Properties

Label 168.4.q.f
Level 168168
Weight 44
Character orbit 168.q
Analytic conductor 9.9129.912
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(25,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.25"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 168=2337 168 = 2^{3} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 168.q (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-12,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.912320880969.91232088096
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x8+)\mathbb{Q}[x]/(x^{8} + \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x8+173x6+9457x4+168048x2+746496 x^{8} + 173x^{6} + 9457x^{4} + 168048x^{2} + 746496 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 267 2^{6}\cdot 7
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3β1q3+(β6β11)q5+(β5+2)q7+(9β19)q9+(β72β6β5++1)q11+(β5β44β2+6)q13++(9β5+9β418β2+27)q99+O(q100) q + 3 \beta_1 q^{3} + (\beta_{6} - \beta_1 - 1) q^{5} + (\beta_{5} + 2) q^{7} + ( - 9 \beta_1 - 9) q^{9} + (\beta_{7} - 2 \beta_{6} - \beta_{5} + \cdots + 1) q^{11} + ( - \beta_{5} - \beta_{4} - 4 \beta_{2} + 6) q^{13}+ \cdots + (9 \beta_{5} + 9 \beta_{4} - 18 \beta_{2} + 27) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q12q34q5+18q736q914q11+44q13+24q1596q17+26q1936q2196q23110q25+216q27152q29238q3142q33+152q35++252q99+O(q100) 8 q - 12 q^{3} - 4 q^{5} + 18 q^{7} - 36 q^{9} - 14 q^{11} + 44 q^{13} + 24 q^{15} - 96 q^{17} + 26 q^{19} - 36 q^{21} - 96 q^{23} - 110 q^{25} + 216 q^{27} - 152 q^{29} - 238 q^{31} - 42 q^{33} + 152 q^{35}+ \cdots + 252 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+173x6+9457x4+168048x2+746496 x^{8} + 173x^{6} + 9457x^{4} + 168048x^{2} + 746496 : Copy content Toggle raw display

β1\beta_{1}== (ν7+691ν5+67439ν3+869616ν673920)/1347840 ( -\nu^{7} + 691\nu^{5} + 67439\nu^{3} + 869616\nu - 673920 ) / 1347840 Copy content Toggle raw display
β2\beta_{2}== (19ν6+911ν431781ν2208224)/42120 ( 19\nu^{6} + 911\nu^{4} - 31781\nu^{2} - 208224 ) / 42120 Copy content Toggle raw display
β3\beta_{3}== (283ν7+768ν6+29087ν5+143232ν4+233803ν3+8185728ν2++109164672)/4043520 ( 283 \nu^{7} + 768 \nu^{6} + 29087 \nu^{5} + 143232 \nu^{4} + 233803 \nu^{3} + 8185728 \nu^{2} + \cdots + 109164672 ) / 4043520 Copy content Toggle raw display
β4\beta_{4}== (135ν72384ν6+19035ν5149776ν4+892215ν3+3526576ν2++104194944)/1347840 ( 135 \nu^{7} - 2384 \nu^{6} + 19035 \nu^{5} - 149776 \nu^{4} + 892215 \nu^{3} + 3526576 \nu^{2} + \cdots + 104194944 ) / 1347840 Copy content Toggle raw display
β5\beta_{5}== (27ν7560ν63807ν562320ν4178443ν31680944ν2+9334656)/269568 ( - 27 \nu^{7} - 560 \nu^{6} - 3807 \nu^{5} - 62320 \nu^{4} - 178443 \nu^{3} - 1680944 \nu^{2} + \cdots - 9334656 ) / 269568 Copy content Toggle raw display
β6\beta_{6}== (43ν7+57ν6+5387ν5+2733ν4+181903ν395343ν2+1055052ν624672)/252720 ( 43\nu^{7} + 57\nu^{6} + 5387\nu^{5} + 2733\nu^{4} + 181903\nu^{3} - 95343\nu^{2} + 1055052\nu - 624672 ) / 252720 Copy content Toggle raw display
β7\beta_{7}== (1087ν74272ν6+147443ν5417648ν4+5991727ν37751472ν2+12451968)/2021760 ( 1087 \nu^{7} - 4272 \nu^{6} + 147443 \nu^{5} - 417648 \nu^{4} + 5991727 \nu^{3} - 7751472 \nu^{2} + \cdots - 12451968 ) / 2021760 Copy content Toggle raw display
ν\nu== (3β711β6β52β4+5β3+5β212β15)/28 ( 3\beta_{7} - 11\beta_{6} - \beta_{5} - 2\beta_{4} + 5\beta_{3} + 5\beta_{2} - 12\beta _1 - 5 ) / 28 Copy content Toggle raw display
ν2\nu^{2}== (3β73β6+β5+16β4+9β3+51β2+12β11213)/28 ( -3\beta_{7} - 3\beta_{6} + \beta_{5} + 16\beta_{4} + 9\beta_{3} + 51\beta_{2} + 12\beta _1 - 1213 ) / 28 Copy content Toggle raw display
ν3\nu^{3}== (41β7+155β6+2β5+39β4115β359β218β111)/7 ( -41\beta_{7} + 155\beta_{6} + 2\beta_{5} + 39\beta_{4} - 115\beta_{3} - 59\beta_{2} - 18\beta _1 - 11 ) / 7 Copy content Toggle raw display
ν4\nu^{4}== (191β7+191β6241β51196β4573β34759β2764β1+77321)/28 ( 191\beta_{7} + 191\beta_{6} - 241\beta_{5} - 1196\beta_{4} - 573\beta_{3} - 4759\beta_{2} - 764\beta _1 + 77321 ) / 28 Copy content Toggle raw display
ν5\nu^{5}== (11113β742185β6+393β511506β4+34911β3+15143β2++32457)/28 ( 11113 \beta_{7} - 42185 \beta_{6} + 393 \beta_{5} - 11506 \beta_{4} + 34911 \beta_{3} + 15143 \beta_{2} + \cdots + 32457 ) / 28 Copy content Toggle raw display
ν6\nu^{6}== (3544β73544β6+3307β5+21027β4+10632β3+93890β2+1357362)/7 ( - 3544 \beta_{7} - 3544 \beta_{6} + 3307 \beta_{5} + 21027 \beta_{4} + 10632 \beta_{3} + 93890 \beta_{2} + \cdots - 1357362 ) / 7 Copy content Toggle raw display
ν7\nu^{7}== (110295β7+442367β68363β5+118658β4364337β3+536767)/4 ( - 110295 \beta_{7} + 442367 \beta_{6} - 8363 \beta_{5} + 118658 \beta_{4} - 364337 \beta_{3} + \cdots - 536767 ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/168Z)×\left(\mathbb{Z}/168\mathbb{Z}\right)^\times.

nn 7373 8585 113113 127127
χ(n)\chi(n) 1β1-1 - \beta_{1} 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
25.1
8.67551i
8.34231i
2.57353i
4.63878i
8.67551i
8.34231i
2.57353i
4.63878i
0 −1.50000 + 2.59808i 0 −9.47901 16.4181i 0 12.8033 + 13.3819i 0 −4.50000 7.79423i 0
25.2 0 −1.50000 + 2.59808i 0 −0.363171 0.629031i 0 −18.1420 3.72380i 0 −4.50000 7.79423i 0
25.3 0 −1.50000 + 2.59808i 0 −0.0642956 0.111363i 0 −0.866259 18.5000i 0 −4.50000 7.79423i 0
25.4 0 −1.50000 + 2.59808i 0 7.90648 + 13.6944i 0 15.2050 + 10.5739i 0 −4.50000 7.79423i 0
121.1 0 −1.50000 2.59808i 0 −9.47901 + 16.4181i 0 12.8033 13.3819i 0 −4.50000 + 7.79423i 0
121.2 0 −1.50000 2.59808i 0 −0.363171 + 0.629031i 0 −18.1420 + 3.72380i 0 −4.50000 + 7.79423i 0
121.3 0 −1.50000 2.59808i 0 −0.0642956 + 0.111363i 0 −0.866259 + 18.5000i 0 −4.50000 + 7.79423i 0
121.4 0 −1.50000 2.59808i 0 7.90648 13.6944i 0 15.2050 10.5739i 0 −4.50000 + 7.79423i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 25.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 168.4.q.f 8
3.b odd 2 1 504.4.s.j 8
4.b odd 2 1 336.4.q.m 8
7.c even 3 1 inner 168.4.q.f 8
7.c even 3 1 1176.4.a.bd 4
7.d odd 6 1 1176.4.a.ba 4
21.h odd 6 1 504.4.s.j 8
28.f even 6 1 2352.4.a.cp 4
28.g odd 6 1 336.4.q.m 8
28.g odd 6 1 2352.4.a.cm 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.4.q.f 8 1.a even 1 1 trivial
168.4.q.f 8 7.c even 3 1 inner
336.4.q.m 8 4.b odd 2 1
336.4.q.m 8 28.g odd 6 1
504.4.s.j 8 3.b odd 2 1
504.4.s.j 8 21.h odd 6 1
1176.4.a.ba 4 7.d odd 6 1
1176.4.a.bd 4 7.c even 3 1
2352.4.a.cm 4 28.g odd 6 1
2352.4.a.cp 4 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T58+4T57+313T56676T55+89261T54+76256T53+57220T52+7168T5+784 T_{5}^{8} + 4T_{5}^{7} + 313T_{5}^{6} - 676T_{5}^{5} + 89261T_{5}^{4} + 76256T_{5}^{3} + 57220T_{5}^{2} + 7168T_{5} + 784 acting on S4new(168,[χ])S_{4}^{\mathrm{new}}(168, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T2+3T+9)4 (T^{2} + 3 T + 9)^{4} Copy content Toggle raw display
55 T8+4T7++784 T^{8} + 4 T^{7} + \cdots + 784 Copy content Toggle raw display
77 T8++13841287201 T^{8} + \cdots + 13841287201 Copy content Toggle raw display
1111 T8++33244957032336 T^{8} + \cdots + 33244957032336 Copy content Toggle raw display
1313 (T422T3++13795008)2 (T^{4} - 22 T^{3} + \cdots + 13795008)^{2} Copy content Toggle raw display
1717 T8++19 ⁣ ⁣64 T^{8} + \cdots + 19\!\cdots\!64 Copy content Toggle raw display
1919 T8++30110417391616 T^{8} + \cdots + 30110417391616 Copy content Toggle raw display
2323 T8++9663676416 T^{8} + \cdots + 9663676416 Copy content Toggle raw display
2929 (T4+76T3+802800)2 (T^{4} + 76 T^{3} + \cdots - 802800)^{2} Copy content Toggle raw display
3131 T8++27 ⁣ ⁣25 T^{8} + \cdots + 27\!\cdots\!25 Copy content Toggle raw display
3737 T8++21 ⁣ ⁣04 T^{8} + \cdots + 21\!\cdots\!04 Copy content Toggle raw display
4141 (T4428T3+3866949120)2 (T^{4} - 428 T^{3} + \cdots - 3866949120)^{2} Copy content Toggle raw display
4343 (T4+258T3+2654719484)2 (T^{4} + 258 T^{3} + \cdots - 2654719484)^{2} Copy content Toggle raw display
4747 T8++56 ⁣ ⁣24 T^{8} + \cdots + 56\!\cdots\!24 Copy content Toggle raw display
5353 T8++25753595040000 T^{8} + \cdots + 25753595040000 Copy content Toggle raw display
5959 T8++26 ⁣ ⁣00 T^{8} + \cdots + 26\!\cdots\!00 Copy content Toggle raw display
6161 T8++97 ⁣ ⁣00 T^{8} + \cdots + 97\!\cdots\!00 Copy content Toggle raw display
6767 T8++70 ⁣ ⁣24 T^{8} + \cdots + 70\!\cdots\!24 Copy content Toggle raw display
7171 (T4+848T3++1940742864)2 (T^{4} + 848 T^{3} + \cdots + 1940742864)^{2} Copy content Toggle raw display
7373 T8++78 ⁣ ⁣76 T^{8} + \cdots + 78\!\cdots\!76 Copy content Toggle raw display
7979 T8++86 ⁣ ⁣01 T^{8} + \cdots + 86\!\cdots\!01 Copy content Toggle raw display
8383 (T43450T3++352673538780)2 (T^{4} - 3450 T^{3} + \cdots + 352673538780)^{2} Copy content Toggle raw display
8989 T8++20 ⁣ ⁣76 T^{8} + \cdots + 20\!\cdots\!76 Copy content Toggle raw display
9797 (T4+622T3++79407506004)2 (T^{4} + 622 T^{3} + \cdots + 79407506004)^{2} Copy content Toggle raw display
show more
show less