Properties

Label 1680.3.bd.b
Level $1680$
Weight $3$
Character orbit 1680.bd
Analytic conductor $45.777$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,3,Mod(769,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.769"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1680.bd (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,48,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.7766844125\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 88 x^{14} + 3876 x^{12} + 102922 x^{10} + 1866070 x^{8} + 23190492 x^{6} + 203608845 x^{4} + \cdots + 3839661225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{13}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{6} q^{3} + (\beta_{11} + \beta_{6}) q^{5} - \beta_{10} q^{7} + 3 q^{9} + (\beta_{4} + 2) q^{11} + (\beta_{12} + \beta_{11} + \cdots - \beta_{9}) q^{13} + (\beta_{2} + 2) q^{15} + (\beta_{13} - 2 \beta_{12} + \cdots - 3 \beta_{6}) q^{17}+ \cdots + (3 \beta_{4} + 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 48 q^{9} + 24 q^{11} + 24 q^{15} - 12 q^{21} - 48 q^{25} - 32 q^{29} - 76 q^{35} - 72 q^{39} - 88 q^{49} - 24 q^{51} + 152 q^{65} - 168 q^{71} - 16 q^{79} + 144 q^{81} - 416 q^{85} + 568 q^{91} - 136 q^{95}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 88 x^{14} + 3876 x^{12} + 102922 x^{10} + 1866070 x^{8} + 23190492 x^{6} + 203608845 x^{4} + \cdots + 3839661225 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 672001001684 \nu^{14} + 83638291569392 \nu^{12} + \cdots + 64\!\cdots\!09 ) / 92\!\cdots\!34 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 1035398609612 \nu^{14} - 111533330833976 \nu^{12} + \cdots - 79\!\cdots\!49 ) / 92\!\cdots\!34 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 1601518644256 \nu^{15} + \cdots + 16\!\cdots\!49 \nu ) / 35\!\cdots\!05 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 634484072336 \nu^{14} + 36700472608334 \nu^{12} + \cdots - 79\!\cdots\!78 ) / 46\!\cdots\!17 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 15533455683352 \nu^{14} + \cdots + 77\!\cdots\!80 ) / 23\!\cdots\!85 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 19154198883257 \nu^{15} + \cdots - 75\!\cdots\!61 \nu ) / 70\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 17963615837495 \nu^{15} - 860461496592840 \nu^{14} + \cdots - 46\!\cdots\!40 ) / 70\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 17963615837495 \nu^{15} - 860461496592840 \nu^{14} + \cdots - 46\!\cdots\!40 ) / 70\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 301208776387831 \nu^{15} + \cdots + 81\!\cdots\!85 ) / 21\!\cdots\!30 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 301208776387831 \nu^{15} + \cdots - 81\!\cdots\!85 ) / 21\!\cdots\!30 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 543284346539459 \nu^{15} + \cdots - 14\!\cdots\!93 \nu ) / 21\!\cdots\!30 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 15307198600907 \nu^{15} + \cdots - 13\!\cdots\!69 \nu ) / 49\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 21\!\cdots\!37 \nu^{15} + \cdots + 63\!\cdots\!31 \nu ) / 21\!\cdots\!30 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 12\!\cdots\!87 \nu^{15} + \cdots + 53\!\cdots\!80 ) / 70\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 12\!\cdots\!87 \nu^{15} + \cdots + 53\!\cdots\!80 ) / 70\!\cdots\!10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{12} - \beta_{11} + 2\beta_{6} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{8} - \beta_{7} - \beta_{4} - \beta_{2} - 3\beta _1 - 25 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 3 \beta_{13} - 3 \beta_{12} + 15 \beta_{11} - 6 \beta_{10} - 6 \beta_{9} - \beta_{8} + \cdots + 2 \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 8 \beta_{15} + 8 \beta_{14} - 12 \beta_{10} + 12 \beta_{9} + 16 \beta_{8} + 16 \beta_{7} + 8 \beta_{5} + \cdots + 63 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 3 \beta_{15} - 3 \beta_{14} + 110 \beta_{13} - 385 \beta_{12} - 145 \beta_{11} + 310 \beta_{10} + \cdots - 11 \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 324 \beta_{15} - 324 \beta_{14} + 270 \beta_{10} - 270 \beta_{9} + 461 \beta_{8} + 461 \beta_{7} + \cdots + 7837 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 66 \beta_{15} - 66 \beta_{14} - 1876 \beta_{13} + 15596 \beta_{12} - 3682 \beta_{11} + \cdots - 1825 \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 5704 \beta_{15} + 5704 \beta_{14} - 1176 \beta_{10} + 1176 \beta_{9} - 33647 \beta_{8} - 33647 \beta_{7} + \cdots - 341357 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 6246 \beta_{15} + 6246 \beta_{14} + 2457 \beta_{13} - 372300 \beta_{12} + 290868 \beta_{11} + \cdots + 88528 \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 38668 \beta_{15} + 38668 \beta_{14} - 85110 \beta_{10} + 85110 \beta_{9} + 1072613 \beta_{8} + \cdots + 9538164 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 175677 \beta_{15} - 175677 \beta_{14} + 1110769 \beta_{13} + 4509106 \beta_{12} + \cdots - 2309281 \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 6316632 \beta_{15} - 6316632 \beta_{14} + 3252312 \beta_{10} - 3252312 \beta_{9} - 20011151 \beta_{8} + \cdots - 174777046 ) / 2 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 2088453 \beta_{15} + 2088453 \beta_{14} - 48906104 \beta_{13} + 84038635 \beta_{12} + \cdots + 28954060 \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 241797278 \beta_{15} + 241797278 \beta_{14} - 77052612 \beta_{10} + 77052612 \beta_{9} + \cdots + 536957510 ) / 2 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 43675362 \beta_{15} + 43675362 \beta_{14} + 1322867439 \beta_{13} - 7067723664 \beta_{12} + \cdots + 566542247 \beta_{3} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
769.1
−1.73205 + 2.62461i
−1.73205 2.62461i
−1.73205 + 3.73386i
−1.73205 3.73386i
−1.73205 + 4.99238i
−1.73205 4.99238i
−1.73205 + 3.20092i
−1.73205 3.20092i
1.73205 + 3.20092i
1.73205 3.20092i
1.73205 + 4.99238i
1.73205 4.99238i
1.73205 + 3.73386i
1.73205 3.73386i
1.73205 + 2.62461i
1.73205 2.62461i
0 −1.73205 0 −4.25575 2.62461i 0 2.56785 6.51200i 0 3.00000 0
769.2 0 −1.73205 0 −4.25575 + 2.62461i 0 2.56785 + 6.51200i 0 3.00000 0
769.3 0 −1.73205 0 −3.32540 3.73386i 0 −2.76332 + 6.43149i 0 3.00000 0
769.4 0 −1.73205 0 −3.32540 + 3.73386i 0 −2.76332 6.43149i 0 3.00000 0
769.5 0 −1.73205 0 0.275940 4.99238i 0 6.91828 + 1.06651i 0 3.00000 0
769.6 0 −1.73205 0 0.275940 + 4.99238i 0 6.91828 1.06651i 0 3.00000 0
769.7 0 −1.73205 0 3.84111 3.20092i 0 −4.99075 4.90840i 0 3.00000 0
769.8 0 −1.73205 0 3.84111 + 3.20092i 0 −4.99075 + 4.90840i 0 3.00000 0
769.9 0 1.73205 0 −3.84111 3.20092i 0 4.99075 + 4.90840i 0 3.00000 0
769.10 0 1.73205 0 −3.84111 + 3.20092i 0 4.99075 4.90840i 0 3.00000 0
769.11 0 1.73205 0 −0.275940 4.99238i 0 −6.91828 1.06651i 0 3.00000 0
769.12 0 1.73205 0 −0.275940 + 4.99238i 0 −6.91828 + 1.06651i 0 3.00000 0
769.13 0 1.73205 0 3.32540 3.73386i 0 2.76332 6.43149i 0 3.00000 0
769.14 0 1.73205 0 3.32540 + 3.73386i 0 2.76332 + 6.43149i 0 3.00000 0
769.15 0 1.73205 0 4.25575 2.62461i 0 −2.56785 + 6.51200i 0 3.00000 0
769.16 0 1.73205 0 4.25575 + 2.62461i 0 −2.56785 6.51200i 0 3.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 769.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
7.b odd 2 1 inner
35.c odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1680.3.bd.b 16
4.b odd 2 1 420.3.p.a 16
5.b even 2 1 inner 1680.3.bd.b 16
7.b odd 2 1 inner 1680.3.bd.b 16
12.b even 2 1 1260.3.p.e 16
20.d odd 2 1 420.3.p.a 16
20.e even 4 2 2100.3.j.g 16
28.d even 2 1 420.3.p.a 16
35.c odd 2 1 inner 1680.3.bd.b 16
60.h even 2 1 1260.3.p.e 16
84.h odd 2 1 1260.3.p.e 16
140.c even 2 1 420.3.p.a 16
140.j odd 4 2 2100.3.j.g 16
420.o odd 2 1 1260.3.p.e 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
420.3.p.a 16 4.b odd 2 1
420.3.p.a 16 20.d odd 2 1
420.3.p.a 16 28.d even 2 1
420.3.p.a 16 140.c even 2 1
1260.3.p.e 16 12.b even 2 1
1260.3.p.e 16 60.h even 2 1
1260.3.p.e 16 84.h odd 2 1
1260.3.p.e 16 420.o odd 2 1
1680.3.bd.b 16 1.a even 1 1 trivial
1680.3.bd.b 16 5.b even 2 1 inner
1680.3.bd.b 16 7.b odd 2 1 inner
1680.3.bd.b 16 35.c odd 2 1 inner
2100.3.j.g 16 20.e even 4 2
2100.3.j.g 16 140.j odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{4} - 6T_{11}^{3} - 248T_{11}^{2} - 1296T_{11} - 1904 \) acting on \(S_{3}^{\mathrm{new}}(1680, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( (T^{2} - 3)^{8} \) Copy content Toggle raw display
$5$ \( T^{16} + \cdots + 152587890625 \) Copy content Toggle raw display
$7$ \( T^{16} + \cdots + 33232930569601 \) Copy content Toggle raw display
$11$ \( (T^{4} - 6 T^{3} + \cdots - 1904)^{4} \) Copy content Toggle raw display
$13$ \( (T^{8} - 396 T^{6} + \cdots + 256)^{2} \) Copy content Toggle raw display
$17$ \( (T^{8} - 1500 T^{6} + \cdots + 132342016)^{2} \) Copy content Toggle raw display
$19$ \( (T^{8} + 2348 T^{6} + \cdots + 63035387136)^{2} \) Copy content Toggle raw display
$23$ \( (T^{8} + 2584 T^{6} + \cdots + 44935513344)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 8 T^{3} + \cdots - 19664)^{4} \) Copy content Toggle raw display
$31$ \( (T^{8} + 5792 T^{6} + \cdots + 422463239424)^{2} \) Copy content Toggle raw display
$37$ \( (T^{8} + \cdots + 4504180665600)^{2} \) Copy content Toggle raw display
$41$ \( (T^{8} + \cdots + 31643292960000)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} + \cdots + 17480484267264)^{2} \) Copy content Toggle raw display
$47$ \( (T^{8} - 4076 T^{6} + \cdots + 462030153984)^{2} \) Copy content Toggle raw display
$53$ \( (T^{8} + 5512 T^{6} + \cdots + 45361440000)^{2} \) Copy content Toggle raw display
$59$ \( (T^{8} + 20708 T^{6} + \cdots + 985548324096)^{2} \) Copy content Toggle raw display
$61$ \( (T^{8} + \cdots + 136350926228736)^{2} \) Copy content Toggle raw display
$67$ \( (T^{8} + \cdots + 4662962908416)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 42 T^{3} + \cdots + 3482224)^{4} \) Copy content Toggle raw display
$73$ \( (T^{8} + \cdots + 8315148960000)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 4 T^{3} + \cdots + 27896112)^{4} \) Copy content Toggle raw display
$83$ \( (T^{8} + \cdots + 4449737113600)^{2} \) Copy content Toggle raw display
$89$ \( (T^{8} + \cdots + 62\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( (T^{8} + \cdots + 95144885842176)^{2} \) Copy content Toggle raw display
show more
show less