Properties

Label 1680.2.bl.d.463.1
Level $1680$
Weight $2$
Character 1680.463
Analytic conductor $13.415$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(127,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.bl (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 463.1
Character \(\chi\) \(=\) 1680.463
Dual form 1680.2.bl.d.127.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{3} +(2.14388 + 0.635431i) q^{5} +(0.707107 + 0.707107i) q^{7} -1.00000i q^{9} +1.41421i q^{11} +(-4.66562 - 4.66562i) q^{13} +(-1.96527 + 1.06664i) q^{15} +(3.52228 - 3.52228i) q^{17} +7.26583 q^{19} -1.00000 q^{21} +(2.99848 - 2.99848i) q^{23} +(4.19245 + 2.72458i) q^{25} +(0.707107 + 0.707107i) q^{27} -7.18789i q^{29} +7.80968i q^{31} +(-1.00000 - 1.00000i) q^{33} +(1.06664 + 1.96527i) q^{35} +(0.824446 - 0.824446i) q^{37} +6.59818 q^{39} -2.09715 q^{41} +(3.56546 - 3.56546i) q^{43} +(0.635431 - 2.14388i) q^{45} +(1.31286 + 1.31286i) q^{47} +1.00000i q^{49} +4.98125i q^{51} +(6.73055 + 6.73055i) q^{53} +(-0.898635 + 3.03191i) q^{55} +(-5.13772 + 5.13772i) q^{57} -7.63237 q^{59} +8.13210 q^{61} +(0.707107 - 0.707107i) q^{63} +(-7.03785 - 12.9672i) q^{65} +(-4.41495 - 4.41495i) q^{67} +4.24049i q^{69} +9.78861i q^{71} +(0.731281 + 0.731281i) q^{73} +(-4.89108 + 1.03795i) q^{75} +(-1.00000 + 1.00000i) q^{77} -13.6293 q^{79} -1.00000 q^{81} +(-0.102937 + 0.102937i) q^{83} +(9.78951 - 5.31318i) q^{85} +(5.08261 + 5.08261i) q^{87} +8.17829i q^{89} -6.59818i q^{91} +(-5.52228 - 5.52228i) q^{93} +(15.5771 + 4.61694i) q^{95} +(9.35559 - 9.35559i) q^{97} +1.41421 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 16 q^{13} - 8 q^{17} - 24 q^{21} + 8 q^{25} - 24 q^{33} + 24 q^{37} + 32 q^{41} + 8 q^{45} - 16 q^{53} - 8 q^{57} - 32 q^{61} + 32 q^{65} - 48 q^{73} - 24 q^{77} - 24 q^{81} + 72 q^{85} - 40 q^{93}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 0 0
\(5\) 2.14388 + 0.635431i 0.958773 + 0.284173i
\(6\) 0 0
\(7\) 0.707107 + 0.707107i 0.267261 + 0.267261i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 1.41421i 0.426401i 0.977008 + 0.213201i \(0.0683888\pi\)
−0.977008 + 0.213201i \(0.931611\pi\)
\(12\) 0 0
\(13\) −4.66562 4.66562i −1.29401 1.29401i −0.932285 0.361724i \(-0.882188\pi\)
−0.361724 0.932285i \(-0.617812\pi\)
\(14\) 0 0
\(15\) −1.96527 + 1.06664i −0.507431 + 0.275404i
\(16\) 0 0
\(17\) 3.52228 3.52228i 0.854278 0.854278i −0.136379 0.990657i \(-0.543546\pi\)
0.990657 + 0.136379i \(0.0435465\pi\)
\(18\) 0 0
\(19\) 7.26583 1.66690 0.833448 0.552598i \(-0.186363\pi\)
0.833448 + 0.552598i \(0.186363\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 2.99848 2.99848i 0.625226 0.625226i −0.321637 0.946863i \(-0.604233\pi\)
0.946863 + 0.321637i \(0.104233\pi\)
\(24\) 0 0
\(25\) 4.19245 + 2.72458i 0.838491 + 0.544915i
\(26\) 0 0
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 7.18789i 1.33476i −0.744718 0.667379i \(-0.767416\pi\)
0.744718 0.667379i \(-0.232584\pi\)
\(30\) 0 0
\(31\) 7.80968i 1.40266i 0.712837 + 0.701330i \(0.247410\pi\)
−0.712837 + 0.701330i \(0.752590\pi\)
\(32\) 0 0
\(33\) −1.00000 1.00000i −0.174078 0.174078i
\(34\) 0 0
\(35\) 1.06664 + 1.96527i 0.180294 + 0.332191i
\(36\) 0 0
\(37\) 0.824446 0.824446i 0.135538 0.135538i −0.636083 0.771621i \(-0.719446\pi\)
0.771621 + 0.636083i \(0.219446\pi\)
\(38\) 0 0
\(39\) 6.59818 1.05655
\(40\) 0 0
\(41\) −2.09715 −0.327519 −0.163760 0.986500i \(-0.552362\pi\)
−0.163760 + 0.986500i \(0.552362\pi\)
\(42\) 0 0
\(43\) 3.56546 3.56546i 0.543727 0.543727i −0.380892 0.924619i \(-0.624383\pi\)
0.924619 + 0.380892i \(0.124383\pi\)
\(44\) 0 0
\(45\) 0.635431 2.14388i 0.0947245 0.319591i
\(46\) 0 0
\(47\) 1.31286 + 1.31286i 0.191500 + 0.191500i 0.796344 0.604844i \(-0.206765\pi\)
−0.604844 + 0.796344i \(0.706765\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 4.98125i 0.697515i
\(52\) 0 0
\(53\) 6.73055 + 6.73055i 0.924512 + 0.924512i 0.997344 0.0728322i \(-0.0232038\pi\)
−0.0728322 + 0.997344i \(0.523204\pi\)
\(54\) 0 0
\(55\) −0.898635 + 3.03191i −0.121172 + 0.408822i
\(56\) 0 0
\(57\) −5.13772 + 5.13772i −0.680508 + 0.680508i
\(58\) 0 0
\(59\) −7.63237 −0.993649 −0.496825 0.867851i \(-0.665501\pi\)
−0.496825 + 0.867851i \(0.665501\pi\)
\(60\) 0 0
\(61\) 8.13210 1.04121 0.520604 0.853798i \(-0.325707\pi\)
0.520604 + 0.853798i \(0.325707\pi\)
\(62\) 0 0
\(63\) 0.707107 0.707107i 0.0890871 0.0890871i
\(64\) 0 0
\(65\) −7.03785 12.9672i −0.872938 1.60838i
\(66\) 0 0
\(67\) −4.41495 4.41495i −0.539373 0.539373i 0.383972 0.923345i \(-0.374556\pi\)
−0.923345 + 0.383972i \(0.874556\pi\)
\(68\) 0 0
\(69\) 4.24049i 0.510495i
\(70\) 0 0
\(71\) 9.78861i 1.16169i 0.814013 + 0.580847i \(0.197279\pi\)
−0.814013 + 0.580847i \(0.802721\pi\)
\(72\) 0 0
\(73\) 0.731281 + 0.731281i 0.0855900 + 0.0855900i 0.748606 0.663016i \(-0.230724\pi\)
−0.663016 + 0.748606i \(0.730724\pi\)
\(74\) 0 0
\(75\) −4.89108 + 1.03795i −0.564773 + 0.119852i
\(76\) 0 0
\(77\) −1.00000 + 1.00000i −0.113961 + 0.113961i
\(78\) 0 0
\(79\) −13.6293 −1.53342 −0.766709 0.641995i \(-0.778107\pi\)
−0.766709 + 0.641995i \(0.778107\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −0.102937 + 0.102937i −0.0112989 + 0.0112989i −0.712734 0.701435i \(-0.752543\pi\)
0.701435 + 0.712734i \(0.252543\pi\)
\(84\) 0 0
\(85\) 9.78951 5.31318i 1.06182 0.576295i
\(86\) 0 0
\(87\) 5.08261 + 5.08261i 0.544913 + 0.544913i
\(88\) 0 0
\(89\) 8.17829i 0.866897i 0.901178 + 0.433449i \(0.142703\pi\)
−0.901178 + 0.433449i \(0.857297\pi\)
\(90\) 0 0
\(91\) 6.59818i 0.691677i
\(92\) 0 0
\(93\) −5.52228 5.52228i −0.572634 0.572634i
\(94\) 0 0
\(95\) 15.5771 + 4.61694i 1.59818 + 0.473688i
\(96\) 0 0
\(97\) 9.35559 9.35559i 0.949917 0.949917i −0.0488878 0.998804i \(-0.515568\pi\)
0.998804 + 0.0488878i \(0.0155677\pi\)
\(98\) 0 0
\(99\) 1.41421 0.142134
\(100\) 0 0
\(101\) −11.2828 −1.12268 −0.561341 0.827585i \(-0.689714\pi\)
−0.561341 + 0.827585i \(0.689714\pi\)
\(102\) 0 0
\(103\) 9.21278 9.21278i 0.907763 0.907763i −0.0883288 0.996091i \(-0.528153\pi\)
0.996091 + 0.0883288i \(0.0281526\pi\)
\(104\) 0 0
\(105\) −2.14388 0.635431i −0.209221 0.0620117i
\(106\) 0 0
\(107\) 8.81565 + 8.81565i 0.852241 + 0.852241i 0.990409 0.138168i \(-0.0441214\pi\)
−0.138168 + 0.990409i \(0.544121\pi\)
\(108\) 0 0
\(109\) 3.71332i 0.355672i 0.984060 + 0.177836i \(0.0569096\pi\)
−0.984060 + 0.177836i \(0.943090\pi\)
\(110\) 0 0
\(111\) 1.16594i 0.110666i
\(112\) 0 0
\(113\) 9.48619 + 9.48619i 0.892386 + 0.892386i 0.994747 0.102362i \(-0.0326399\pi\)
−0.102362 + 0.994747i \(0.532640\pi\)
\(114\) 0 0
\(115\) 8.33370 4.52305i 0.777122 0.421777i
\(116\) 0 0
\(117\) −4.66562 + 4.66562i −0.431336 + 0.431336i
\(118\) 0 0
\(119\) 4.98125 0.456631
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) 0 0
\(123\) 1.48291 1.48291i 0.133709 0.133709i
\(124\) 0 0
\(125\) 7.25684 + 8.50519i 0.649072 + 0.760727i
\(126\) 0 0
\(127\) 6.05433 + 6.05433i 0.537235 + 0.537235i 0.922716 0.385481i \(-0.125964\pi\)
−0.385481 + 0.922716i \(0.625964\pi\)
\(128\) 0 0
\(129\) 5.04232i 0.443951i
\(130\) 0 0
\(131\) 0.295576i 0.0258246i 0.999917 + 0.0129123i \(0.00411022\pi\)
−0.999917 + 0.0129123i \(0.995890\pi\)
\(132\) 0 0
\(133\) 5.13772 + 5.13772i 0.445497 + 0.445497i
\(134\) 0 0
\(135\) 1.06664 + 1.96527i 0.0918014 + 0.169144i
\(136\) 0 0
\(137\) −5.25598 + 5.25598i −0.449048 + 0.449048i −0.895038 0.445990i \(-0.852852\pi\)
0.445990 + 0.895038i \(0.352852\pi\)
\(138\) 0 0
\(139\) 14.2625 1.20973 0.604866 0.796327i \(-0.293227\pi\)
0.604866 + 0.796327i \(0.293227\pi\)
\(140\) 0 0
\(141\) −1.85666 −0.156359
\(142\) 0 0
\(143\) 6.59818 6.59818i 0.551767 0.551767i
\(144\) 0 0
\(145\) 4.56741 15.4100i 0.379303 1.27973i
\(146\) 0 0
\(147\) −0.707107 0.707107i −0.0583212 0.0583212i
\(148\) 0 0
\(149\) 20.7803i 1.70239i −0.524849 0.851195i \(-0.675878\pi\)
0.524849 0.851195i \(-0.324122\pi\)
\(150\) 0 0
\(151\) 9.12096i 0.742253i 0.928582 + 0.371126i \(0.121028\pi\)
−0.928582 + 0.371126i \(0.878972\pi\)
\(152\) 0 0
\(153\) −3.52228 3.52228i −0.284759 0.284759i
\(154\) 0 0
\(155\) −4.96251 + 16.7430i −0.398599 + 1.34483i
\(156\) 0 0
\(157\) 12.3655 12.3655i 0.986871 0.986871i −0.0130435 0.999915i \(-0.504152\pi\)
0.999915 + 0.0130435i \(0.00415200\pi\)
\(158\) 0 0
\(159\) −9.51843 −0.754861
\(160\) 0 0
\(161\) 4.24049 0.334197
\(162\) 0 0
\(163\) 0.829894 0.829894i 0.0650023 0.0650023i −0.673858 0.738861i \(-0.735364\pi\)
0.738861 + 0.673858i \(0.235364\pi\)
\(164\) 0 0
\(165\) −1.50845 2.77931i −0.117433 0.216369i
\(166\) 0 0
\(167\) −8.74942 8.74942i −0.677051 0.677051i 0.282281 0.959332i \(-0.408909\pi\)
−0.959332 + 0.282281i \(0.908909\pi\)
\(168\) 0 0
\(169\) 30.5360i 2.34892i
\(170\) 0 0
\(171\) 7.26583i 0.555632i
\(172\) 0 0
\(173\) −15.9745 15.9745i −1.21452 1.21452i −0.969524 0.244995i \(-0.921214\pi\)
−0.244995 0.969524i \(-0.578786\pi\)
\(174\) 0 0
\(175\) 1.03795 + 4.89108i 0.0784613 + 0.369731i
\(176\) 0 0
\(177\) 5.39690 5.39690i 0.405656 0.405656i
\(178\) 0 0
\(179\) −7.41117 −0.553937 −0.276968 0.960879i \(-0.589330\pi\)
−0.276968 + 0.960879i \(0.589330\pi\)
\(180\) 0 0
\(181\) −6.38926 −0.474910 −0.237455 0.971399i \(-0.576313\pi\)
−0.237455 + 0.971399i \(0.576313\pi\)
\(182\) 0 0
\(183\) −5.75026 + 5.75026i −0.425072 + 0.425072i
\(184\) 0 0
\(185\) 2.29139 1.24364i 0.168467 0.0914339i
\(186\) 0 0
\(187\) 4.98125 + 4.98125i 0.364265 + 0.364265i
\(188\) 0 0
\(189\) 1.00000i 0.0727393i
\(190\) 0 0
\(191\) 9.38455i 0.679042i 0.940598 + 0.339521i \(0.110265\pi\)
−0.940598 + 0.339521i \(0.889735\pi\)
\(192\) 0 0
\(193\) 4.60270 + 4.60270i 0.331310 + 0.331310i 0.853084 0.521774i \(-0.174730\pi\)
−0.521774 + 0.853084i \(0.674730\pi\)
\(194\) 0 0
\(195\) 14.1457 + 4.19269i 1.01300 + 0.300245i
\(196\) 0 0
\(197\) −12.7328 + 12.7328i −0.907173 + 0.907173i −0.996043 0.0888699i \(-0.971674\pi\)
0.0888699 + 0.996043i \(0.471674\pi\)
\(198\) 0 0
\(199\) −23.0059 −1.63085 −0.815423 0.578865i \(-0.803496\pi\)
−0.815423 + 0.578865i \(0.803496\pi\)
\(200\) 0 0
\(201\) 6.24369 0.440396
\(202\) 0 0
\(203\) 5.08261 5.08261i 0.356729 0.356729i
\(204\) 0 0
\(205\) −4.49603 1.33259i −0.314017 0.0930723i
\(206\) 0 0
\(207\) −2.99848 2.99848i −0.208409 0.208409i
\(208\) 0 0
\(209\) 10.2754i 0.710767i
\(210\) 0 0
\(211\) 7.78881i 0.536204i −0.963391 0.268102i \(-0.913604\pi\)
0.963391 0.268102i \(-0.0863964\pi\)
\(212\) 0 0
\(213\) −6.92159 6.92159i −0.474260 0.474260i
\(214\) 0 0
\(215\) 9.90952 5.37832i 0.675824 0.366798i
\(216\) 0 0
\(217\) −5.52228 + 5.52228i −0.374877 + 0.374877i
\(218\) 0 0
\(219\) −1.03419 −0.0698839
\(220\) 0 0
\(221\) −32.8672 −2.21089
\(222\) 0 0
\(223\) 11.7067 11.7067i 0.783942 0.783942i −0.196552 0.980493i \(-0.562974\pi\)
0.980493 + 0.196552i \(0.0629744\pi\)
\(224\) 0 0
\(225\) 2.72458 4.19245i 0.181638 0.279497i
\(226\) 0 0
\(227\) −15.1573 15.1573i −1.00602 1.00602i −0.999982 0.00604137i \(-0.998077\pi\)
−0.00604137 0.999982i \(-0.501923\pi\)
\(228\) 0 0
\(229\) 9.03108i 0.596791i −0.954442 0.298395i \(-0.903549\pi\)
0.954442 0.298395i \(-0.0964514\pi\)
\(230\) 0 0
\(231\) 1.41421i 0.0930484i
\(232\) 0 0
\(233\) 1.49966 + 1.49966i 0.0982463 + 0.0982463i 0.754522 0.656275i \(-0.227869\pi\)
−0.656275 + 0.754522i \(0.727869\pi\)
\(234\) 0 0
\(235\) 1.98038 + 3.64884i 0.129186 + 0.238024i
\(236\) 0 0
\(237\) 9.63738 9.63738i 0.626015 0.626015i
\(238\) 0 0
\(239\) 9.11403 0.589538 0.294769 0.955569i \(-0.404757\pi\)
0.294769 + 0.955569i \(0.404757\pi\)
\(240\) 0 0
\(241\) 24.6527 1.58802 0.794010 0.607905i \(-0.207990\pi\)
0.794010 + 0.607905i \(0.207990\pi\)
\(242\) 0 0
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 0 0
\(245\) −0.635431 + 2.14388i −0.0405962 + 0.136968i
\(246\) 0 0
\(247\) −33.8996 33.8996i −2.15698 2.15698i
\(248\) 0 0
\(249\) 0.145576i 0.00922547i
\(250\) 0 0
\(251\) 10.9383i 0.690418i 0.938526 + 0.345209i \(0.112192\pi\)
−0.938526 + 0.345209i \(0.887808\pi\)
\(252\) 0 0
\(253\) 4.24049 + 4.24049i 0.266597 + 0.266597i
\(254\) 0 0
\(255\) −3.16524 + 10.6792i −0.198215 + 0.668758i
\(256\) 0 0
\(257\) −5.76053 + 5.76053i −0.359332 + 0.359332i −0.863567 0.504235i \(-0.831775\pi\)
0.504235 + 0.863567i \(0.331775\pi\)
\(258\) 0 0
\(259\) 1.16594 0.0724481
\(260\) 0 0
\(261\) −7.18789 −0.444919
\(262\) 0 0
\(263\) −7.74153 + 7.74153i −0.477363 + 0.477363i −0.904287 0.426924i \(-0.859597\pi\)
0.426924 + 0.904287i \(0.359597\pi\)
\(264\) 0 0
\(265\) 10.1527 + 18.7063i 0.623675 + 1.14912i
\(266\) 0 0
\(267\) −5.78293 5.78293i −0.353909 0.353909i
\(268\) 0 0
\(269\) 8.69024i 0.529854i −0.964269 0.264927i \(-0.914652\pi\)
0.964269 0.264927i \(-0.0853478\pi\)
\(270\) 0 0
\(271\) 14.2413i 0.865100i −0.901610 0.432550i \(-0.857614\pi\)
0.901610 0.432550i \(-0.142386\pi\)
\(272\) 0 0
\(273\) 4.66562 + 4.66562i 0.282376 + 0.282376i
\(274\) 0 0
\(275\) −3.85313 + 5.92903i −0.232353 + 0.357534i
\(276\) 0 0
\(277\) 3.30542 3.30542i 0.198603 0.198603i −0.600798 0.799401i \(-0.705150\pi\)
0.799401 + 0.600798i \(0.205150\pi\)
\(278\) 0 0
\(279\) 7.80968 0.467553
\(280\) 0 0
\(281\) 6.17106 0.368135 0.184067 0.982914i \(-0.441074\pi\)
0.184067 + 0.982914i \(0.441074\pi\)
\(282\) 0 0
\(283\) −6.81200 + 6.81200i −0.404931 + 0.404931i −0.879967 0.475035i \(-0.842435\pi\)
0.475035 + 0.879967i \(0.342435\pi\)
\(284\) 0 0
\(285\) −14.2793 + 7.75000i −0.845834 + 0.459070i
\(286\) 0 0
\(287\) −1.48291 1.48291i −0.0875332 0.0875332i
\(288\) 0 0
\(289\) 7.81288i 0.459581i
\(290\) 0 0
\(291\) 13.2308i 0.775604i
\(292\) 0 0
\(293\) −21.0463 21.0463i −1.22954 1.22954i −0.964139 0.265399i \(-0.914496\pi\)
−0.265399 0.964139i \(-0.585504\pi\)
\(294\) 0 0
\(295\) −16.3629 4.84984i −0.952684 0.282369i
\(296\) 0 0
\(297\) −1.00000 + 1.00000i −0.0580259 + 0.0580259i
\(298\) 0 0
\(299\) −27.9795 −1.61810
\(300\) 0 0
\(301\) 5.04232 0.290634
\(302\) 0 0
\(303\) 7.97815 7.97815i 0.458333 0.458333i
\(304\) 0 0
\(305\) 17.4343 + 5.16739i 0.998283 + 0.295884i
\(306\) 0 0
\(307\) −16.6351 16.6351i −0.949413 0.949413i 0.0493677 0.998781i \(-0.484279\pi\)
−0.998781 + 0.0493677i \(0.984279\pi\)
\(308\) 0 0
\(309\) 13.0288i 0.741185i
\(310\) 0 0
\(311\) 33.8175i 1.91761i 0.284061 + 0.958806i \(0.408318\pi\)
−0.284061 + 0.958806i \(0.591682\pi\)
\(312\) 0 0
\(313\) 1.02020 + 1.02020i 0.0576649 + 0.0576649i 0.735351 0.677686i \(-0.237017\pi\)
−0.677686 + 0.735351i \(0.737017\pi\)
\(314\) 0 0
\(315\) 1.96527 1.06664i 0.110730 0.0600981i
\(316\) 0 0
\(317\) −17.8732 + 17.8732i −1.00386 + 1.00386i −0.00386734 + 0.999993i \(0.501231\pi\)
−0.999993 + 0.00386734i \(0.998769\pi\)
\(318\) 0 0
\(319\) 10.1652 0.569143
\(320\) 0 0
\(321\) −12.4672 −0.695852
\(322\) 0 0
\(323\) 25.5923 25.5923i 1.42399 1.42399i
\(324\) 0 0
\(325\) −6.84855 32.2722i −0.379889 1.79014i
\(326\) 0 0
\(327\) −2.62571 2.62571i −0.145202 0.145202i
\(328\) 0 0
\(329\) 1.85666i 0.102361i
\(330\) 0 0
\(331\) 15.8415i 0.870728i −0.900254 0.435364i \(-0.856620\pi\)
0.900254 0.435364i \(-0.143380\pi\)
\(332\) 0 0
\(333\) −0.824446 0.824446i −0.0451794 0.0451794i
\(334\) 0 0
\(335\) −6.65974 12.2705i −0.363860 0.670411i
\(336\) 0 0
\(337\) 2.53677 2.53677i 0.138186 0.138186i −0.634630 0.772816i \(-0.718847\pi\)
0.772816 + 0.634630i \(0.218847\pi\)
\(338\) 0 0
\(339\) −13.4155 −0.728630
\(340\) 0 0
\(341\) −11.0446 −0.598096
\(342\) 0 0
\(343\) −0.707107 + 0.707107i −0.0381802 + 0.0381802i
\(344\) 0 0
\(345\) −2.69454 + 9.09110i −0.145069 + 0.489448i
\(346\) 0 0
\(347\) −21.0551 21.0551i −1.13030 1.13030i −0.990127 0.140171i \(-0.955235\pi\)
−0.140171 0.990127i \(-0.544765\pi\)
\(348\) 0 0
\(349\) 21.9570i 1.17533i 0.809104 + 0.587666i \(0.199953\pi\)
−0.809104 + 0.587666i \(0.800047\pi\)
\(350\) 0 0
\(351\) 6.59818i 0.352185i
\(352\) 0 0
\(353\) −19.1257 19.1257i −1.01796 1.01796i −0.999836 0.0181252i \(-0.994230\pi\)
−0.0181252 0.999836i \(-0.505770\pi\)
\(354\) 0 0
\(355\) −6.21999 + 20.9856i −0.330123 + 1.11380i
\(356\) 0 0
\(357\) −3.52228 + 3.52228i −0.186419 + 0.186419i
\(358\) 0 0
\(359\) −7.02551 −0.370792 −0.185396 0.982664i \(-0.559357\pi\)
−0.185396 + 0.982664i \(0.559357\pi\)
\(360\) 0 0
\(361\) 33.7923 1.77854
\(362\) 0 0
\(363\) −6.36396 + 6.36396i −0.334021 + 0.334021i
\(364\) 0 0
\(365\) 1.10310 + 2.03246i 0.0577390 + 0.106384i
\(366\) 0 0
\(367\) −13.0434 13.0434i −0.680861 0.680861i 0.279333 0.960194i \(-0.409887\pi\)
−0.960194 + 0.279333i \(0.909887\pi\)
\(368\) 0 0
\(369\) 2.09715i 0.109173i
\(370\) 0 0
\(371\) 9.51843i 0.494172i
\(372\) 0 0
\(373\) −11.8183 11.8183i −0.611930 0.611930i 0.331518 0.943449i \(-0.392439\pi\)
−0.943449 + 0.331518i \(0.892439\pi\)
\(374\) 0 0
\(375\) −11.1454 0.882711i −0.575548 0.0455830i
\(376\) 0 0
\(377\) −33.5360 + 33.5360i −1.72719 + 1.72719i
\(378\) 0 0
\(379\) −21.6192 −1.11050 −0.555251 0.831683i \(-0.687378\pi\)
−0.555251 + 0.831683i \(0.687378\pi\)
\(380\) 0 0
\(381\) −8.56212 −0.438651
\(382\) 0 0
\(383\) −3.71840 + 3.71840i −0.190001 + 0.190001i −0.795697 0.605695i \(-0.792895\pi\)
0.605695 + 0.795697i \(0.292895\pi\)
\(384\) 0 0
\(385\) −2.77931 + 1.50845i −0.141647 + 0.0768777i
\(386\) 0 0
\(387\) −3.56546 3.56546i −0.181242 0.181242i
\(388\) 0 0
\(389\) 36.3278i 1.84189i 0.389687 + 0.920947i \(0.372583\pi\)
−0.389687 + 0.920947i \(0.627417\pi\)
\(390\) 0 0
\(391\) 21.1229i 1.06823i
\(392\) 0 0
\(393\) −0.209004 0.209004i −0.0105428 0.0105428i
\(394\) 0 0
\(395\) −29.2196 8.66049i −1.47020 0.435757i
\(396\) 0 0
\(397\) −1.71017 + 1.71017i −0.0858311 + 0.0858311i −0.748719 0.662888i \(-0.769331\pi\)
0.662888 + 0.748719i \(0.269331\pi\)
\(398\) 0 0
\(399\) −7.26583 −0.363747
\(400\) 0 0
\(401\) 30.5962 1.52790 0.763951 0.645274i \(-0.223257\pi\)
0.763951 + 0.645274i \(0.223257\pi\)
\(402\) 0 0
\(403\) 36.4370 36.4370i 1.81505 1.81505i
\(404\) 0 0
\(405\) −2.14388 0.635431i −0.106530 0.0315748i
\(406\) 0 0
\(407\) 1.16594 + 1.16594i 0.0577936 + 0.0577936i
\(408\) 0 0
\(409\) 21.6519i 1.07062i −0.844656 0.535309i \(-0.820195\pi\)
0.844656 0.535309i \(-0.179805\pi\)
\(410\) 0 0
\(411\) 7.43307i 0.366646i
\(412\) 0 0
\(413\) −5.39690 5.39690i −0.265564 0.265564i
\(414\) 0 0
\(415\) −0.286095 + 0.155276i −0.0140439 + 0.00762220i
\(416\) 0 0
\(417\) −10.0851 + 10.0851i −0.493871 + 0.493871i
\(418\) 0 0
\(419\) −18.9270 −0.924645 −0.462323 0.886712i \(-0.652984\pi\)
−0.462323 + 0.886712i \(0.652984\pi\)
\(420\) 0 0
\(421\) −7.14190 −0.348075 −0.174037 0.984739i \(-0.555681\pi\)
−0.174037 + 0.984739i \(0.555681\pi\)
\(422\) 0 0
\(423\) 1.31286 1.31286i 0.0638333 0.0638333i
\(424\) 0 0
\(425\) 24.3637 5.17027i 1.18181 0.250795i
\(426\) 0 0
\(427\) 5.75026 + 5.75026i 0.278275 + 0.278275i
\(428\) 0 0
\(429\) 9.33123i 0.450516i
\(430\) 0 0
\(431\) 18.2523i 0.879182i −0.898198 0.439591i \(-0.855123\pi\)
0.898198 0.439591i \(-0.144877\pi\)
\(432\) 0 0
\(433\) 19.6445 + 19.6445i 0.944055 + 0.944055i 0.998516 0.0544611i \(-0.0173441\pi\)
−0.0544611 + 0.998516i \(0.517344\pi\)
\(434\) 0 0
\(435\) 7.66686 + 14.1262i 0.367598 + 0.677297i
\(436\) 0 0
\(437\) 21.7864 21.7864i 1.04219 1.04219i
\(438\) 0 0
\(439\) −24.4990 −1.16928 −0.584638 0.811294i \(-0.698763\pi\)
−0.584638 + 0.811294i \(0.698763\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 10.2108 10.2108i 0.485130 0.485130i −0.421635 0.906765i \(-0.638544\pi\)
0.906765 + 0.421635i \(0.138544\pi\)
\(444\) 0 0
\(445\) −5.19674 + 17.5333i −0.246349 + 0.831158i
\(446\) 0 0
\(447\) 14.6939 + 14.6939i 0.694998 + 0.694998i
\(448\) 0 0
\(449\) 19.8884i 0.938592i 0.883041 + 0.469296i \(0.155492\pi\)
−0.883041 + 0.469296i \(0.844508\pi\)
\(450\) 0 0
\(451\) 2.96581i 0.139655i
\(452\) 0 0
\(453\) −6.44949 6.44949i −0.303023 0.303023i
\(454\) 0 0
\(455\) 4.19269 14.1457i 0.196556 0.663161i
\(456\) 0 0
\(457\) −23.9349 + 23.9349i −1.11963 + 1.11963i −0.127831 + 0.991796i \(0.540802\pi\)
−0.991796 + 0.127831i \(0.959198\pi\)
\(458\) 0 0
\(459\) 4.98125 0.232505
\(460\) 0 0
\(461\) 28.9898 1.35019 0.675095 0.737730i \(-0.264102\pi\)
0.675095 + 0.737730i \(0.264102\pi\)
\(462\) 0 0
\(463\) 9.90687 9.90687i 0.460411 0.460411i −0.438379 0.898790i \(-0.644447\pi\)
0.898790 + 0.438379i \(0.144447\pi\)
\(464\) 0 0
\(465\) −8.33008 15.3481i −0.386298 0.711753i
\(466\) 0 0
\(467\) 25.1847 + 25.1847i 1.16541 + 1.16541i 0.983273 + 0.182136i \(0.0583013\pi\)
0.182136 + 0.983273i \(0.441699\pi\)
\(468\) 0 0
\(469\) 6.24369i 0.288307i
\(470\) 0 0
\(471\) 17.4874i 0.805777i
\(472\) 0 0
\(473\) 5.04232 + 5.04232i 0.231846 + 0.231846i
\(474\) 0 0
\(475\) 30.4617 + 19.7963i 1.39768 + 0.908318i
\(476\) 0 0
\(477\) 6.73055 6.73055i 0.308171 0.308171i
\(478\) 0 0
\(479\) −15.2716 −0.697776 −0.348888 0.937164i \(-0.613441\pi\)
−0.348888 + 0.937164i \(0.613441\pi\)
\(480\) 0 0
\(481\) −7.69310 −0.350775
\(482\) 0 0
\(483\) −2.99848 + 2.99848i −0.136435 + 0.136435i
\(484\) 0 0
\(485\) 26.0021 14.1124i 1.18070 0.640813i
\(486\) 0 0
\(487\) 19.7521 + 19.7521i 0.895055 + 0.895055i 0.994994 0.0999387i \(-0.0318647\pi\)
−0.0999387 + 0.994994i \(0.531865\pi\)
\(488\) 0 0
\(489\) 1.17365i 0.0530742i
\(490\) 0 0
\(491\) 12.3239i 0.556168i 0.960557 + 0.278084i \(0.0896994\pi\)
−0.960557 + 0.278084i \(0.910301\pi\)
\(492\) 0 0
\(493\) −25.3178 25.3178i −1.14025 1.14025i
\(494\) 0 0
\(495\) 3.03191 + 0.898635i 0.136274 + 0.0403906i
\(496\) 0 0
\(497\) −6.92159 + 6.92159i −0.310476 + 0.310476i
\(498\) 0 0
\(499\) −0.784427 −0.0351158 −0.0175579 0.999846i \(-0.505589\pi\)
−0.0175579 + 0.999846i \(0.505589\pi\)
\(500\) 0 0
\(501\) 12.3736 0.552810
\(502\) 0 0
\(503\) 18.9390 18.9390i 0.844449 0.844449i −0.144985 0.989434i \(-0.546313\pi\)
0.989434 + 0.144985i \(0.0463134\pi\)
\(504\) 0 0
\(505\) −24.1890 7.16944i −1.07640 0.319036i
\(506\) 0 0
\(507\) −21.5922 21.5922i −0.958943 0.958943i
\(508\) 0 0
\(509\) 30.8483i 1.36733i −0.729798 0.683663i \(-0.760386\pi\)
0.729798 0.683663i \(-0.239614\pi\)
\(510\) 0 0
\(511\) 1.03419i 0.0457498i
\(512\) 0 0
\(513\) 5.13772 + 5.13772i 0.226836 + 0.226836i
\(514\) 0 0
\(515\) 25.6052 13.8970i 1.12830 0.612376i
\(516\) 0 0
\(517\) −1.85666 + 1.85666i −0.0816558 + 0.0816558i
\(518\) 0 0
\(519\) 22.5914 0.991651
\(520\) 0 0
\(521\) −29.0942 −1.27464 −0.637320 0.770599i \(-0.719957\pi\)
−0.637320 + 0.770599i \(0.719957\pi\)
\(522\) 0 0
\(523\) −5.29523 + 5.29523i −0.231544 + 0.231544i −0.813337 0.581793i \(-0.802351\pi\)
0.581793 + 0.813337i \(0.302351\pi\)
\(524\) 0 0
\(525\) −4.19245 2.72458i −0.182974 0.118910i
\(526\) 0 0
\(527\) 27.5079 + 27.5079i 1.19826 + 1.19826i
\(528\) 0 0
\(529\) 5.01828i 0.218186i
\(530\) 0 0
\(531\) 7.63237i 0.331216i
\(532\) 0 0
\(533\) 9.78448 + 9.78448i 0.423813 + 0.423813i
\(534\) 0 0
\(535\) 13.2980 + 24.5014i 0.574921 + 1.05929i
\(536\) 0 0
\(537\) 5.24049 5.24049i 0.226144 0.226144i
\(538\) 0 0
\(539\) −1.41421 −0.0609145
\(540\) 0 0
\(541\) 4.65699 0.200220 0.100110 0.994976i \(-0.468081\pi\)
0.100110 + 0.994976i \(0.468081\pi\)
\(542\) 0 0
\(543\) 4.51789 4.51789i 0.193881 0.193881i
\(544\) 0 0
\(545\) −2.35956 + 7.96092i −0.101072 + 0.341008i
\(546\) 0 0
\(547\) −4.33662 4.33662i −0.185420 0.185420i 0.608292 0.793713i \(-0.291855\pi\)
−0.793713 + 0.608292i \(0.791855\pi\)
\(548\) 0 0
\(549\) 8.13210i 0.347070i
\(550\) 0 0
\(551\) 52.2260i 2.22490i
\(552\) 0 0
\(553\) −9.63738 9.63738i −0.409823 0.409823i
\(554\) 0 0
\(555\) −0.740876 + 2.49964i −0.0314484 + 0.106104i
\(556\) 0 0
\(557\) −11.6175 + 11.6175i −0.492250 + 0.492250i −0.909015 0.416764i \(-0.863164\pi\)
0.416764 + 0.909015i \(0.363164\pi\)
\(558\) 0 0
\(559\) −33.2701 −1.40718
\(560\) 0 0
\(561\) −7.04456 −0.297421
\(562\) 0 0
\(563\) −31.8323 + 31.8323i −1.34157 + 1.34157i −0.447077 + 0.894495i \(0.647535\pi\)
−0.894495 + 0.447077i \(0.852465\pi\)
\(564\) 0 0
\(565\) 14.3094 + 26.3651i 0.602003 + 1.10919i
\(566\) 0 0
\(567\) −0.707107 0.707107i −0.0296957 0.0296957i
\(568\) 0 0
\(569\) 29.5035i 1.23685i −0.785843 0.618426i \(-0.787771\pi\)
0.785843 0.618426i \(-0.212229\pi\)
\(570\) 0 0
\(571\) 21.8049i 0.912506i 0.889850 + 0.456253i \(0.150809\pi\)
−0.889850 + 0.456253i \(0.849191\pi\)
\(572\) 0 0
\(573\) −6.63588 6.63588i −0.277218 0.277218i
\(574\) 0 0
\(575\) 20.7406 4.40140i 0.864941 0.183551i
\(576\) 0 0
\(577\) 1.00595 1.00595i 0.0418782 0.0418782i −0.685858 0.727736i \(-0.740573\pi\)
0.727736 + 0.685858i \(0.240573\pi\)
\(578\) 0 0
\(579\) −6.50920 −0.270513
\(580\) 0 0
\(581\) −0.145576 −0.00603949
\(582\) 0 0
\(583\) −9.51843 + 9.51843i −0.394213 + 0.394213i
\(584\) 0 0
\(585\) −12.9672 + 7.03785i −0.536128 + 0.290979i
\(586\) 0 0
\(587\) 10.6590 + 10.6590i 0.439943 + 0.439943i 0.891993 0.452050i \(-0.149307\pi\)
−0.452050 + 0.891993i \(0.649307\pi\)
\(588\) 0 0
\(589\) 56.7438i 2.33809i
\(590\) 0 0
\(591\) 18.0069i 0.740704i
\(592\) 0 0
\(593\) 1.50307 + 1.50307i 0.0617239 + 0.0617239i 0.737295 0.675571i \(-0.236103\pi\)
−0.675571 + 0.737295i \(0.736103\pi\)
\(594\) 0 0
\(595\) 10.6792 + 3.16524i 0.437805 + 0.129762i
\(596\) 0 0
\(597\) 16.2676 16.2676i 0.665790 0.665790i
\(598\) 0 0
\(599\) −43.0442 −1.75874 −0.879369 0.476141i \(-0.842035\pi\)
−0.879369 + 0.476141i \(0.842035\pi\)
\(600\) 0 0
\(601\) 3.45562 0.140958 0.0704788 0.997513i \(-0.477547\pi\)
0.0704788 + 0.997513i \(0.477547\pi\)
\(602\) 0 0
\(603\) −4.41495 + 4.41495i −0.179791 + 0.179791i
\(604\) 0 0
\(605\) 19.2949 + 5.71888i 0.784451 + 0.232506i
\(606\) 0 0
\(607\) −24.0258 24.0258i −0.975178 0.975178i 0.0245217 0.999699i \(-0.492194\pi\)
−0.999699 + 0.0245217i \(0.992194\pi\)
\(608\) 0 0
\(609\) 7.18789i 0.291268i
\(610\) 0 0
\(611\) 12.2506i 0.495605i
\(612\) 0 0
\(613\) −8.82988 8.82988i −0.356636 0.356636i 0.505936 0.862571i \(-0.331147\pi\)
−0.862571 + 0.505936i \(0.831147\pi\)
\(614\) 0 0
\(615\) 4.12146 2.23689i 0.166193 0.0902002i
\(616\) 0 0
\(617\) −5.08089 + 5.08089i −0.204549 + 0.204549i −0.801946 0.597397i \(-0.796202\pi\)
0.597397 + 0.801946i \(0.296202\pi\)
\(618\) 0 0
\(619\) 37.5701 1.51007 0.755036 0.655684i \(-0.227620\pi\)
0.755036 + 0.655684i \(0.227620\pi\)
\(620\) 0 0
\(621\) 4.24049 0.170165
\(622\) 0 0
\(623\) −5.78293 + 5.78293i −0.231688 + 0.231688i
\(624\) 0 0
\(625\) 10.1534 + 22.8453i 0.406134 + 0.913813i
\(626\) 0 0
\(627\) −7.26583 7.26583i −0.290169 0.290169i
\(628\) 0 0
\(629\) 5.80785i 0.231574i
\(630\) 0 0
\(631\) 17.8121i 0.709089i 0.935039 + 0.354544i \(0.115364\pi\)
−0.935039 + 0.354544i \(0.884636\pi\)
\(632\) 0 0
\(633\) 5.50752 + 5.50752i 0.218904 + 0.218904i
\(634\) 0 0
\(635\) 9.13266 + 16.8269i 0.362419 + 0.667754i
\(636\) 0 0
\(637\) 4.66562 4.66562i 0.184858 0.184858i
\(638\) 0 0
\(639\) 9.78861 0.387231
\(640\) 0 0
\(641\) −6.40623 −0.253031 −0.126515 0.991965i \(-0.540379\pi\)
−0.126515 + 0.991965i \(0.540379\pi\)
\(642\) 0 0
\(643\) −18.1731 + 18.1731i −0.716676 + 0.716676i −0.967923 0.251247i \(-0.919159\pi\)
0.251247 + 0.967923i \(0.419159\pi\)
\(644\) 0 0
\(645\) −3.20405 + 10.8101i −0.126159 + 0.425649i
\(646\) 0 0
\(647\) −30.6179 30.6179i −1.20371 1.20371i −0.973029 0.230684i \(-0.925903\pi\)
−0.230684 0.973029i \(-0.574097\pi\)
\(648\) 0 0
\(649\) 10.7938i 0.423694i
\(650\) 0 0
\(651\) 7.80968i 0.306085i
\(652\) 0 0
\(653\) 6.20659 + 6.20659i 0.242882 + 0.242882i 0.818042 0.575159i \(-0.195060\pi\)
−0.575159 + 0.818042i \(0.695060\pi\)
\(654\) 0 0
\(655\) −0.187818 + 0.633679i −0.00733865 + 0.0247599i
\(656\) 0 0
\(657\) 0.731281 0.731281i 0.0285300 0.0285300i
\(658\) 0 0
\(659\) 13.1320 0.511549 0.255775 0.966736i \(-0.417669\pi\)
0.255775 + 0.966736i \(0.417669\pi\)
\(660\) 0 0
\(661\) −16.9897 −0.660821 −0.330411 0.943837i \(-0.607187\pi\)
−0.330411 + 0.943837i \(0.607187\pi\)
\(662\) 0 0
\(663\) 23.2406 23.2406i 0.902591 0.902591i
\(664\) 0 0
\(665\) 7.75000 + 14.2793i 0.300532 + 0.553729i
\(666\) 0 0
\(667\) −21.5527 21.5527i −0.834525 0.834525i
\(668\) 0 0
\(669\) 16.5558i 0.640086i
\(670\) 0 0
\(671\) 11.5005i 0.443973i
\(672\) 0 0
\(673\) 19.1196 + 19.1196i 0.737006 + 0.737006i 0.971997 0.234991i \(-0.0755062\pi\)
−0.234991 + 0.971997i \(0.575506\pi\)
\(674\) 0 0
\(675\) 1.03795 + 4.89108i 0.0399506 + 0.188258i
\(676\) 0 0
\(677\) 25.8589 25.8589i 0.993838 0.993838i −0.00614329 0.999981i \(-0.501955\pi\)
0.999981 + 0.00614329i \(0.00195548\pi\)
\(678\) 0 0
\(679\) 13.2308 0.507752
\(680\) 0 0
\(681\) 21.4356 0.821414
\(682\) 0 0
\(683\) −0.748003 + 0.748003i −0.0286216 + 0.0286216i −0.721273 0.692651i \(-0.756443\pi\)
0.692651 + 0.721273i \(0.256443\pi\)
\(684\) 0 0
\(685\) −14.6080 + 7.92838i −0.558143 + 0.302928i
\(686\) 0 0
\(687\) 6.38594 + 6.38594i 0.243639 + 0.243639i
\(688\) 0 0
\(689\) 62.8043i 2.39265i
\(690\) 0 0
\(691\) 36.1829i 1.37646i 0.725492 + 0.688231i \(0.241612\pi\)
−0.725492 + 0.688231i \(0.758388\pi\)
\(692\) 0 0
\(693\) 1.00000 + 1.00000i 0.0379869 + 0.0379869i
\(694\) 0 0
\(695\) 30.5772 + 9.06285i 1.15986 + 0.343774i
\(696\) 0 0
\(697\) −7.38673 + 7.38673i −0.279792 + 0.279792i
\(698\) 0 0
\(699\) −2.12085 −0.0802177
\(700\) 0 0
\(701\) −40.3220 −1.52294 −0.761471 0.648199i \(-0.775523\pi\)
−0.761471 + 0.648199i \(0.775523\pi\)
\(702\) 0 0
\(703\) 5.99029 5.99029i 0.225928 0.225928i
\(704\) 0 0
\(705\) −3.98046 1.17978i −0.149913 0.0444331i
\(706\) 0 0
\(707\) −7.97815 7.97815i −0.300049 0.300049i
\(708\) 0 0
\(709\) 24.9039i 0.935286i 0.883917 + 0.467643i \(0.154897\pi\)
−0.883917 + 0.467643i \(0.845103\pi\)
\(710\) 0 0
\(711\) 13.6293i 0.511139i
\(712\) 0 0
\(713\) 23.4171 + 23.4171i 0.876979 + 0.876979i
\(714\) 0 0
\(715\) 18.3384 9.95302i 0.685817 0.372222i
\(716\) 0 0
\(717\) −6.44459 + 6.44459i −0.240678 + 0.240678i
\(718\) 0 0
\(719\) −30.6825 −1.14426 −0.572132 0.820161i \(-0.693884\pi\)
−0.572132 + 0.820161i \(0.693884\pi\)
\(720\) 0 0
\(721\) 13.0288 0.485219
\(722\) 0 0
\(723\) −17.4321 + 17.4321i −0.648306 + 0.648306i
\(724\) 0 0
\(725\) 19.5840 30.1349i 0.727331 1.11918i
\(726\) 0 0
\(727\) 12.2213 + 12.2213i 0.453263 + 0.453263i 0.896436 0.443173i \(-0.146147\pi\)
−0.443173 + 0.896436i \(0.646147\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 25.1171i 0.928988i
\(732\) 0 0
\(733\) −28.5145 28.5145i −1.05321 1.05321i −0.998503 0.0547057i \(-0.982578\pi\)
−0.0547057 0.998503i \(-0.517422\pi\)
\(734\) 0 0
\(735\) −1.06664 1.96527i −0.0393434 0.0724901i
\(736\) 0 0
\(737\) 6.24369 6.24369i 0.229989 0.229989i
\(738\) 0 0
\(739\) 25.8507 0.950933 0.475467 0.879734i \(-0.342279\pi\)
0.475467 + 0.879734i \(0.342279\pi\)
\(740\) 0 0
\(741\) 47.9413 1.76117
\(742\) 0 0
\(743\) 35.3809 35.3809i 1.29800 1.29800i 0.368288 0.929712i \(-0.379944\pi\)
0.929712 0.368288i \(-0.120056\pi\)
\(744\) 0 0
\(745\) 13.2045 44.5505i 0.483774 1.63221i
\(746\) 0 0
\(747\) 0.102937 + 0.102937i 0.00376628 + 0.00376628i
\(748\) 0 0
\(749\) 12.4672i 0.455542i
\(750\) 0 0
\(751\) 4.71070i 0.171896i 0.996300 + 0.0859479i \(0.0273918\pi\)
−0.996300 + 0.0859479i \(0.972608\pi\)
\(752\) 0 0
\(753\) −7.73453 7.73453i −0.281862 0.281862i
\(754\) 0 0
\(755\) −5.79574 + 19.5542i −0.210929 + 0.711652i
\(756\) 0 0
\(757\) 13.7132 13.7132i 0.498413 0.498413i −0.412531 0.910944i \(-0.635355\pi\)
0.910944 + 0.412531i \(0.135355\pi\)
\(758\) 0 0
\(759\) −5.99695 −0.217676
\(760\) 0 0
\(761\) −10.2580 −0.371851 −0.185926 0.982564i \(-0.559528\pi\)
−0.185926 + 0.982564i \(0.559528\pi\)
\(762\) 0 0
\(763\) −2.62571 + 2.62571i −0.0950573 + 0.0950573i
\(764\) 0 0
\(765\) −5.31318 9.78951i −0.192098 0.353940i
\(766\) 0 0
\(767\) 35.6097 + 35.6097i 1.28579 + 1.28579i
\(768\) 0 0
\(769\) 15.5869i 0.562080i −0.959696 0.281040i \(-0.909321\pi\)
0.959696 0.281040i \(-0.0906793\pi\)
\(770\) 0 0
\(771\) 8.14662i 0.293393i
\(772\) 0 0
\(773\) 5.55825 + 5.55825i 0.199916 + 0.199916i 0.799964 0.600048i \(-0.204852\pi\)
−0.600048 + 0.799964i \(0.704852\pi\)
\(774\) 0 0
\(775\) −21.2781 + 32.7417i −0.764331 + 1.17612i
\(776\) 0 0
\(777\) −0.824446 + 0.824446i −0.0295768 + 0.0295768i
\(778\) 0 0
\(779\) −15.2375 −0.545941
\(780\) 0 0
\(781\) −13.8432 −0.495348
\(782\) 0 0
\(783\) 5.08261 5.08261i 0.181638 0.181638i
\(784\) 0 0
\(785\) 34.3675 18.6527i 1.22663 0.665743i
\(786\) 0 0
\(787\) 14.8693 + 14.8693i 0.530033 + 0.530033i 0.920582 0.390549i \(-0.127715\pi\)
−0.390549 + 0.920582i \(0.627715\pi\)
\(788\) 0 0
\(789\) 10.9482i 0.389766i
\(790\) 0 0
\(791\) 13.4155i 0.477000i
\(792\) 0 0
\(793\) −37.9413 37.9413i −1.34733 1.34733i
\(794\) 0 0
\(795\) −20.4064 6.04831i −0.723740 0.214511i
\(796\) 0 0
\(797\) −14.7614 + 14.7614i −0.522874 + 0.522874i −0.918438 0.395564i \(-0.870549\pi\)
0.395564 + 0.918438i \(0.370549\pi\)
\(798\) 0 0
\(799\) 9.24850 0.327188
\(800\) 0 0
\(801\) 8.17829 0.288966
\(802\) 0 0
\(803\) −1.03419 + 1.03419i −0.0364957 + 0.0364957i
\(804\) 0 0
\(805\) 9.09110 + 2.69454i 0.320419 + 0.0949699i
\(806\) 0 0
\(807\) 6.14493 + 6.14493i 0.216312 + 0.216312i
\(808\) 0 0
\(809\) 5.57269i 0.195925i −0.995190 0.0979626i \(-0.968767\pi\)
0.995190 0.0979626i \(-0.0312326\pi\)
\(810\) 0 0
\(811\) 28.3259i 0.994658i −0.867562 0.497329i \(-0.834314\pi\)
0.867562 0.497329i \(-0.165686\pi\)
\(812\) 0 0
\(813\) 10.0701 + 10.0701i 0.353176 + 0.353176i
\(814\) 0 0
\(815\) 2.30653 1.25185i 0.0807944 0.0438505i
\(816\) 0 0
\(817\) 25.9060 25.9060i 0.906337 0.906337i
\(818\) 0 0
\(819\) −6.59818 −0.230559
\(820\) 0 0
\(821\) −20.0455 −0.699591 −0.349796 0.936826i \(-0.613749\pi\)
−0.349796 + 0.936826i \(0.613749\pi\)
\(822\) 0 0
\(823\) −28.0000 + 28.0000i −0.976020 + 0.976020i −0.999719 0.0236994i \(-0.992456\pi\)
0.0236994 + 0.999719i \(0.492456\pi\)
\(824\) 0 0
\(825\) −1.46788 6.91703i −0.0511049 0.240820i
\(826\) 0 0
\(827\) 12.3073 + 12.3073i 0.427966 + 0.427966i 0.887935 0.459969i \(-0.152139\pi\)
−0.459969 + 0.887935i \(0.652139\pi\)
\(828\) 0 0
\(829\) 30.7848i 1.06920i −0.845105 0.534600i \(-0.820462\pi\)
0.845105 0.534600i \(-0.179538\pi\)
\(830\) 0 0
\(831\) 4.67457i 0.162159i
\(832\) 0 0
\(833\) 3.52228 + 3.52228i 0.122040 + 0.122040i
\(834\) 0 0
\(835\) −13.1981 24.3174i −0.456738 0.841538i
\(836\) 0 0
\(837\) −5.52228 + 5.52228i −0.190878 + 0.190878i
\(838\) 0 0
\(839\) 6.92930 0.239226 0.119613 0.992821i \(-0.461835\pi\)
0.119613 + 0.992821i \(0.461835\pi\)
\(840\) 0 0
\(841\) −22.6658 −0.781580
\(842\) 0 0
\(843\) −4.36360 + 4.36360i −0.150290 + 0.150290i
\(844\) 0 0
\(845\) −19.4035 + 65.4655i −0.667501 + 2.25208i
\(846\) 0 0
\(847\) 6.36396 + 6.36396i 0.218668 + 0.218668i
\(848\) 0 0
\(849\) 9.63362i 0.330625i
\(850\) 0 0
\(851\) 4.94416i 0.169484i
\(852\) 0 0
\(853\) −6.43540 6.43540i −0.220344 0.220344i 0.588299 0.808643i \(-0.299798\pi\)
−0.808643 + 0.588299i \(0.799798\pi\)
\(854\) 0 0
\(855\) 4.61694 15.5771i 0.157896 0.532725i
\(856\) 0 0
\(857\) −34.6045 + 34.6045i −1.18207 + 1.18207i −0.202859 + 0.979208i \(0.565023\pi\)
−0.979208 + 0.202859i \(0.934977\pi\)
\(858\) 0 0
\(859\) 41.2139 1.40620 0.703101 0.711090i \(-0.251798\pi\)
0.703101 + 0.711090i \(0.251798\pi\)
\(860\) 0 0
\(861\) 2.09715 0.0714706
\(862\) 0 0
\(863\) −29.1524 + 29.1524i −0.992360 + 0.992360i −0.999971 0.00761058i \(-0.997577\pi\)
0.00761058 + 0.999971i \(0.497577\pi\)
\(864\) 0 0
\(865\) −24.0967 44.3981i −0.819314 1.50958i
\(866\) 0 0
\(867\) 5.52454 + 5.52454i 0.187623 + 0.187623i
\(868\) 0 0
\(869\) 19.2748i 0.653852i
\(870\) 0 0
\(871\) 41.1970i 1.39591i
\(872\) 0 0
\(873\) −9.35559 9.35559i −0.316639 0.316639i
\(874\) 0 0
\(875\) −0.882711 + 11.1454i −0.0298411 + 0.376785i
\(876\) 0 0
\(877\) 16.1507 16.1507i 0.545370 0.545370i −0.379728 0.925098i \(-0.623982\pi\)
0.925098 + 0.379728i \(0.123982\pi\)
\(878\) 0 0
\(879\) 29.7640 1.00391
\(880\) 0 0
\(881\) 48.8984 1.64743 0.823715 0.567004i \(-0.191897\pi\)
0.823715 + 0.567004i \(0.191897\pi\)
\(882\) 0 0
\(883\) 31.8940 31.8940i 1.07332 1.07332i 0.0762280 0.997090i \(-0.475712\pi\)
0.997090 0.0762280i \(-0.0242877\pi\)
\(884\) 0 0
\(885\) 14.9997 8.14095i 0.504208 0.273655i
\(886\) 0 0
\(887\) −7.61308 7.61308i −0.255622 0.255622i 0.567649 0.823271i \(-0.307853\pi\)
−0.823271 + 0.567649i \(0.807853\pi\)
\(888\) 0 0
\(889\) 8.56212i 0.287164i
\(890\) 0 0
\(891\) 1.41421i 0.0473779i
\(892\) 0 0
\(893\) 9.53900 + 9.53900i 0.319211 + 0.319211i
\(894\) 0 0
\(895\) −15.8887 4.70929i −0.531099 0.157414i
\(896\) 0 0
\(897\) 19.7845 19.7845i 0.660585 0.660585i
\(898\) 0 0
\(899\) 56.1352 1.87221
\(900\) 0 0
\(901\) 47.4137 1.57958
\(902\) 0 0
\(903\) −3.56546 + 3.56546i −0.118651 + 0.118651i
\(904\) 0 0
\(905\) −13.6978 4.05994i −0.455331 0.134957i
\(906\) 0 0
\(907\) 4.91362 + 4.91362i 0.163154 + 0.163154i 0.783962 0.620808i \(-0.213195\pi\)
−0.620808 + 0.783962i \(0.713195\pi\)
\(908\) 0 0
\(909\) 11.2828i 0.374227i
\(910\) 0 0
\(911\) 39.0084i 1.29241i 0.763166 + 0.646203i \(0.223644\pi\)
−0.763166 + 0.646203i \(0.776356\pi\)
\(912\) 0 0
\(913\) −0.145576 0.145576i −0.00481785 0.00481785i
\(914\) 0 0
\(915\) −15.9818 + 8.67399i −0.528341 + 0.286753i
\(916\) 0 0
\(917\) −0.209004 + 0.209004i −0.00690190 + 0.00690190i
\(918\) 0 0
\(919\) −1.31347 −0.0433274 −0.0216637 0.999765i \(-0.506896\pi\)
−0.0216637 + 0.999765i \(0.506896\pi\)
\(920\) 0 0
\(921\) 23.5255 0.775192
\(922\) 0 0
\(923\) 45.6699 45.6699i 1.50324 1.50324i
\(924\) 0 0
\(925\) 5.70272 1.21019i 0.187504 0.0397907i
\(926\) 0 0
\(927\) −9.21278 9.21278i −0.302588 0.302588i
\(928\) 0 0
\(929\) 42.5276i 1.39529i −0.716446 0.697643i \(-0.754232\pi\)
0.716446 0.697643i \(-0.245768\pi\)
\(930\) 0 0
\(931\) 7.26583i 0.238128i
\(932\) 0 0
\(933\) −23.9126 23.9126i −0.782862 0.782862i
\(934\) 0 0
\(935\) 7.51397 + 13.8445i 0.245733 + 0.452762i
\(936\) 0 0
\(937\) −31.5880 + 31.5880i −1.03194 + 1.03194i −0.0324634 + 0.999473i \(0.510335\pi\)
−0.999473 + 0.0324634i \(0.989665\pi\)
\(938\) 0 0
\(939\) −1.44277 −0.0470832
\(940\) 0 0
\(941\) 27.2932 0.889733 0.444866 0.895597i \(-0.353251\pi\)
0.444866 + 0.895597i \(0.353251\pi\)
\(942\) 0 0
\(943\) −6.28825 + 6.28825i −0.204773 + 0.204773i
\(944\) 0 0
\(945\) −0.635431 + 2.14388i −0.0206706 + 0.0697405i
\(946\) 0 0
\(947\) −14.5369 14.5369i −0.472385 0.472385i 0.430301 0.902686i \(-0.358408\pi\)
−0.902686 + 0.430301i \(0.858408\pi\)
\(948\) 0 0
\(949\) 6.82375i 0.221508i
\(950\) 0 0
\(951\) 25.2765i 0.819648i
\(952\) 0 0
\(953\) 8.34701 + 8.34701i 0.270386 + 0.270386i 0.829256 0.558869i \(-0.188765\pi\)
−0.558869 + 0.829256i \(0.688765\pi\)
\(954\) 0 0
\(955\) −5.96324 + 20.1194i −0.192966 + 0.651047i
\(956\) 0 0
\(957\) −7.18789 + 7.18789i −0.232352 + 0.232352i
\(958\) 0 0
\(959\) −7.43307 −0.240026
\(960\) 0 0
\(961\) −29.9911 −0.967455
\(962\) 0 0
\(963\) 8.81565 8.81565i 0.284080 0.284080i
\(964\) 0 0
\(965\) 6.94294 + 12.7923i 0.223501 + 0.411800i
\(966\) 0 0
\(967\) 0.931250 + 0.931250i 0.0299470 + 0.0299470i 0.721922 0.691975i \(-0.243259\pi\)
−0.691975 + 0.721922i \(0.743259\pi\)
\(968\) 0 0
\(969\) 36.1930i 1.16269i
\(970\) 0 0
\(971\) 44.2511i 1.42009i 0.704159 + 0.710043i \(0.251324\pi\)
−0.704159 + 0.710043i \(0.748676\pi\)
\(972\) 0 0
\(973\) 10.0851 + 10.0851i 0.323314 + 0.323314i
\(974\) 0 0
\(975\) 27.6626 + 17.9772i 0.885911 + 0.575733i
\(976\) 0 0
\(977\) −4.80622 + 4.80622i −0.153765 + 0.153765i −0.779797 0.626032i \(-0.784678\pi\)
0.626032 + 0.779797i \(0.284678\pi\)
\(978\) 0 0
\(979\) −11.5659 −0.369646
\(980\) 0 0
\(981\) 3.71332 0.118557
\(982\) 0 0
\(983\) 12.7152 12.7152i 0.405552 0.405552i −0.474632 0.880184i \(-0.657419\pi\)
0.880184 + 0.474632i \(0.157419\pi\)
\(984\) 0 0
\(985\) −35.3884 + 19.2068i −1.12757 + 0.611979i
\(986\) 0 0
\(987\) −1.31286 1.31286i −0.0417887 0.0417887i
\(988\) 0 0
\(989\) 21.3819i 0.679904i
\(990\) 0 0
\(991\) 26.6749i 0.847355i 0.905813 + 0.423678i \(0.139261\pi\)
−0.905813 + 0.423678i \(0.860739\pi\)
\(992\) 0 0
\(993\) 11.2016 + 11.2016i 0.355473 + 0.355473i
\(994\) 0 0
\(995\) −49.3220 14.6187i −1.56361 0.463443i
\(996\) 0 0
\(997\) 29.4374 29.4374i 0.932292 0.932292i −0.0655565 0.997849i \(-0.520882\pi\)
0.997849 + 0.0655565i \(0.0208822\pi\)
\(998\) 0 0
\(999\) 1.16594 0.0368888
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.bl.d.463.1 yes 24
4.3 odd 2 inner 1680.2.bl.d.463.8 yes 24
5.2 odd 4 inner 1680.2.bl.d.127.8 yes 24
20.7 even 4 inner 1680.2.bl.d.127.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.bl.d.127.1 24 20.7 even 4 inner
1680.2.bl.d.127.8 yes 24 5.2 odd 4 inner
1680.2.bl.d.463.1 yes 24 1.1 even 1 trivial
1680.2.bl.d.463.8 yes 24 4.3 odd 2 inner