Properties

Label 1680.2.bl.d.463.5
Level $1680$
Weight $2$
Character 1680.463
Analytic conductor $13.415$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(127,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.bl (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 463.5
Character \(\chi\) \(=\) 1680.463
Dual form 1680.2.bl.d.127.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{3} +(-1.55110 + 1.61062i) q^{5} +(0.707107 + 0.707107i) q^{7} -1.00000i q^{9} +1.41421i q^{11} +(-1.61475 - 1.61475i) q^{13} +(-0.0420883 - 2.23567i) q^{15} +(-3.57816 + 3.57816i) q^{17} -6.00216 q^{19} -1.00000 q^{21} +(4.89228 - 4.89228i) q^{23} +(-0.188191 - 4.99646i) q^{25} +(0.707107 + 0.707107i) q^{27} +2.96341i q^{29} -2.23185i q^{31} +(-1.00000 - 1.00000i) q^{33} +(-2.23567 + 0.0420883i) q^{35} +(-4.13524 + 4.13524i) q^{37} +2.28360 q^{39} -0.725814 q^{41} +(6.42894 - 6.42894i) q^{43} +(1.61062 + 1.55110i) q^{45} +(-1.55062 - 1.55062i) q^{47} +1.00000i q^{49} -5.06028i q^{51} +(1.39823 + 1.39823i) q^{53} +(-2.27776 - 2.19358i) q^{55} +(4.24417 - 4.24417i) q^{57} +10.5113 q^{59} -14.6812 q^{61} +(0.707107 - 0.707107i) q^{63} +(5.10538 - 0.0961128i) q^{65} +(-6.19032 - 6.19032i) q^{67} +6.91872i q^{69} +0.835192i q^{71} +(-9.04739 - 9.04739i) q^{73} +(3.66610 + 3.39996i) q^{75} +(-1.00000 + 1.00000i) q^{77} +0.726792 q^{79} -1.00000 q^{81} +(9.93860 - 9.93860i) q^{83} +(-0.212978 - 11.3131i) q^{85} +(-2.09545 - 2.09545i) q^{87} -9.21415i q^{89} -2.28360i q^{91} +(1.57816 + 1.57816i) q^{93} +(9.30994 - 9.66720i) q^{95} +(8.98296 - 8.98296i) q^{97} +1.41421 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 16 q^{13} - 8 q^{17} - 24 q^{21} + 8 q^{25} - 24 q^{33} + 24 q^{37} + 32 q^{41} + 8 q^{45} - 16 q^{53} - 8 q^{57} - 32 q^{61} + 32 q^{65} - 48 q^{73} - 24 q^{77} - 24 q^{81} + 72 q^{85} - 40 q^{93}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 0 0
\(5\) −1.55110 + 1.61062i −0.693672 + 0.720291i
\(6\) 0 0
\(7\) 0.707107 + 0.707107i 0.267261 + 0.267261i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 1.41421i 0.426401i 0.977008 + 0.213201i \(0.0683888\pi\)
−0.977008 + 0.213201i \(0.931611\pi\)
\(12\) 0 0
\(13\) −1.61475 1.61475i −0.447851 0.447851i 0.446789 0.894640i \(-0.352568\pi\)
−0.894640 + 0.446789i \(0.852568\pi\)
\(14\) 0 0
\(15\) −0.0420883 2.23567i −0.0108671 0.577248i
\(16\) 0 0
\(17\) −3.57816 + 3.57816i −0.867831 + 0.867831i −0.992232 0.124401i \(-0.960299\pi\)
0.124401 + 0.992232i \(0.460299\pi\)
\(18\) 0 0
\(19\) −6.00216 −1.37699 −0.688495 0.725241i \(-0.741728\pi\)
−0.688495 + 0.725241i \(0.741728\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 4.89228 4.89228i 1.02011 1.02011i 0.0203164 0.999794i \(-0.493533\pi\)
0.999794 0.0203164i \(-0.00646735\pi\)
\(24\) 0 0
\(25\) −0.188191 4.99646i −0.0376382 0.999291i
\(26\) 0 0
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 2.96341i 0.550291i 0.961403 + 0.275146i \(0.0887261\pi\)
−0.961403 + 0.275146i \(0.911274\pi\)
\(30\) 0 0
\(31\) 2.23185i 0.400853i −0.979709 0.200426i \(-0.935767\pi\)
0.979709 0.200426i \(-0.0642327\pi\)
\(32\) 0 0
\(33\) −1.00000 1.00000i −0.174078 0.174078i
\(34\) 0 0
\(35\) −2.23567 + 0.0420883i −0.377898 + 0.00711421i
\(36\) 0 0
\(37\) −4.13524 + 4.13524i −0.679830 + 0.679830i −0.959962 0.280132i \(-0.909622\pi\)
0.280132 + 0.959962i \(0.409622\pi\)
\(38\) 0 0
\(39\) 2.28360 0.365669
\(40\) 0 0
\(41\) −0.725814 −0.113353 −0.0566765 0.998393i \(-0.518050\pi\)
−0.0566765 + 0.998393i \(0.518050\pi\)
\(42\) 0 0
\(43\) 6.42894 6.42894i 0.980404 0.980404i −0.0194081 0.999812i \(-0.506178\pi\)
0.999812 + 0.0194081i \(0.00617818\pi\)
\(44\) 0 0
\(45\) 1.61062 + 1.55110i 0.240097 + 0.231224i
\(46\) 0 0
\(47\) −1.55062 1.55062i −0.226181 0.226181i 0.584914 0.811095i \(-0.301128\pi\)
−0.811095 + 0.584914i \(0.801128\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 5.06028i 0.708581i
\(52\) 0 0
\(53\) 1.39823 + 1.39823i 0.192061 + 0.192061i 0.796586 0.604525i \(-0.206637\pi\)
−0.604525 + 0.796586i \(0.706637\pi\)
\(54\) 0 0
\(55\) −2.27776 2.19358i −0.307133 0.295783i
\(56\) 0 0
\(57\) 4.24417 4.24417i 0.562154 0.562154i
\(58\) 0 0
\(59\) 10.5113 1.36846 0.684230 0.729266i \(-0.260138\pi\)
0.684230 + 0.729266i \(0.260138\pi\)
\(60\) 0 0
\(61\) −14.6812 −1.87974 −0.939871 0.341531i \(-0.889055\pi\)
−0.939871 + 0.341531i \(0.889055\pi\)
\(62\) 0 0
\(63\) 0.707107 0.707107i 0.0890871 0.0890871i
\(64\) 0 0
\(65\) 5.10538 0.0961128i 0.633245 0.0119213i
\(66\) 0 0
\(67\) −6.19032 6.19032i −0.756268 0.756268i 0.219373 0.975641i \(-0.429599\pi\)
−0.975641 + 0.219373i \(0.929599\pi\)
\(68\) 0 0
\(69\) 6.91872i 0.832916i
\(70\) 0 0
\(71\) 0.835192i 0.0991190i 0.998771 + 0.0495595i \(0.0157817\pi\)
−0.998771 + 0.0495595i \(0.984218\pi\)
\(72\) 0 0
\(73\) −9.04739 9.04739i −1.05892 1.05892i −0.998152 0.0607650i \(-0.980646\pi\)
−0.0607650 0.998152i \(-0.519354\pi\)
\(74\) 0 0
\(75\) 3.66610 + 3.39996i 0.423325 + 0.392593i
\(76\) 0 0
\(77\) −1.00000 + 1.00000i −0.113961 + 0.113961i
\(78\) 0 0
\(79\) 0.726792 0.0817704 0.0408852 0.999164i \(-0.486982\pi\)
0.0408852 + 0.999164i \(0.486982\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 9.93860 9.93860i 1.09090 1.09090i 0.0954704 0.995432i \(-0.469564\pi\)
0.995432 0.0954704i \(-0.0304355\pi\)
\(84\) 0 0
\(85\) −0.212978 11.3131i −0.0231007 1.22708i
\(86\) 0 0
\(87\) −2.09545 2.09545i −0.224655 0.224655i
\(88\) 0 0
\(89\) 9.21415i 0.976698i −0.872648 0.488349i \(-0.837599\pi\)
0.872648 0.488349i \(-0.162401\pi\)
\(90\) 0 0
\(91\) 2.28360i 0.239386i
\(92\) 0 0
\(93\) 1.57816 + 1.57816i 0.163647 + 0.163647i
\(94\) 0 0
\(95\) 9.30994 9.66720i 0.955180 0.991834i
\(96\) 0 0
\(97\) 8.98296 8.98296i 0.912082 0.912082i −0.0843542 0.996436i \(-0.526883\pi\)
0.996436 + 0.0843542i \(0.0268827\pi\)
\(98\) 0 0
\(99\) 1.41421 0.142134
\(100\) 0 0
\(101\) −18.0106 −1.79212 −0.896061 0.443930i \(-0.853584\pi\)
−0.896061 + 0.443930i \(0.853584\pi\)
\(102\) 0 0
\(103\) 5.98632 5.98632i 0.589850 0.589850i −0.347741 0.937591i \(-0.613051\pi\)
0.937591 + 0.347741i \(0.113051\pi\)
\(104\) 0 0
\(105\) 1.55110 1.61062i 0.151372 0.157180i
\(106\) 0 0
\(107\) −10.6607 10.6607i −1.03061 1.03061i −0.999516 0.0310948i \(-0.990101\pi\)
−0.0310948 0.999516i \(-0.509899\pi\)
\(108\) 0 0
\(109\) 4.38582i 0.420085i −0.977692 0.210043i \(-0.932640\pi\)
0.977692 0.210043i \(-0.0673603\pi\)
\(110\) 0 0
\(111\) 5.84812i 0.555079i
\(112\) 0 0
\(113\) 0.104299 + 0.104299i 0.00981165 + 0.00981165i 0.711996 0.702184i \(-0.247792\pi\)
−0.702184 + 0.711996i \(0.747792\pi\)
\(114\) 0 0
\(115\) 0.291197 + 15.4680i 0.0271543 + 1.44240i
\(116\) 0 0
\(117\) −1.61475 + 1.61475i −0.149284 + 0.149284i
\(118\) 0 0
\(119\) −5.06028 −0.463875
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) 0 0
\(123\) 0.513228 0.513228i 0.0462762 0.0462762i
\(124\) 0 0
\(125\) 8.33929 + 7.44689i 0.745889 + 0.666070i
\(126\) 0 0
\(127\) −1.48671 1.48671i −0.131924 0.131924i 0.638061 0.769985i \(-0.279737\pi\)
−0.769985 + 0.638061i \(0.779737\pi\)
\(128\) 0 0
\(129\) 9.09189i 0.800496i
\(130\) 0 0
\(131\) 3.49202i 0.305099i −0.988296 0.152550i \(-0.951252\pi\)
0.988296 0.152550i \(-0.0487484\pi\)
\(132\) 0 0
\(133\) −4.24417 4.24417i −0.368016 0.368016i
\(134\) 0 0
\(135\) −2.23567 + 0.0420883i −0.192416 + 0.00362238i
\(136\) 0 0
\(137\) −1.97582 + 1.97582i −0.168806 + 0.168806i −0.786454 0.617649i \(-0.788085\pi\)
0.617649 + 0.786454i \(0.288085\pi\)
\(138\) 0 0
\(139\) −17.1492 −1.45457 −0.727287 0.686333i \(-0.759219\pi\)
−0.727287 + 0.686333i \(0.759219\pi\)
\(140\) 0 0
\(141\) 2.19291 0.184676
\(142\) 0 0
\(143\) 2.28360 2.28360i 0.190964 0.190964i
\(144\) 0 0
\(145\) −4.77292 4.59654i −0.396370 0.381722i
\(146\) 0 0
\(147\) −0.707107 0.707107i −0.0583212 0.0583212i
\(148\) 0 0
\(149\) 13.4912i 1.10525i 0.833432 + 0.552623i \(0.186373\pi\)
−0.833432 + 0.552623i \(0.813627\pi\)
\(150\) 0 0
\(151\) 9.12096i 0.742253i 0.928582 + 0.371126i \(0.121028\pi\)
−0.928582 + 0.371126i \(0.878972\pi\)
\(152\) 0 0
\(153\) 3.57816 + 3.57816i 0.289277 + 0.289277i
\(154\) 0 0
\(155\) 3.59467 + 3.46182i 0.288731 + 0.278060i
\(156\) 0 0
\(157\) −7.39702 + 7.39702i −0.590346 + 0.590346i −0.937725 0.347379i \(-0.887072\pi\)
0.347379 + 0.937725i \(0.387072\pi\)
\(158\) 0 0
\(159\) −1.97739 −0.156818
\(160\) 0 0
\(161\) 6.91872 0.545272
\(162\) 0 0
\(163\) −5.82118 + 5.82118i −0.455950 + 0.455950i −0.897324 0.441373i \(-0.854491\pi\)
0.441373 + 0.897324i \(0.354491\pi\)
\(164\) 0 0
\(165\) 3.16172 0.0595218i 0.246139 0.00463376i
\(166\) 0 0
\(167\) −7.29832 7.29832i −0.564761 0.564761i 0.365895 0.930656i \(-0.380763\pi\)
−0.930656 + 0.365895i \(0.880763\pi\)
\(168\) 0 0
\(169\) 7.78516i 0.598859i
\(170\) 0 0
\(171\) 6.00216i 0.458997i
\(172\) 0 0
\(173\) 13.4781 + 13.4781i 1.02472 + 1.02472i 0.999687 + 0.0250318i \(0.00796869\pi\)
0.0250318 + 0.999687i \(0.492031\pi\)
\(174\) 0 0
\(175\) 3.39996 3.66610i 0.257013 0.277131i
\(176\) 0 0
\(177\) −7.43264 + 7.43264i −0.558672 + 0.558672i
\(178\) 0 0
\(179\) −11.1988 −0.837035 −0.418517 0.908209i \(-0.637450\pi\)
−0.418517 + 0.908209i \(0.637450\pi\)
\(180\) 0 0
\(181\) 5.30087 0.394010 0.197005 0.980402i \(-0.436878\pi\)
0.197005 + 0.980402i \(0.436878\pi\)
\(182\) 0 0
\(183\) 10.3812 10.3812i 0.767401 0.767401i
\(184\) 0 0
\(185\) −0.246137 13.0745i −0.0180964 0.961254i
\(186\) 0 0
\(187\) −5.06028 5.06028i −0.370044 0.370044i
\(188\) 0 0
\(189\) 1.00000i 0.0727393i
\(190\) 0 0
\(191\) 14.5504i 1.05283i 0.850228 + 0.526414i \(0.176464\pi\)
−0.850228 + 0.526414i \(0.823536\pi\)
\(192\) 0 0
\(193\) −10.7376 10.7376i −0.772908 0.772908i 0.205706 0.978614i \(-0.434051\pi\)
−0.978614 + 0.205706i \(0.934051\pi\)
\(194\) 0 0
\(195\) −3.54209 + 3.67801i −0.253654 + 0.263388i
\(196\) 0 0
\(197\) 10.8500 10.8500i 0.773029 0.773029i −0.205606 0.978635i \(-0.565917\pi\)
0.978635 + 0.205606i \(0.0659165\pi\)
\(198\) 0 0
\(199\) 5.17932 0.367152 0.183576 0.983006i \(-0.441233\pi\)
0.183576 + 0.983006i \(0.441233\pi\)
\(200\) 0 0
\(201\) 8.75443 0.617490
\(202\) 0 0
\(203\) −2.09545 + 2.09545i −0.147072 + 0.147072i
\(204\) 0 0
\(205\) 1.12581 1.16901i 0.0786298 0.0816472i
\(206\) 0 0
\(207\) −4.89228 4.89228i −0.340037 0.340037i
\(208\) 0 0
\(209\) 8.48834i 0.587151i
\(210\) 0 0
\(211\) 0.114377i 0.00787404i 0.999992 + 0.00393702i \(0.00125320\pi\)
−0.999992 + 0.00393702i \(0.998747\pi\)
\(212\) 0 0
\(213\) −0.590570 0.590570i −0.0404652 0.0404652i
\(214\) 0 0
\(215\) 0.382662 + 20.3265i 0.0260973 + 1.38625i
\(216\) 0 0
\(217\) 1.57816 1.57816i 0.107132 0.107132i
\(218\) 0 0
\(219\) 12.7949 0.864602
\(220\) 0 0
\(221\) 11.5557 0.777318
\(222\) 0 0
\(223\) −4.06175 + 4.06175i −0.271995 + 0.271995i −0.829903 0.557908i \(-0.811604\pi\)
0.557908 + 0.829903i \(0.311604\pi\)
\(224\) 0 0
\(225\) −4.99646 + 0.188191i −0.333097 + 0.0125461i
\(226\) 0 0
\(227\) 10.8517 + 10.8517i 0.720256 + 0.720256i 0.968657 0.248401i \(-0.0799052\pi\)
−0.248401 + 0.968657i \(0.579905\pi\)
\(228\) 0 0
\(229\) 13.7823i 0.910758i 0.890298 + 0.455379i \(0.150496\pi\)
−0.890298 + 0.455379i \(0.849504\pi\)
\(230\) 0 0
\(231\) 1.41421i 0.0930484i
\(232\) 0 0
\(233\) 0.730251 + 0.730251i 0.0478403 + 0.0478403i 0.730622 0.682782i \(-0.239230\pi\)
−0.682782 + 0.730622i \(0.739230\pi\)
\(234\) 0 0
\(235\) 4.90262 0.0922957i 0.319812 0.00602071i
\(236\) 0 0
\(237\) −0.513919 + 0.513919i −0.0333826 + 0.0333826i
\(238\) 0 0
\(239\) −20.8853 −1.35096 −0.675479 0.737380i \(-0.736063\pi\)
−0.675479 + 0.737380i \(0.736063\pi\)
\(240\) 0 0
\(241\) −23.3064 −1.50130 −0.750649 0.660702i \(-0.770259\pi\)
−0.750649 + 0.660702i \(0.770259\pi\)
\(242\) 0 0
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 0 0
\(245\) −1.61062 1.55110i −0.102899 0.0990960i
\(246\) 0 0
\(247\) 9.69199 + 9.69199i 0.616687 + 0.616687i
\(248\) 0 0
\(249\) 14.0553i 0.890718i
\(250\) 0 0
\(251\) 5.35719i 0.338143i −0.985604 0.169071i \(-0.945923\pi\)
0.985604 0.169071i \(-0.0540769\pi\)
\(252\) 0 0
\(253\) 6.91872 + 6.91872i 0.434976 + 0.434976i
\(254\) 0 0
\(255\) 8.15019 + 7.84899i 0.510385 + 0.491523i
\(256\) 0 0
\(257\) −19.5888 + 19.5888i −1.22191 + 1.22191i −0.254963 + 0.966951i \(0.582063\pi\)
−0.966951 + 0.254963i \(0.917937\pi\)
\(258\) 0 0
\(259\) −5.84812 −0.363384
\(260\) 0 0
\(261\) 2.96341 0.183430
\(262\) 0 0
\(263\) 7.94724 7.94724i 0.490048 0.490048i −0.418273 0.908321i \(-0.637365\pi\)
0.908321 + 0.418273i \(0.137365\pi\)
\(264\) 0 0
\(265\) −4.42080 + 0.0832251i −0.271568 + 0.00511248i
\(266\) 0 0
\(267\) 6.51539 + 6.51539i 0.398735 + 0.398735i
\(268\) 0 0
\(269\) 15.2625i 0.930572i 0.885160 + 0.465286i \(0.154049\pi\)
−0.885160 + 0.465286i \(0.845951\pi\)
\(270\) 0 0
\(271\) 9.82831i 0.597028i 0.954405 + 0.298514i \(0.0964909\pi\)
−0.954405 + 0.298514i \(0.903509\pi\)
\(272\) 0 0
\(273\) 1.61475 + 1.61475i 0.0977291 + 0.0977291i
\(274\) 0 0
\(275\) 7.06606 0.266142i 0.426099 0.0160490i
\(276\) 0 0
\(277\) 3.70220 3.70220i 0.222444 0.222444i −0.587083 0.809527i \(-0.699724\pi\)
0.809527 + 0.587083i \(0.199724\pi\)
\(278\) 0 0
\(279\) −2.23185 −0.133618
\(280\) 0 0
\(281\) 18.0878 1.07903 0.539515 0.841976i \(-0.318608\pi\)
0.539515 + 0.841976i \(0.318608\pi\)
\(282\) 0 0
\(283\) −1.40931 + 1.40931i −0.0837747 + 0.0837747i −0.747752 0.663978i \(-0.768867\pi\)
0.663978 + 0.747752i \(0.268867\pi\)
\(284\) 0 0
\(285\) 0.252621 + 13.4189i 0.0149639 + 0.794865i
\(286\) 0 0
\(287\) −0.513228 0.513228i −0.0302949 0.0302949i
\(288\) 0 0
\(289\) 8.60644i 0.506261i
\(290\) 0 0
\(291\) 12.7038i 0.744712i
\(292\) 0 0
\(293\) −18.9056 18.9056i −1.10447 1.10447i −0.993864 0.110610i \(-0.964719\pi\)
−0.110610 0.993864i \(-0.535281\pi\)
\(294\) 0 0
\(295\) −16.3041 + 16.9298i −0.949263 + 0.985690i
\(296\) 0 0
\(297\) −1.00000 + 1.00000i −0.0580259 + 0.0580259i
\(298\) 0 0
\(299\) −15.7996 −0.913715
\(300\) 0 0
\(301\) 9.09189 0.524048
\(302\) 0 0
\(303\) 12.7354 12.7354i 0.731631 0.731631i
\(304\) 0 0
\(305\) 22.7721 23.6459i 1.30392 1.35396i
\(306\) 0 0
\(307\) −10.3811 10.3811i −0.592482 0.592482i 0.345819 0.938301i \(-0.387601\pi\)
−0.938301 + 0.345819i \(0.887601\pi\)
\(308\) 0 0
\(309\) 8.46594i 0.481610i
\(310\) 0 0
\(311\) 30.5873i 1.73445i 0.497921 + 0.867223i \(0.334097\pi\)
−0.497921 + 0.867223i \(0.665903\pi\)
\(312\) 0 0
\(313\) −18.9098 18.9098i −1.06884 1.06884i −0.997448 0.0713959i \(-0.977255\pi\)
−0.0713959 0.997448i \(-0.522745\pi\)
\(314\) 0 0
\(315\) 0.0420883 + 2.23567i 0.00237140 + 0.125966i
\(316\) 0 0
\(317\) −15.0516 + 15.0516i −0.845384 + 0.845384i −0.989553 0.144169i \(-0.953949\pi\)
0.144169 + 0.989553i \(0.453949\pi\)
\(318\) 0 0
\(319\) −4.19089 −0.234645
\(320\) 0 0
\(321\) 15.0765 0.841491
\(322\) 0 0
\(323\) 21.4767 21.4767i 1.19500 1.19500i
\(324\) 0 0
\(325\) −7.76415 + 8.37191i −0.430677 + 0.464390i
\(326\) 0 0
\(327\) 3.10124 + 3.10124i 0.171499 + 0.171499i
\(328\) 0 0
\(329\) 2.19291i 0.120899i
\(330\) 0 0
\(331\) 23.9966i 1.31897i 0.751716 + 0.659487i \(0.229227\pi\)
−0.751716 + 0.659487i \(0.770773\pi\)
\(332\) 0 0
\(333\) 4.13524 + 4.13524i 0.226610 + 0.226610i
\(334\) 0 0
\(335\) 19.5720 0.368459i 1.06933 0.0201310i
\(336\) 0 0
\(337\) 20.5553 20.5553i 1.11972 1.11972i 0.127935 0.991783i \(-0.459165\pi\)
0.991783 0.127935i \(-0.0408350\pi\)
\(338\) 0 0
\(339\) −0.147501 −0.00801118
\(340\) 0 0
\(341\) 3.15632 0.170924
\(342\) 0 0
\(343\) −0.707107 + 0.707107i −0.0381802 + 0.0381802i
\(344\) 0 0
\(345\) −11.1434 10.7316i −0.599942 0.577771i
\(346\) 0 0
\(347\) 4.14820 + 4.14820i 0.222687 + 0.222687i 0.809629 0.586942i \(-0.199668\pi\)
−0.586942 + 0.809629i \(0.699668\pi\)
\(348\) 0 0
\(349\) 16.3686i 0.876192i 0.898928 + 0.438096i \(0.144347\pi\)
−0.898928 + 0.438096i \(0.855653\pi\)
\(350\) 0 0
\(351\) 2.28360i 0.121890i
\(352\) 0 0
\(353\) 12.6727 + 12.6727i 0.674500 + 0.674500i 0.958750 0.284250i \(-0.0917446\pi\)
−0.284250 + 0.958750i \(0.591745\pi\)
\(354\) 0 0
\(355\) −1.34518 1.29546i −0.0713945 0.0687561i
\(356\) 0 0
\(357\) 3.57816 3.57816i 0.189376 0.189376i
\(358\) 0 0
\(359\) −5.73841 −0.302861 −0.151431 0.988468i \(-0.548388\pi\)
−0.151431 + 0.988468i \(0.548388\pi\)
\(360\) 0 0
\(361\) 17.0260 0.896103
\(362\) 0 0
\(363\) −6.36396 + 6.36396i −0.334021 + 0.334021i
\(364\) 0 0
\(365\) 28.6053 0.538517i 1.49727 0.0281873i
\(366\) 0 0
\(367\) −4.94124 4.94124i −0.257931 0.257931i 0.566281 0.824212i \(-0.308382\pi\)
−0.824212 + 0.566281i \(0.808382\pi\)
\(368\) 0 0
\(369\) 0.725814i 0.0377843i
\(370\) 0 0
\(371\) 1.97739i 0.102661i
\(372\) 0 0
\(373\) −23.7378 23.7378i −1.22909 1.22909i −0.964307 0.264788i \(-0.914698\pi\)
−0.264788 0.964307i \(-0.585302\pi\)
\(374\) 0 0
\(375\) −11.1625 + 0.631026i −0.576430 + 0.0325860i
\(376\) 0 0
\(377\) 4.78516 4.78516i 0.246449 0.246449i
\(378\) 0 0
\(379\) 19.9989 1.02728 0.513638 0.858007i \(-0.328298\pi\)
0.513638 + 0.858007i \(0.328298\pi\)
\(380\) 0 0
\(381\) 2.10252 0.107715
\(382\) 0 0
\(383\) −6.05490 + 6.05490i −0.309391 + 0.309391i −0.844673 0.535282i \(-0.820205\pi\)
0.535282 + 0.844673i \(0.320205\pi\)
\(384\) 0 0
\(385\) −0.0595218 3.16172i −0.00303351 0.161136i
\(386\) 0 0
\(387\) −6.42894 6.42894i −0.326801 0.326801i
\(388\) 0 0
\(389\) 4.79071i 0.242899i −0.992598 0.121449i \(-0.961246\pi\)
0.992598 0.121449i \(-0.0387542\pi\)
\(390\) 0 0
\(391\) 35.0107i 1.77057i
\(392\) 0 0
\(393\) 2.46923 + 2.46923i 0.124556 + 0.124556i
\(394\) 0 0
\(395\) −1.12732 + 1.17058i −0.0567219 + 0.0588985i
\(396\) 0 0
\(397\) 15.5416 15.5416i 0.780009 0.780009i −0.199823 0.979832i \(-0.564037\pi\)
0.979832 + 0.199823i \(0.0640367\pi\)
\(398\) 0 0
\(399\) 6.00216 0.300484
\(400\) 0 0
\(401\) −31.5637 −1.57622 −0.788109 0.615536i \(-0.788940\pi\)
−0.788109 + 0.615536i \(0.788940\pi\)
\(402\) 0 0
\(403\) −3.60389 + 3.60389i −0.179522 + 0.179522i
\(404\) 0 0
\(405\) 1.55110 1.61062i 0.0770747 0.0800323i
\(406\) 0 0
\(407\) −5.84812 5.84812i −0.289880 0.289880i
\(408\) 0 0
\(409\) 15.8757i 0.785001i 0.919752 + 0.392500i \(0.128390\pi\)
−0.919752 + 0.392500i \(0.871610\pi\)
\(410\) 0 0
\(411\) 2.79423i 0.137829i
\(412\) 0 0
\(413\) 7.43264 + 7.43264i 0.365736 + 0.365736i
\(414\) 0 0
\(415\) 0.591563 + 31.4230i 0.0290387 + 1.54250i
\(416\) 0 0
\(417\) 12.1263 12.1263i 0.593828 0.593828i
\(418\) 0 0
\(419\) 11.3966 0.556759 0.278379 0.960471i \(-0.410203\pi\)
0.278379 + 0.960471i \(0.410203\pi\)
\(420\) 0 0
\(421\) −19.0104 −0.926509 −0.463255 0.886225i \(-0.653318\pi\)
−0.463255 + 0.886225i \(0.653318\pi\)
\(422\) 0 0
\(423\) −1.55062 + 1.55062i −0.0753938 + 0.0753938i
\(424\) 0 0
\(425\) 18.5515 + 17.2047i 0.899880 + 0.834553i
\(426\) 0 0
\(427\) −10.3812 10.3812i −0.502382 0.502382i
\(428\) 0 0
\(429\) 3.22950i 0.155922i
\(430\) 0 0
\(431\) 12.5216i 0.603145i −0.953443 0.301573i \(-0.902488\pi\)
0.953443 0.301573i \(-0.0975115\pi\)
\(432\) 0 0
\(433\) 9.12057 + 9.12057i 0.438307 + 0.438307i 0.891442 0.453135i \(-0.149694\pi\)
−0.453135 + 0.891442i \(0.649694\pi\)
\(434\) 0 0
\(435\) 6.62521 0.124725i 0.317655 0.00598009i
\(436\) 0 0
\(437\) −29.3642 + 29.3642i −1.40468 + 1.40468i
\(438\) 0 0
\(439\) −14.2206 −0.678714 −0.339357 0.940658i \(-0.610209\pi\)
−0.339357 + 0.940658i \(0.610209\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −21.4454 + 21.4454i −1.01890 + 1.01890i −0.0190862 + 0.999818i \(0.506076\pi\)
−0.999818 + 0.0190862i \(0.993924\pi\)
\(444\) 0 0
\(445\) 14.8405 + 14.2921i 0.703507 + 0.677508i
\(446\) 0 0
\(447\) −9.53974 9.53974i −0.451214 0.451214i
\(448\) 0 0
\(449\) 5.43568i 0.256526i −0.991740 0.128263i \(-0.959060\pi\)
0.991740 0.128263i \(-0.0409401\pi\)
\(450\) 0 0
\(451\) 1.02646i 0.0483339i
\(452\) 0 0
\(453\) −6.44949 6.44949i −0.303023 0.303023i
\(454\) 0 0
\(455\) 3.67801 + 3.54209i 0.172428 + 0.166056i
\(456\) 0 0
\(457\) −20.5758 + 20.5758i −0.962497 + 0.962497i −0.999322 0.0368249i \(-0.988276\pi\)
0.0368249 + 0.999322i \(0.488276\pi\)
\(458\) 0 0
\(459\) −5.06028 −0.236194
\(460\) 0 0
\(461\) 9.31329 0.433763 0.216882 0.976198i \(-0.430411\pi\)
0.216882 + 0.976198i \(0.430411\pi\)
\(462\) 0 0
\(463\) −10.9363 + 10.9363i −0.508254 + 0.508254i −0.913990 0.405736i \(-0.867015\pi\)
0.405736 + 0.913990i \(0.367015\pi\)
\(464\) 0 0
\(465\) −4.98969 + 0.0939348i −0.231391 + 0.00435612i
\(466\) 0 0
\(467\) 24.4209 + 24.4209i 1.13006 + 1.13006i 0.990166 + 0.139897i \(0.0446771\pi\)
0.139897 + 0.990166i \(0.455323\pi\)
\(468\) 0 0
\(469\) 8.75443i 0.404242i
\(470\) 0 0
\(471\) 10.4610i 0.482016i
\(472\) 0 0
\(473\) 9.09189 + 9.09189i 0.418045 + 0.418045i
\(474\) 0 0
\(475\) 1.12955 + 29.9895i 0.0518275 + 1.37601i
\(476\) 0 0
\(477\) 1.39823 1.39823i 0.0640205 0.0640205i
\(478\) 0 0
\(479\) −17.4478 −0.797210 −0.398605 0.917123i \(-0.630506\pi\)
−0.398605 + 0.917123i \(0.630506\pi\)
\(480\) 0 0
\(481\) 13.3548 0.608925
\(482\) 0 0
\(483\) −4.89228 + 4.89228i −0.222606 + 0.222606i
\(484\) 0 0
\(485\) 0.534682 + 28.4016i 0.0242787 + 1.28965i
\(486\) 0 0
\(487\) −20.2887 20.2887i −0.919370 0.919370i 0.0776138 0.996983i \(-0.475270\pi\)
−0.996983 + 0.0776138i \(0.975270\pi\)
\(488\) 0 0
\(489\) 8.23240i 0.372282i
\(490\) 0 0
\(491\) 26.4431i 1.19336i 0.802479 + 0.596680i \(0.203514\pi\)
−0.802479 + 0.596680i \(0.796486\pi\)
\(492\) 0 0
\(493\) −10.6035 10.6035i −0.477560 0.477560i
\(494\) 0 0
\(495\) −2.19358 + 2.27776i −0.0985943 + 0.102378i
\(496\) 0 0
\(497\) −0.590570 + 0.590570i −0.0264907 + 0.0264907i
\(498\) 0 0
\(499\) −37.0718 −1.65956 −0.829782 0.558088i \(-0.811535\pi\)
−0.829782 + 0.558088i \(0.811535\pi\)
\(500\) 0 0
\(501\) 10.3214 0.461126
\(502\) 0 0
\(503\) 11.7610 11.7610i 0.524395 0.524395i −0.394500 0.918896i \(-0.629082\pi\)
0.918896 + 0.394500i \(0.129082\pi\)
\(504\) 0 0
\(505\) 27.9362 29.0082i 1.24315 1.29085i
\(506\) 0 0
\(507\) 5.50494 + 5.50494i 0.244483 + 0.244483i
\(508\) 0 0
\(509\) 3.76912i 0.167063i 0.996505 + 0.0835316i \(0.0266200\pi\)
−0.996505 + 0.0835316i \(0.973380\pi\)
\(510\) 0 0
\(511\) 12.7949i 0.566015i
\(512\) 0 0
\(513\) −4.24417 4.24417i −0.187385 0.187385i
\(514\) 0 0
\(515\) 0.356316 + 18.9271i 0.0157012 + 0.834026i
\(516\) 0 0
\(517\) 2.19291 2.19291i 0.0964440 0.0964440i
\(518\) 0 0
\(519\) −19.0609 −0.836679
\(520\) 0 0
\(521\) 21.2629 0.931544 0.465772 0.884905i \(-0.345777\pi\)
0.465772 + 0.884905i \(0.345777\pi\)
\(522\) 0 0
\(523\) 27.7278 27.7278i 1.21245 1.21245i 0.242237 0.970217i \(-0.422119\pi\)
0.970217 0.242237i \(-0.0778811\pi\)
\(524\) 0 0
\(525\) 0.188191 + 4.99646i 0.00821333 + 0.218063i
\(526\) 0 0
\(527\) 7.98593 + 7.98593i 0.347872 + 0.347872i
\(528\) 0 0
\(529\) 24.8687i 1.08125i
\(530\) 0 0
\(531\) 10.5113i 0.456153i
\(532\) 0 0
\(533\) 1.17201 + 1.17201i 0.0507653 + 0.0507653i
\(534\) 0 0
\(535\) 33.7062 0.634545i 1.45725 0.0274338i
\(536\) 0 0
\(537\) 7.91872 7.91872i 0.341718 0.341718i
\(538\) 0 0
\(539\) −1.41421 −0.0609145
\(540\) 0 0
\(541\) 37.1578 1.59754 0.798769 0.601638i \(-0.205485\pi\)
0.798769 + 0.601638i \(0.205485\pi\)
\(542\) 0 0
\(543\) −3.74828 + 3.74828i −0.160854 + 0.160854i
\(544\) 0 0
\(545\) 7.06388 + 6.80283i 0.302584 + 0.291401i
\(546\) 0 0
\(547\) −28.0433 28.0433i −1.19904 1.19904i −0.974453 0.224591i \(-0.927895\pi\)
−0.224591 0.974453i \(-0.572105\pi\)
\(548\) 0 0
\(549\) 14.6812i 0.626580i
\(550\) 0 0
\(551\) 17.7869i 0.757746i
\(552\) 0 0
\(553\) 0.513919 + 0.513919i 0.0218541 + 0.0218541i
\(554\) 0 0
\(555\) 9.41909 + 9.07100i 0.399818 + 0.385043i
\(556\) 0 0
\(557\) 11.2200 11.2200i 0.475406 0.475406i −0.428253 0.903659i \(-0.640871\pi\)
0.903659 + 0.428253i \(0.140871\pi\)
\(558\) 0 0
\(559\) −20.7622 −0.878150
\(560\) 0 0
\(561\) 7.15632 0.302140
\(562\) 0 0
\(563\) 3.56969 3.56969i 0.150444 0.150444i −0.627872 0.778317i \(-0.716074\pi\)
0.778317 + 0.627872i \(0.216074\pi\)
\(564\) 0 0
\(565\) −0.329765 + 0.00620808i −0.0138733 + 0.000261176i
\(566\) 0 0
\(567\) −0.707107 0.707107i −0.0296957 0.0296957i
\(568\) 0 0
\(569\) 18.6617i 0.782340i −0.920318 0.391170i \(-0.872070\pi\)
0.920318 0.391170i \(-0.127930\pi\)
\(570\) 0 0
\(571\) 38.8423i 1.62550i −0.582613 0.812750i \(-0.697970\pi\)
0.582613 0.812750i \(-0.302030\pi\)
\(572\) 0 0
\(573\) −10.2887 10.2887i −0.429815 0.429815i
\(574\) 0 0
\(575\) −25.3647 23.5234i −1.05778 0.980992i
\(576\) 0 0
\(577\) −18.1788 + 18.1788i −0.756792 + 0.756792i −0.975737 0.218945i \(-0.929738\pi\)
0.218945 + 0.975737i \(0.429738\pi\)
\(578\) 0 0
\(579\) 15.1852 0.631077
\(580\) 0 0
\(581\) 14.0553 0.583112
\(582\) 0 0
\(583\) −1.97739 + 1.97739i −0.0818953 + 0.0818953i
\(584\) 0 0
\(585\) −0.0961128 5.10538i −0.00397377 0.211082i
\(586\) 0 0
\(587\) −1.52090 1.52090i −0.0627744 0.0627744i 0.675023 0.737797i \(-0.264134\pi\)
−0.737797 + 0.675023i \(0.764134\pi\)
\(588\) 0 0
\(589\) 13.3960i 0.551971i
\(590\) 0 0
\(591\) 15.3442i 0.631175i
\(592\) 0 0
\(593\) −20.0796 20.0796i −0.824572 0.824572i 0.162188 0.986760i \(-0.448145\pi\)
−0.986760 + 0.162188i \(0.948145\pi\)
\(594\) 0 0
\(595\) 7.84899 8.15019i 0.321777 0.334125i
\(596\) 0 0
\(597\) −3.66233 + 3.66233i −0.149889 + 0.149889i
\(598\) 0 0
\(599\) −9.16616 −0.374519 −0.187260 0.982310i \(-0.559961\pi\)
−0.187260 + 0.982310i \(0.559961\pi\)
\(600\) 0 0
\(601\) 37.4953 1.52946 0.764732 0.644349i \(-0.222872\pi\)
0.764732 + 0.644349i \(0.222872\pi\)
\(602\) 0 0
\(603\) −6.19032 + 6.19032i −0.252089 + 0.252089i
\(604\) 0 0
\(605\) −13.9599 + 14.4956i −0.567550 + 0.589329i
\(606\) 0 0
\(607\) 27.1447 + 27.1447i 1.10177 + 1.10177i 0.994197 + 0.107572i \(0.0343076\pi\)
0.107572 + 0.994197i \(0.465692\pi\)
\(608\) 0 0
\(609\) 2.96341i 0.120083i
\(610\) 0 0
\(611\) 5.00773i 0.202591i
\(612\) 0 0
\(613\) 14.5477 + 14.5477i 0.587578 + 0.587578i 0.936975 0.349397i \(-0.113614\pi\)
−0.349397 + 0.936975i \(0.613614\pi\)
\(614\) 0 0
\(615\) 0.0305482 + 1.62268i 0.00123182 + 0.0654328i
\(616\) 0 0
\(617\) −19.0257 + 19.0257i −0.765945 + 0.765945i −0.977390 0.211445i \(-0.932183\pi\)
0.211445 + 0.977390i \(0.432183\pi\)
\(618\) 0 0
\(619\) 13.7336 0.552001 0.276001 0.961157i \(-0.410991\pi\)
0.276001 + 0.961157i \(0.410991\pi\)
\(620\) 0 0
\(621\) 6.91872 0.277639
\(622\) 0 0
\(623\) 6.51539 6.51539i 0.261034 0.261034i
\(624\) 0 0
\(625\) −24.9292 + 1.88058i −0.997167 + 0.0752231i
\(626\) 0 0
\(627\) 6.00216 + 6.00216i 0.239703 + 0.239703i
\(628\) 0 0
\(629\) 29.5931i 1.17995i
\(630\) 0 0
\(631\) 2.27096i 0.0904053i −0.998978 0.0452026i \(-0.985607\pi\)
0.998978 0.0452026i \(-0.0143934\pi\)
\(632\) 0 0
\(633\) −0.0808768 0.0808768i −0.00321456 0.00321456i
\(634\) 0 0
\(635\) 4.70055 0.0884915i 0.186536 0.00351168i
\(636\) 0 0
\(637\) 1.61475 1.61475i 0.0639787 0.0639787i
\(638\) 0 0
\(639\) 0.835192 0.0330397
\(640\) 0 0
\(641\) −27.4488 −1.08416 −0.542082 0.840326i \(-0.682364\pi\)
−0.542082 + 0.840326i \(0.682364\pi\)
\(642\) 0 0
\(643\) 0.260735 0.260735i 0.0102824 0.0102824i −0.701947 0.712229i \(-0.747686\pi\)
0.712229 + 0.701947i \(0.247686\pi\)
\(644\) 0 0
\(645\) −14.6436 14.1024i −0.576590 0.555282i
\(646\) 0 0
\(647\) 11.7253 + 11.7253i 0.460970 + 0.460970i 0.898973 0.438003i \(-0.144314\pi\)
−0.438003 + 0.898973i \(0.644314\pi\)
\(648\) 0 0
\(649\) 14.8653i 0.583513i
\(650\) 0 0
\(651\) 2.23185i 0.0874732i
\(652\) 0 0
\(653\) −10.0706 10.0706i −0.394093 0.394093i 0.482050 0.876144i \(-0.339892\pi\)
−0.876144 + 0.482050i \(0.839892\pi\)
\(654\) 0 0
\(655\) 5.62432 + 5.41647i 0.219760 + 0.211639i
\(656\) 0 0
\(657\) −9.04739 + 9.04739i −0.352972 + 0.352972i
\(658\) 0 0
\(659\) −0.987258 −0.0384581 −0.0192291 0.999815i \(-0.506121\pi\)
−0.0192291 + 0.999815i \(0.506121\pi\)
\(660\) 0 0
\(661\) −35.5698 −1.38351 −0.691753 0.722134i \(-0.743161\pi\)
−0.691753 + 0.722134i \(0.743161\pi\)
\(662\) 0 0
\(663\) −8.17109 + 8.17109i −0.317339 + 0.317339i
\(664\) 0 0
\(665\) 13.4189 0.252621i 0.520361 0.00979620i
\(666\) 0 0
\(667\) 14.4978 + 14.4978i 0.561358 + 0.561358i
\(668\) 0 0
\(669\) 5.74418i 0.222083i
\(670\) 0 0
\(671\) 20.7624i 0.801524i
\(672\) 0 0
\(673\) 5.77671 + 5.77671i 0.222676 + 0.222676i 0.809624 0.586948i \(-0.199671\pi\)
−0.586948 + 0.809624i \(0.699671\pi\)
\(674\) 0 0
\(675\) 3.39996 3.66610i 0.130864 0.141108i
\(676\) 0 0
\(677\) 0.223962 0.223962i 0.00860756 0.00860756i −0.702790 0.711397i \(-0.748063\pi\)
0.711397 + 0.702790i \(0.248063\pi\)
\(678\) 0 0
\(679\) 12.7038 0.487528
\(680\) 0 0
\(681\) −15.3467 −0.588086
\(682\) 0 0
\(683\) 22.6071 22.6071i 0.865036 0.865036i −0.126882 0.991918i \(-0.540497\pi\)
0.991918 + 0.126882i \(0.0404969\pi\)
\(684\) 0 0
\(685\) −0.117604 6.24698i −0.00449343 0.238685i
\(686\) 0 0
\(687\) −9.74554 9.74554i −0.371815 0.371815i
\(688\) 0 0
\(689\) 4.51558i 0.172030i
\(690\) 0 0
\(691\) 44.6726i 1.69943i −0.527245 0.849713i \(-0.676775\pi\)
0.527245 0.849713i \(-0.323225\pi\)
\(692\) 0 0
\(693\) 1.00000 + 1.00000i 0.0379869 + 0.0379869i
\(694\) 0 0
\(695\) 26.6001 27.6208i 1.00900 1.04772i
\(696\) 0 0
\(697\) 2.59708 2.59708i 0.0983713 0.0983713i
\(698\) 0 0
\(699\) −1.03273 −0.0390615
\(700\) 0 0
\(701\) −39.2966 −1.48421 −0.742105 0.670283i \(-0.766173\pi\)
−0.742105 + 0.670283i \(0.766173\pi\)
\(702\) 0 0
\(703\) 24.8204 24.8204i 0.936119 0.936119i
\(704\) 0 0
\(705\) −3.40142 + 3.53194i −0.128105 + 0.133021i
\(706\) 0 0
\(707\) −12.7354 12.7354i −0.478965 0.478965i
\(708\) 0 0
\(709\) 33.4616i 1.25668i 0.777940 + 0.628339i \(0.216265\pi\)
−0.777940 + 0.628339i \(0.783735\pi\)
\(710\) 0 0
\(711\) 0.726792i 0.0272568i
\(712\) 0 0
\(713\) −10.9188 10.9188i −0.408914 0.408914i
\(714\) 0 0
\(715\) 0.135924 + 7.22010i 0.00508327 + 0.270017i
\(716\) 0 0
\(717\) 14.7681 14.7681i 0.551526 0.551526i
\(718\) 0 0
\(719\) −48.2614 −1.79985 −0.899923 0.436050i \(-0.856377\pi\)
−0.899923 + 0.436050i \(0.856377\pi\)
\(720\) 0 0
\(721\) 8.46594 0.315288
\(722\) 0 0
\(723\) 16.4801 16.4801i 0.612902 0.612902i
\(724\) 0 0
\(725\) 14.8065 0.557687i 0.549901 0.0207120i
\(726\) 0 0
\(727\) 28.9489 + 28.9489i 1.07366 + 1.07366i 0.997062 + 0.0765933i \(0.0244043\pi\)
0.0765933 + 0.997062i \(0.475596\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 46.0075i 1.70165i
\(732\) 0 0
\(733\) −18.6714 18.6714i −0.689645 0.689645i 0.272508 0.962153i \(-0.412147\pi\)
−0.962153 + 0.272508i \(0.912147\pi\)
\(734\) 0 0
\(735\) 2.23567 0.0420883i 0.0824640 0.00155245i
\(736\) 0 0
\(737\) 8.75443 8.75443i 0.322474 0.322474i
\(738\) 0 0
\(739\) −4.23603 −0.155825 −0.0779124 0.996960i \(-0.524825\pi\)
−0.0779124 + 0.996960i \(0.524825\pi\)
\(740\) 0 0
\(741\) −13.7065 −0.503523
\(742\) 0 0
\(743\) 3.72467 3.72467i 0.136645 0.136645i −0.635476 0.772121i \(-0.719196\pi\)
0.772121 + 0.635476i \(0.219196\pi\)
\(744\) 0 0
\(745\) −21.7292 20.9262i −0.796098 0.766678i
\(746\) 0 0
\(747\) −9.93860 9.93860i −0.363634 0.363634i
\(748\) 0 0
\(749\) 15.0765i 0.550885i
\(750\) 0 0
\(751\) 33.7435i 1.23132i 0.788013 + 0.615658i \(0.211110\pi\)
−0.788013 + 0.615658i \(0.788890\pi\)
\(752\) 0 0
\(753\) 3.78811 + 3.78811i 0.138046 + 0.138046i
\(754\) 0 0
\(755\) −14.6904 14.1475i −0.534638 0.514880i
\(756\) 0 0
\(757\) −0.0265074 + 0.0265074i −0.000963429 + 0.000963429i −0.707588 0.706625i \(-0.750217\pi\)
0.706625 + 0.707588i \(0.250217\pi\)
\(758\) 0 0
\(759\) −9.78455 −0.355157
\(760\) 0 0
\(761\) 14.2629 0.517029 0.258514 0.966007i \(-0.416767\pi\)
0.258514 + 0.966007i \(0.416767\pi\)
\(762\) 0 0
\(763\) 3.10124 3.10124i 0.112272 0.112272i
\(764\) 0 0
\(765\) −11.3131 + 0.212978i −0.409027 + 0.00770025i
\(766\) 0 0
\(767\) −16.9732 16.9732i −0.612866 0.612866i
\(768\) 0 0
\(769\) 36.1710i 1.30436i −0.758065 0.652179i \(-0.773855\pi\)
0.758065 0.652179i \(-0.226145\pi\)
\(770\) 0 0
\(771\) 27.7027i 0.997689i
\(772\) 0 0
\(773\) −3.14281 3.14281i −0.113039 0.113039i 0.648325 0.761364i \(-0.275470\pi\)
−0.761364 + 0.648325i \(0.775470\pi\)
\(774\) 0 0
\(775\) −11.1514 + 0.420015i −0.400569 + 0.0150874i
\(776\) 0 0
\(777\) 4.13524 4.13524i 0.148351 0.148351i
\(778\) 0 0
\(779\) 4.35645 0.156086
\(780\) 0 0
\(781\) −1.18114 −0.0422645
\(782\) 0 0
\(783\) −2.09545 + 2.09545i −0.0748852 + 0.0748852i
\(784\) 0 0
\(785\) −0.440284 23.3873i −0.0157144 0.834728i
\(786\) 0 0
\(787\) −24.9347 24.9347i −0.888826 0.888826i 0.105585 0.994410i \(-0.466329\pi\)
−0.994410 + 0.105585i \(0.966329\pi\)
\(788\) 0 0
\(789\) 11.2391i 0.400122i
\(790\) 0 0
\(791\) 0.147501i 0.00524455i
\(792\) 0 0
\(793\) 23.7065 + 23.7065i 0.841844 + 0.841844i
\(794\) 0 0
\(795\) 3.06713 3.18483i 0.108780 0.112954i
\(796\) 0 0
\(797\) −13.2467 + 13.2467i −0.469222 + 0.469222i −0.901662 0.432441i \(-0.857652\pi\)
0.432441 + 0.901662i \(0.357652\pi\)
\(798\) 0 0
\(799\) 11.0967 0.392574
\(800\) 0 0
\(801\) −9.21415 −0.325566
\(802\) 0 0
\(803\) 12.7949 12.7949i 0.451524 0.451524i
\(804\) 0 0
\(805\) −10.7316 + 11.1434i −0.378240 + 0.392754i
\(806\) 0 0
\(807\) −10.7922 10.7922i −0.379904 0.379904i
\(808\) 0 0
\(809\) 20.2321i 0.711324i −0.934615 0.355662i \(-0.884255\pi\)
0.934615 0.355662i \(-0.115745\pi\)
\(810\) 0 0
\(811\) 56.5075i 1.98425i −0.125270 0.992123i \(-0.539980\pi\)
0.125270 0.992123i \(-0.460020\pi\)
\(812\) 0 0
\(813\) −6.94967 6.94967i −0.243735 0.243735i
\(814\) 0 0
\(815\) −0.346487 18.4049i −0.0121369 0.644697i
\(816\) 0 0
\(817\) −38.5875 + 38.5875i −1.35001 + 1.35001i
\(818\) 0 0
\(819\) −2.28360 −0.0797955
\(820\) 0 0
\(821\) −51.2877 −1.78995 −0.894976 0.446114i \(-0.852807\pi\)
−0.894976 + 0.446114i \(0.852807\pi\)
\(822\) 0 0
\(823\) 29.1306 29.1306i 1.01543 1.01543i 0.0155490 0.999879i \(-0.495050\pi\)
0.999879 0.0155490i \(-0.00494961\pi\)
\(824\) 0 0
\(825\) −4.80827 + 5.18465i −0.167402 + 0.180506i
\(826\) 0 0
\(827\) −24.3500 24.3500i −0.846731 0.846731i 0.142993 0.989724i \(-0.454327\pi\)
−0.989724 + 0.142993i \(0.954327\pi\)
\(828\) 0 0
\(829\) 39.9876i 1.38883i 0.719575 + 0.694414i \(0.244336\pi\)
−0.719575 + 0.694414i \(0.755664\pi\)
\(830\) 0 0
\(831\) 5.23570i 0.181625i
\(832\) 0 0
\(833\) −3.57816 3.57816i −0.123976 0.123976i
\(834\) 0 0
\(835\) 23.0752 0.434409i 0.798552 0.0150334i
\(836\) 0 0
\(837\) 1.57816 1.57816i 0.0545492 0.0545492i
\(838\) 0 0
\(839\) −6.30454 −0.217657 −0.108829 0.994061i \(-0.534710\pi\)
−0.108829 + 0.994061i \(0.534710\pi\)
\(840\) 0 0
\(841\) 20.2182 0.697180
\(842\) 0 0
\(843\) −12.7900 + 12.7900i −0.440512 + 0.440512i
\(844\) 0 0
\(845\) 12.5389 + 12.0756i 0.431353 + 0.415412i
\(846\) 0 0
\(847\) 6.36396 + 6.36396i 0.218668 + 0.218668i
\(848\) 0 0
\(849\) 1.99306i 0.0684017i
\(850\) 0 0
\(851\) 40.4615i 1.38700i
\(852\) 0 0
\(853\) −9.48627 9.48627i −0.324804 0.324804i 0.525803 0.850607i \(-0.323765\pi\)
−0.850607 + 0.525803i \(0.823765\pi\)
\(854\) 0 0
\(855\) −9.66720 9.30994i −0.330611 0.318393i
\(856\) 0 0
\(857\) −18.6693 + 18.6693i −0.637732 + 0.637732i −0.949996 0.312264i \(-0.898913\pi\)
0.312264 + 0.949996i \(0.398913\pi\)
\(858\) 0 0
\(859\) 40.0484 1.36643 0.683217 0.730216i \(-0.260580\pi\)
0.683217 + 0.730216i \(0.260580\pi\)
\(860\) 0 0
\(861\) 0.725814 0.0247357
\(862\) 0 0
\(863\) 28.8750 28.8750i 0.982916 0.982916i −0.0169409 0.999856i \(-0.505393\pi\)
0.999856 + 0.0169409i \(0.00539270\pi\)
\(864\) 0 0
\(865\) −42.6138 + 0.802238i −1.44891 + 0.0272769i
\(866\) 0 0
\(867\) 6.08567 + 6.08567i 0.206680 + 0.206680i
\(868\) 0 0
\(869\) 1.02784i 0.0348670i
\(870\) 0 0
\(871\) 19.9916i 0.677391i
\(872\) 0 0
\(873\) −8.98296 8.98296i −0.304027 0.304027i
\(874\) 0 0
\(875\) 0.631026 + 11.1625i 0.0213326 + 0.377362i
\(876\) 0 0
\(877\) 16.1481 16.1481i 0.545281 0.545281i −0.379791 0.925072i \(-0.624004\pi\)
0.925072 + 0.379791i \(0.124004\pi\)
\(878\) 0 0
\(879\) 26.7365 0.901799
\(880\) 0 0
\(881\) 10.1767 0.342862 0.171431 0.985196i \(-0.445161\pi\)
0.171431 + 0.985196i \(0.445161\pi\)
\(882\) 0 0
\(883\) −2.70918 + 2.70918i −0.0911711 + 0.0911711i −0.751221 0.660050i \(-0.770535\pi\)
0.660050 + 0.751221i \(0.270535\pi\)
\(884\) 0 0
\(885\) −0.442404 23.4999i −0.0148712 0.789941i
\(886\) 0 0
\(887\) 21.2973 + 21.2973i 0.715093 + 0.715093i 0.967596 0.252503i \(-0.0812537\pi\)
−0.252503 + 0.967596i \(0.581254\pi\)
\(888\) 0 0
\(889\) 2.10252i 0.0705163i
\(890\) 0 0
\(891\) 1.41421i 0.0473779i
\(892\) 0 0
\(893\) 9.30708 + 9.30708i 0.311450 + 0.311450i
\(894\) 0 0
\(895\) 17.3704 18.0370i 0.580628 0.602909i
\(896\) 0 0
\(897\) 11.1720 11.1720i 0.373022 0.373022i
\(898\) 0 0
\(899\) 6.61390 0.220586
\(900\) 0 0
\(901\) −10.0062 −0.333354
\(902\) 0 0
\(903\) −6.42894 + 6.42894i −0.213942 + 0.213942i
\(904\) 0 0
\(905\) −8.22216 + 8.53768i −0.273314 + 0.283802i
\(906\) 0 0
\(907\) −29.0336 29.0336i −0.964044 0.964044i 0.0353317 0.999376i \(-0.488751\pi\)
−0.999376 + 0.0353317i \(0.988751\pi\)
\(908\) 0 0
\(909\) 18.0106i 0.597374i
\(910\) 0 0
\(911\) 12.7765i 0.423304i −0.977345 0.211652i \(-0.932116\pi\)
0.977345 0.211652i \(-0.0678844\pi\)
\(912\) 0 0
\(913\) 14.0553 + 14.0553i 0.465162 + 0.465162i
\(914\) 0 0
\(915\) 0.617908 + 32.8225i 0.0204274 + 1.08508i
\(916\) 0 0
\(917\) 2.46923 2.46923i 0.0815413 0.0815413i
\(918\) 0 0
\(919\) 40.6251 1.34010 0.670050 0.742316i \(-0.266273\pi\)
0.670050 + 0.742316i \(0.266273\pi\)
\(920\) 0 0
\(921\) 14.6811 0.483760
\(922\) 0 0
\(923\) 1.34863 1.34863i 0.0443906 0.0443906i
\(924\) 0 0
\(925\) 21.4398 + 19.8834i 0.704936 + 0.653761i
\(926\) 0 0
\(927\) −5.98632 5.98632i −0.196617 0.196617i
\(928\) 0 0
\(929\) 39.3360i 1.29057i −0.763940 0.645287i \(-0.776738\pi\)
0.763940 0.645287i \(-0.223262\pi\)
\(930\) 0 0
\(931\) 6.00216i 0.196713i
\(932\) 0 0
\(933\) −21.6285 21.6285i −0.708084 0.708084i
\(934\) 0 0
\(935\) 15.9992 0.301197i 0.523229 0.00985019i
\(936\) 0 0
\(937\) −6.86324 + 6.86324i −0.224212 + 0.224212i −0.810270 0.586057i \(-0.800679\pi\)
0.586057 + 0.810270i \(0.300679\pi\)
\(938\) 0 0
\(939\) 26.7425 0.872707
\(940\) 0 0
\(941\) −54.5433 −1.77806 −0.889030 0.457848i \(-0.848620\pi\)
−0.889030 + 0.457848i \(0.848620\pi\)
\(942\) 0 0
\(943\) −3.55088 + 3.55088i −0.115633 + 0.115633i
\(944\) 0 0
\(945\) −1.61062 1.55110i −0.0523935 0.0504572i
\(946\) 0 0
\(947\) −0.550590 0.550590i −0.0178918 0.0178918i 0.698104 0.715996i \(-0.254027\pi\)
−0.715996 + 0.698104i \(0.754027\pi\)
\(948\) 0 0
\(949\) 29.2186i 0.948474i
\(950\) 0 0
\(951\) 21.2862i 0.690253i
\(952\) 0 0
\(953\) 20.5746 + 20.5746i 0.666478 + 0.666478i 0.956899 0.290421i \(-0.0937954\pi\)
−0.290421 + 0.956899i \(0.593795\pi\)
\(954\) 0 0
\(955\) −23.4351 22.5691i −0.758342 0.730317i
\(956\) 0 0
\(957\) 2.96341 2.96341i 0.0957934 0.0957934i
\(958\) 0 0
\(959\) −2.79423 −0.0902304
\(960\) 0 0
\(961\) 26.0188 0.839317
\(962\) 0 0
\(963\) −10.6607 + 10.6607i −0.343537 + 0.343537i
\(964\) 0 0
\(965\) 33.9492 0.639120i 1.09286 0.0205740i
\(966\) 0 0
\(967\) −2.85635 2.85635i −0.0918540 0.0918540i 0.659687 0.751541i \(-0.270689\pi\)
−0.751541 + 0.659687i \(0.770689\pi\)
\(968\) 0 0
\(969\) 30.3726i 0.975709i
\(970\) 0 0
\(971\) 2.39615i 0.0768962i 0.999261 + 0.0384481i \(0.0122414\pi\)
−0.999261 + 0.0384481i \(0.987759\pi\)
\(972\) 0 0
\(973\) −12.1263 12.1263i −0.388751 0.388751i
\(974\) 0 0
\(975\) −0.429753 11.4099i −0.0137631 0.365410i
\(976\) 0 0
\(977\) −28.1571 + 28.1571i −0.900824 + 0.900824i −0.995507 0.0946834i \(-0.969816\pi\)
0.0946834 + 0.995507i \(0.469816\pi\)
\(978\) 0 0
\(979\) 13.0308 0.416466
\(980\) 0 0
\(981\) −4.38582 −0.140028
\(982\) 0 0
\(983\) −9.34594 + 9.34594i −0.298089 + 0.298089i −0.840265 0.542176i \(-0.817601\pi\)
0.542176 + 0.840265i \(0.317601\pi\)
\(984\) 0 0
\(985\) 0.645810 + 34.3046i 0.0205772 + 1.09303i
\(986\) 0 0
\(987\) 1.55062 + 1.55062i 0.0493568 + 0.0493568i
\(988\) 0 0
\(989\) 62.9043i 2.00024i
\(990\) 0 0
\(991\) 10.5891i 0.336373i −0.985755 0.168186i \(-0.946209\pi\)
0.985755 0.168186i \(-0.0537910\pi\)
\(992\) 0 0
\(993\) −16.9682 16.9682i −0.538469 0.538469i
\(994\) 0 0
\(995\) −8.03363 + 8.34191i −0.254683 + 0.264456i
\(996\) 0 0
\(997\) −1.26993 + 1.26993i −0.0402192 + 0.0402192i −0.726930 0.686711i \(-0.759054\pi\)
0.686711 + 0.726930i \(0.259054\pi\)
\(998\) 0 0
\(999\) −5.84812 −0.185026
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.bl.d.463.5 yes 24
4.3 odd 2 inner 1680.2.bl.d.463.11 yes 24
5.2 odd 4 inner 1680.2.bl.d.127.10 yes 24
20.7 even 4 inner 1680.2.bl.d.127.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.bl.d.127.5 24 20.7 even 4 inner
1680.2.bl.d.127.10 yes 24 5.2 odd 4 inner
1680.2.bl.d.463.5 yes 24 1.1 even 1 trivial
1680.2.bl.d.463.11 yes 24 4.3 odd 2 inner