Properties

Label 1680.2.dx.b
Level $1680$
Weight $2$
Character orbit 1680.dx
Analytic conductor $13.415$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(31,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.dx (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,0,0,0,0,-2,0,6,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{12}^{2} q^{3} + \zeta_{12} q^{5} + (\zeta_{12}^{3} + 2 \zeta_{12}) q^{7} + (\zeta_{12}^{2} - 1) q^{9} + ( - \zeta_{12}^{2} + 2) q^{11} + ( - \zeta_{12}^{3} + 4 \zeta_{12}^{2} - 2) q^{13} - \zeta_{12}^{3} q^{15} + \cdots + (2 \zeta_{12}^{2} - 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{9} + 6 q^{11} - 12 q^{17} + 2 q^{19} + 12 q^{23} + 2 q^{25} + 4 q^{27} - 8 q^{29} + 12 q^{31} - 6 q^{33} + 2 q^{35} - 4 q^{37} + 12 q^{39} + 12 q^{47} - 4 q^{49} + 12 q^{51} + 8 q^{53}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1 - \zeta_{12}^{2}\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
31.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0 −0.500000 + 0.866025i 0 −0.866025 + 0.500000i 0 −1.73205 + 2.00000i 0 −0.500000 0.866025i 0
31.2 0 −0.500000 + 0.866025i 0 0.866025 0.500000i 0 1.73205 2.00000i 0 −0.500000 0.866025i 0
271.1 0 −0.500000 0.866025i 0 −0.866025 0.500000i 0 −1.73205 2.00000i 0 −0.500000 + 0.866025i 0
271.2 0 −0.500000 0.866025i 0 0.866025 + 0.500000i 0 1.73205 + 2.00000i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1680.2.dx.b 4
4.b odd 2 1 1680.2.dx.c yes 4
7.d odd 6 1 1680.2.dx.c yes 4
28.f even 6 1 inner 1680.2.dx.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1680.2.dx.b 4 1.a even 1 1 trivial
1680.2.dx.b 4 28.f even 6 1 inner
1680.2.dx.c yes 4 4.b odd 2 1
1680.2.dx.c yes 4 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{2} - 3T_{11} + 3 \) acting on \(S_{2}^{\mathrm{new}}(1680, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$7$ \( T^{4} + 2T^{2} + 49 \) Copy content Toggle raw display
$11$ \( (T^{2} - 3 T + 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 26T^{2} + 121 \) Copy content Toggle raw display
$17$ \( T^{4} + 12 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$19$ \( T^{4} - 2 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$23$ \( T^{4} - 12 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$29$ \( (T + 2)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 6 T + 36)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 4 T^{3} + \cdots + 5041 \) Copy content Toggle raw display
$41$ \( T^{4} + 14T^{2} + 1 \) Copy content Toggle raw display
$43$ \( T^{4} + 32T^{2} + 64 \) Copy content Toggle raw display
$47$ \( T^{4} - 12 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$53$ \( T^{4} - 8 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$59$ \( T^{4} + 48T^{2} + 2304 \) Copy content Toggle raw display
$61$ \( T^{4} - 24 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$67$ \( T^{4} - 12 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$71$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 12 T^{3} + \cdots + 7744 \) Copy content Toggle raw display
$79$ \( T^{4} - 24 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$83$ \( (T - 14)^{4} \) Copy content Toggle raw display
$89$ \( T^{4} - 144 T^{2} + 20736 \) Copy content Toggle raw display
$97$ \( T^{4} + 416 T^{2} + 30976 \) Copy content Toggle raw display
show more
show less