Properties

Label 2-1680-35.34-c2-0-24
Degree $2$
Conductor $1680$
Sign $-0.176 - 0.984i$
Analytic cond. $45.7766$
Root an. cond. $6.76584$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73·3-s + (4.25 − 2.62i)5-s + (−2.56 + 6.51i)7-s + 2.99·9-s − 8.37·11-s − 0.0883·13-s + (7.37 − 4.54i)15-s − 29.7·17-s − 17.8i·19-s + (−4.44 + 11.2i)21-s + 39.2i·23-s + (11.2 − 22.3i)25-s + 5.19·27-s + 43.7·29-s + 53.8i·31-s + ⋯
L(s)  = 1  + 0.577·3-s + (0.851 − 0.524i)5-s + (−0.366 + 0.930i)7-s + 0.333·9-s − 0.761·11-s − 0.00679·13-s + (0.491 − 0.303i)15-s − 1.75·17-s − 0.941i·19-s + (−0.211 + 0.537i)21-s + 1.70i·23-s + (0.448 − 0.893i)25-s + 0.192·27-s + 1.50·29-s + 1.73i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.176 - 0.984i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.176 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1680\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7\)
Sign: $-0.176 - 0.984i$
Analytic conductor: \(45.7766\)
Root analytic conductor: \(6.76584\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1680} (769, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1680,\ (\ :1),\ -0.176 - 0.984i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.780546099\)
\(L(\frac12)\) \(\approx\) \(1.780546099\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 1.73T \)
5 \( 1 + (-4.25 + 2.62i)T \)
7 \( 1 + (2.56 - 6.51i)T \)
good11 \( 1 + 8.37T + 121T^{2} \)
13 \( 1 + 0.0883T + 169T^{2} \)
17 \( 1 + 29.7T + 289T^{2} \)
19 \( 1 + 17.8iT - 361T^{2} \)
23 \( 1 - 39.2iT - 529T^{2} \)
29 \( 1 - 43.7T + 841T^{2} \)
31 \( 1 - 53.8iT - 961T^{2} \)
37 \( 1 - 27.0iT - 1.36e3T^{2} \)
41 \( 1 - 46.0iT - 1.68e3T^{2} \)
43 \( 1 - 74.8iT - 1.84e3T^{2} \)
47 \( 1 + 27.7T + 2.20e3T^{2} \)
53 \( 1 - 5.38iT - 2.80e3T^{2} \)
59 \( 1 - 1.93iT - 3.48e3T^{2} \)
61 \( 1 + 74.8iT - 3.72e3T^{2} \)
67 \( 1 - 30.6iT - 4.48e3T^{2} \)
71 \( 1 - 72.3T + 5.04e3T^{2} \)
73 \( 1 + 34.0T + 5.32e3T^{2} \)
79 \( 1 + 125.T + 6.24e3T^{2} \)
83 \( 1 - 92.4T + 6.88e3T^{2} \)
89 \( 1 - 141. iT - 7.92e3T^{2} \)
97 \( 1 - 107.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.364777494567375551361158148952, −8.655917218706738199802682918924, −8.114203904065625113653368957924, −6.81263065605485251416267103059, −6.27898289769310743054435672632, −5.11526195899292000316228189932, −4.69713338754817188596049983489, −3.09015380160457797435420029514, −2.48992699241162127249345862408, −1.41832566416177049809667005918, 0.40272915637291146762889606104, 2.06185013806578199641926802833, 2.67250408692090538586563244759, 3.86792258219754941209239199450, 4.63616999293722299957044462820, 5.87281177524631634134357529917, 6.64593589514050937847464648551, 7.24076484860320921948772949985, 8.224158313642534093632691522584, 8.944916993016375835879740093713

Graph of the $Z$-function along the critical line