)
\(752\) 0 0
\(753\) 39.7377 0.0527725
\(754\) 0 0
\(755\) 368.401i 0.487948i
\(756\) 0 0
\(757\) −1084.95 −1.43322 −0.716610 0.697474i \(-0.754307\pi\)
−0.716610 + 0.697474i \(0.754307\pi\)
\(758\) 0 0
\(759\) − 474.540i − 0.625218i
\(760\) 0 0
\(761\) −316.765 −0.416248 −0.208124 0.978102i \(-0.566736\pi\)
−0.208124 + 0.978102i \(0.566736\pi\)
\(762\) 0 0
\(763\) − 258.810i − 0.339200i
\(764\) 0 0
\(765\) 211.880 0.276967
\(766\) 0 0
\(767\) 993.429i 1.29521i
\(768\) 0 0
\(769\) 517.571 0.673044 0.336522 0.941676i \(-0.390749\pi\)
0.336522 + 0.941676i \(0.390749\pi\)
\(770\) 0 0
\(771\) − 422.911i − 0.548523i
\(772\) 0 0
\(773\) −243.065 −0.314444 −0.157222 0.987563i \(-0.550254\pi\)
−0.157222 + 0.987563i \(0.550254\pi\)
\(774\) 0 0
\(775\) 297.371i 0.383705i
\(776\) 0 0
\(777\) −230.913 −0.297186
\(778\) 0 0
\(779\) − 4.02159i − 0.00516250i
\(780\) 0 0
\(781\) 1358.16 1.73901
\(782\) 0 0
\(783\) 300.344i 0.383581i
\(784\) 0 0
\(785\) −146.158 −0.186189
\(786\) 0 0
\(787\) 138.994i 0.176612i 0.996093 + 0.0883061i \(0.0281454\pi\)
−0.996093 + 0.0883061i \(0.971855\pi\)
\(788\) 0 0
\(789\) 429.148 0.543914
\(790\) 0 0
\(791\) 302.001i 0.381797i
\(792\) 0 0
\(793\) −720.685 −0.908808
\(794\) 0 0
\(795\) − 118.071i − 0.148518i
\(796\) 0 0
\(797\) −100.299 −0.125845 −0.0629227 0.998018i \(-0.520042\pi\)
−0.0629227 + 0.998018i \(0.520042\pi\)
\(798\) 0 0
\(799\) − 676.336i − 0.846479i
\(800\) 0 0
\(801\) 386.818 0.482919
\(802\) 0 0
\(803\) 16.2537i 0.0202412i
\(804\) 0 0
\(805\) −81.0026 −0.100624
\(806\) 0 0
\(807\) 251.511i 0.311661i
\(808\) 0 0
\(809\) −132.563 −0.163860 −0.0819302 0.996638i \(-0.526108\pi\)
−0.0819302 + 0.996638i \(0.526108\pi\)
\(810\) 0 0
\(811\) 122.569i 0.151134i 0.997141 + 0.0755668i \(0.0240766\pi\)
−0.997141 + 0.0755668i \(0.975923\pi\)
\(812\) 0 0
\(813\) −7.26345 −0.00893413
\(814\) 0 0
\(815\) − 224.515i − 0.275478i
\(816\) 0 0
\(817\) 6.76845 0.00828452
\(818\) 0 0
\(819\) 86.6120i 0.105753i
\(820\) 0 0
\(821\) 479.566 0.584125 0.292062 0.956399i \(-0.405659\pi\)
0.292062 + 0.956399i \(0.405659\pi\)
\(822\) 0 0
\(823\) − 934.971i − 1.13605i −0.823011 0.568026i \(-0.807707\pi\)
0.823011 0.568026i \(-0.192293\pi\)
\(824\) 0 0
\(825\) 173.292 0.210051
\(826\) 0 0
\(827\) − 268.789i − 0.325017i −0.986707 0.162508i \(-0.948042\pi\)
0.986707 0.162508i \(-0.0519585\pi\)
\(828\) 0 0
\(829\) 432.432 0.521631 0.260816 0.965389i \(-0.416009\pi\)
0.260816 + 0.965389i \(0.416009\pi\)
\(830\) 0 0
\(831\) − 314.081i − 0.377955i
\(832\) 0 0
\(833\) 221.096 0.265422
\(834\) 0 0
\(835\) 415.370i 0.497450i
\(836\) 0 0
\(837\) 309.037 0.369220
\(838\) 0 0
\(839\) − 1147.96i − 1.36825i −0.729365 0.684124i \(-0.760185\pi\)
0.729365 0.684124i \(-0.239815\pi\)
\(840\) 0 0
\(841\) 2499.98 2.97262
\(842\) 0 0
\(843\) − 175.356i − 0.208014i
\(844\) 0 0
\(845\) −111.639 −0.132117
\(846\) 0 0
\(847\) 739.225i 0.872757i
\(848\) 0 0
\(849\) −146.905 −0.173033
\(850\) 0 0
\(851\) 689.928i 0.810727i
\(852\) 0 0
\(853\) 800.937 0.938965 0.469482 0.882942i \(-0.344441\pi\)
0.469482 + 0.882942i \(0.344441\pi\)
\(854\) 0 0
\(855\) 0.754744i 0 0.000882742i
\(856\) 0 0
\(857\) −865.820 −1.01029 −0.505146 0.863034i \(-0.668561\pi\)
−0.505146 + 0.863034i \(0.668561\pi\)
\(858\) 0 0
\(859\) − 72.4322i − 0.0843216i −0.999111 0.0421608i \(-0.986576\pi\)
0.999111 0.0421608i \(-0.0134242\pi\)
\(860\) 0 0
\(861\) 163.800 0.190244
\(862\) 0 0
\(863\) 356.880i 0.413534i 0.978390 + 0.206767i \(0.0662943\pi\)
−0.978390 + 0.206767i \(0.933706\pi\)
\(864\) 0 0
\(865\) 547.161 0.632556
\(866\) 0 0
\(867\) 1227.37i 1.41566i
\(868\) 0 0
\(869\) 1419.68 1.63369
\(870\) 0 0
\(871\) − 335.116i − 0.384748i
\(872\) 0 0
\(873\) −222.874 −0.255297
\(874\) 0 0
\(875\) − 29.5804i − 0.0338062i
\(876\) 0 0
\(877\) −1268.05 −1.44590 −0.722950 0.690901i \(-0.757214\pi\)
−0.722950 + 0.690901i \(0.757214\pi\)
\(878\) 0 0
\(879\) − 632.288i − 0.719326i
\(880\) 0 0
\(881\) −715.271 −0.811885 −0.405943 0.913899i \(-0.633057\pi\)
−0.405943 + 0.913899i \(0.633057\pi\)
\(882\) 0 0
\(883\) − 62.0769i − 0.0703023i −0.999382 0.0351512i \(-0.988809\pi\)
0.999382 0.0351512i \(-0.0111913\pi\)
\(884\) 0 0
\(885\) −352.594 −0.398411
\(886\) 0 0
\(887\) − 1253.32i − 1.41299i −0.707720 0.706493i \(-0.750276\pi\)
0.707720 0.706493i \(-0.249724\pi\)
\(888\) 0 0
\(889\) −251.554 −0.282963
\(890\) 0 0
\(891\) − 180.090i − 0.202121i
\(892\) 0 0
\(893\) 2.40920 0.00269787
\(894\) 0 0
\(895\) − 577.851i − 0.645643i
\(896\) 0 0
\(897\) 258.781 0.288497
\(898\) 0 0
\(899\) − 3437.68i − 3.82389i
\(900\) 0 0
\(901\) 962.904 1.06871
\(902\) 0 0
\(903\) 275.680i 0.305294i
\(904\) 0 0
\(905\) −390.028 −0.430971
\(906\) 0 0
\(907\) 1013.00i 1.11687i 0.829547 + 0.558437i \(0.188599\pi\)
−0.829547 + 0.558437i \(0.811401\pi\)
\(908\) 0 0
\(909\) −298.195 −0.328047
\(910\) 0 0
\(911\) − 55.4511i − 0.0608683i −0.999537 0.0304342i \(-0.990311\pi\)
0.999537 0.0304342i \(-0.00968899\pi\)
\(912\) 0 0
\(913\) 1342.92 1.47089
\(914\) 0 0
\(915\) − 255.790i − 0.279552i
\(916\) 0 0
\(917\) −477.143 −0.520331
\(918\) 0 0
\(919\) − 564.739i − 0.614515i −0.951626 0.307258i \(-0.900589\pi\)
0.951626 0.307258i \(-0.0994113\pi\)
\(920\) 0 0
\(921\) −280.572 −0.304638
\(922\) 0 0
\(923\) 740.649i 0.802437i
\(924\) 0 0
\(925\) −251.947 −0.272375
\(926\) 0 0
\(927\) 331.139i 0.357216i
\(928\) 0 0
\(929\) −1558.36 −1.67746 −0.838729 0.544549i \(-0.816701\pi\)
−0.838729 + 0.544549i \(0.816701\pi\)
\(930\) 0 0
\(931\) 0.787574i 0 0.000845945i
\(932\) 0 0
\(933\) −246.378 −0.264071
\(934\) 0 0
\(935\) 1413.24i 1.51149i
\(936\) 0 0
\(937\) −1296.05 −1.38319 −0.691597 0.722283i \(-0.743093\pi\)
−0.691597 + 0.722283i \(0.743093\pi\)
\(938\) 0 0
\(939\) 866.674i 0.922976i
\(940\) 0 0
\(941\) −1124.14 −1.19462 −0.597311 0.802010i \(-0.703764\pi\)
−0.597311 + 0.802010i \(0.703764\pi\)
\(942\) 0 0
\(943\) − 489.406i − 0.518988i
\(944\) 0 0
\(945\) −30.7409 −0.0325300
\(946\) 0 0
\(947\) 1400.34i 1.47871i 0.673318 + 0.739353i \(0.264869\pi\)
−0.673318 + 0.739353i \(0.735131\pi\)
\(948\) 0 0
\(949\) −8.86364 −0.00933997
\(950\) 0 0
\(951\) 309.827i 0.325791i
\(952\) 0 0
\(953\) −352.414 −0.369794 −0.184897 0.982758i \(-0.559195\pi\)
−0.184897 + 0.982758i \(0.559195\pi\)
\(954\) 0 0
\(955\) − 479.215i − 0.501796i
\(956\) 0 0
\(957\) −2003.29 −2.09331
\(958\) 0 0
\(959\) 319.030i 0.332669i
\(960\) 0 0
\(961\) −2576.18 −2.68073
\(962\) 0 0
\(963\) 355.563i 0.369225i
\(964\) 0 0
\(965\) 26.5278 0.0274899
\(966\) 0 0
\(967\) 1867.80i 1.93154i 0.259402 + 0.965769i \(0.416474\pi\)
−0.259402 + 0.965769i \(0.583526\pi\)
\(968\) 0 0
\(969\) −6.15514 −0.00635205
\(970\) 0 0
\(971\) 1801.04i 1.85483i 0.374030 + 0.927417i \(0.377976\pi\)
−0.374030 + 0.927417i \(0.622024\pi\)
\(972\) 0 0
\(973\) 301.433 0.309798
\(974\) 0 0
\(975\) 94.5014i 0.0969245i
\(976\) 0 0
\(977\) −633.312 −0.648221 −0.324110 0.946019i \(-0.605065\pi\)
−0.324110 + 0.946019i \(0.605065\pi\)
\(978\) 0 0
\(979\) 2580.08i 2.63542i
\(980\) 0 0
\(981\) −293.463 −0.299147
\(982\) 0 0
\(983\) − 696.054i − 0.708092i −0.935228 0.354046i \(-0.884806\pi\)
0.935228 0.354046i \(-0.115194\pi\)
\(984\) 0 0
\(985\) −354.069 −0.359461
\(986\) 0 0
\(987\) 98.1271i 0.0994195i
\(988\) 0 0
\(989\) 823.684 0.832845
\(990\) 0 0
\(991\) 470.828i 0.475104i 0.971375 + 0.237552i \(0.0763450\pi\)
−0.971375 + 0.237552i \(0.923655\pi\)
\(992\) 0 0
\(993\) −0.850158 −0.000856151 0
\(994\) 0 0
\(995\) − 60.2670i − 0.0605699i
\(996\) 0 0
\(997\) −1148.19 −1.15164 −0.575822 0.817575i \(-0.695318\pi\)
−0.575822 + 0.817575i \(0.695318\pi\)
\(998\) 0 0
\(999\) 261.831i 0.262093i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.3.n.c.1471.13 yes 16
4.3 odd 2 inner 1680.3.n.c.1471.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.3.n.c.1471.8 16 4.3 odd 2 inner
1680.3.n.c.1471.13 yes 16 1.1 even 1 trivial