L(s) = 1 | + (−0.5 − 0.866i)3-s + (−0.866 − 0.5i)5-s + (−1.73 − 2i)7-s + (−0.499 + 0.866i)9-s + (1.5 − 0.866i)11-s + 4.46i·13-s + 0.999i·15-s + (−4.73 + 2.73i)17-s + (−1.23 + 2.13i)19-s + (−0.866 + 2.5i)21-s + (3.86 + 2.23i)23-s + (0.499 + 0.866i)25-s + 0.999·27-s − 2·29-s + (3 + 5.19i)31-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.387 − 0.223i)5-s + (−0.654 − 0.755i)7-s + (−0.166 + 0.288i)9-s + (0.452 − 0.261i)11-s + 1.23i·13-s + 0.258i·15-s + (−1.14 + 0.662i)17-s + (−0.282 + 0.489i)19-s + (−0.188 + 0.545i)21-s + (0.806 + 0.465i)23-s + (0.0999 + 0.173i)25-s + 0.192·27-s − 0.371·29-s + (0.538 + 0.933i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9729879365\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9729879365\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 + (1.73 + 2i)T \) |
good | 11 | \( 1 + (-1.5 + 0.866i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 4.46iT - 13T^{2} \) |
| 17 | \( 1 + (4.73 - 2.73i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.23 - 2.13i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.86 - 2.23i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 + (-3 - 5.19i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.33 + 5.76i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 0.267iT - 41T^{2} \) |
| 43 | \( 1 + 5.46iT - 43T^{2} \) |
| 47 | \( 1 + (-5.59 + 9.69i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.86 - 4.96i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.46 - 6i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.73 - 4.46i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.19 - 1.26i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 4iT - 71T^{2} \) |
| 73 | \( 1 + (11.6 - 6.73i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-11.1 - 6.46i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 14T + 83T^{2} \) |
| 89 | \( 1 + (-10.3 - 6i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 17.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.164649475142665828528158055326, −8.802489767531913782596210967390, −7.69506755391170055699312693741, −6.86017675180146514295519355828, −6.51827845705329438146401543052, −5.41940354655659880458486421052, −4.21940930779181614319457106452, −3.73909051532974112648665464222, −2.24883281491600921063023348861, −1.01928643341640543824087984438,
0.46843952113676642144552491851, 2.49215161338570423180073755847, 3.20547420097953342321972571232, 4.35705986951188133277168730155, 5.09327605413716588322271610867, 6.13803719870783677074006068852, 6.69022766937522328109618165477, 7.71873646043824477991052316029, 8.646741938568246401490610591429, 9.321425659562599025539328112698