gp: [N,k,chi] = [168,4,Mod(25,168)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(168, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("168.25");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [8,0,-12,0,-4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 + 173 x 6 + 9457 x 4 + 168048 x 2 + 746496 x^{8} + 173x^{6} + 9457x^{4} + 168048x^{2} + 746496 x 8 + 1 7 3 x 6 + 9 4 5 7 x 4 + 1 6 8 0 4 8 x 2 + 7 4 6 4 9 6
x^8 + 173*x^6 + 9457*x^4 + 168048*x^2 + 746496
:
β 1 \beta_{1} β 1 = = =
( − ν 7 + 691 ν 5 + 67439 ν 3 + 869616 ν − 673920 ) / 1347840 ( -\nu^{7} + 691\nu^{5} + 67439\nu^{3} + 869616\nu - 673920 ) / 1347840 ( − ν 7 + 6 9 1 ν 5 + 6 7 4 3 9 ν 3 + 8 6 9 6 1 6 ν − 6 7 3 9 2 0 ) / 1 3 4 7 8 4 0
(-v^7 + 691*v^5 + 67439*v^3 + 869616*v - 673920) / 1347840
β 2 \beta_{2} β 2 = = =
( 19 ν 6 + 911 ν 4 − 31781 ν 2 − 208224 ) / 42120 ( 19\nu^{6} + 911\nu^{4} - 31781\nu^{2} - 208224 ) / 42120 ( 1 9 ν 6 + 9 1 1 ν 4 − 3 1 7 8 1 ν 2 − 2 0 8 2 2 4 ) / 4 2 1 2 0
(19*v^6 + 911*v^4 - 31781*v^2 - 208224) / 42120
β 3 \beta_{3} β 3 = = =
( 283 ν 7 + 768 ν 6 + 29087 ν 5 + 143232 ν 4 + 233803 ν 3 + 8185728 ν 2 + ⋯ + 109164672 ) / 4043520 ( 283 \nu^{7} + 768 \nu^{6} + 29087 \nu^{5} + 143232 \nu^{4} + 233803 \nu^{3} + 8185728 \nu^{2} + \cdots + 109164672 ) / 4043520 ( 2 8 3 ν 7 + 7 6 8 ν 6 + 2 9 0 8 7 ν 5 + 1 4 3 2 3 2 ν 4 + 2 3 3 8 0 3 ν 3 + 8 1 8 5 7 2 8 ν 2 + ⋯ + 1 0 9 1 6 4 6 7 2 ) / 4 0 4 3 5 2 0
(283*v^7 + 768*v^6 + 29087*v^5 + 143232*v^4 + 233803*v^3 + 8185728*v^2 - 19439568*v + 109164672) / 4043520
β 4 \beta_{4} β 4 = = =
( 135 ν 7 − 2384 ν 6 + 19035 ν 5 − 149776 ν 4 + 892215 ν 3 + 3526576 ν 2 + ⋯ + 104194944 ) / 1347840 ( 135 \nu^{7} - 2384 \nu^{6} + 19035 \nu^{5} - 149776 \nu^{4} + 892215 \nu^{3} + 3526576 \nu^{2} + \cdots + 104194944 ) / 1347840 ( 1 3 5 ν 7 − 2 3 8 4 ν 6 + 1 9 0 3 5 ν 5 − 1 4 9 7 7 6 ν 4 + 8 9 2 2 1 5 ν 3 + 3 5 2 6 5 7 6 ν 2 + ⋯ + 1 0 4 1 9 4 9 4 4 ) / 1 3 4 7 8 4 0
(135*v^7 - 2384*v^6 + 19035*v^5 - 149776*v^4 + 892215*v^3 + 3526576*v^2 + 14802480*v + 104194944) / 1347840
β 5 \beta_{5} β 5 = = =
( − 27 ν 7 − 560 ν 6 − 3807 ν 5 − 62320 ν 4 − 178443 ν 3 − 1680944 ν 2 + ⋯ − 9334656 ) / 269568 ( - 27 \nu^{7} - 560 \nu^{6} - 3807 \nu^{5} - 62320 \nu^{4} - 178443 \nu^{3} - 1680944 \nu^{2} + \cdots - 9334656 ) / 269568 ( − 2 7 ν 7 − 5 6 0 ν 6 − 3 8 0 7 ν 5 − 6 2 3 2 0 ν 4 − 1 7 8 4 4 3 ν 3 − 1 6 8 0 9 4 4 ν 2 + ⋯ − 9 3 3 4 6 5 6 ) / 2 6 9 5 6 8
(-27*v^7 - 560*v^6 - 3807*v^5 - 62320*v^4 - 178443*v^3 - 1680944*v^2 - 2960496*v - 9334656) / 269568
β 6 \beta_{6} β 6 = = =
( 43 ν 7 + 57 ν 6 + 5387 ν 5 + 2733 ν 4 + 181903 ν 3 − 95343 ν 2 + 1055052 ν − 624672 ) / 252720 ( 43\nu^{7} + 57\nu^{6} + 5387\nu^{5} + 2733\nu^{4} + 181903\nu^{3} - 95343\nu^{2} + 1055052\nu - 624672 ) / 252720 ( 4 3 ν 7 + 5 7 ν 6 + 5 3 8 7 ν 5 + 2 7 3 3 ν 4 + 1 8 1 9 0 3 ν 3 − 9 5 3 4 3 ν 2 + 1 0 5 5 0 5 2 ν − 6 2 4 6 7 2 ) / 2 5 2 7 2 0
(43*v^7 + 57*v^6 + 5387*v^5 + 2733*v^4 + 181903*v^3 - 95343*v^2 + 1055052*v - 624672) / 252720
β 7 \beta_{7} β 7 = = =
( 1087 ν 7 − 4272 ν 6 + 147443 ν 5 − 417648 ν 4 + 5991727 ν 3 − 7751472 ν 2 + ⋯ − 12451968 ) / 2021760 ( 1087 \nu^{7} - 4272 \nu^{6} + 147443 \nu^{5} - 417648 \nu^{4} + 5991727 \nu^{3} - 7751472 \nu^{2} + \cdots - 12451968 ) / 2021760 ( 1 0 8 7 ν 7 − 4 2 7 2 ν 6 + 1 4 7 4 4 3 ν 5 − 4 1 7 6 4 8 ν 4 + 5 9 9 1 7 2 7 ν 3 − 7 7 5 1 4 7 2 ν 2 + ⋯ − 1 2 4 5 1 9 6 8 ) / 2 0 2 1 7 6 0
(1087*v^7 - 4272*v^6 + 147443*v^5 - 417648*v^4 + 5991727*v^3 - 7751472*v^2 + 78636528*v - 12451968) / 2021760
ν \nu ν = = =
( 3 β 7 − 11 β 6 − β 5 − 2 β 4 + 5 β 3 + 5 β 2 − 12 β 1 − 5 ) / 28 ( 3\beta_{7} - 11\beta_{6} - \beta_{5} - 2\beta_{4} + 5\beta_{3} + 5\beta_{2} - 12\beta _1 - 5 ) / 28 ( 3 β 7 − 1 1 β 6 − β 5 − 2 β 4 + 5 β 3 + 5 β 2 − 1 2 β 1 − 5 ) / 2 8
(3*b7 - 11*b6 - b5 - 2*b4 + 5*b3 + 5*b2 - 12*b1 - 5) / 28
ν 2 \nu^{2} ν 2 = = =
( − 3 β 7 − 3 β 6 + β 5 + 16 β 4 + 9 β 3 + 51 β 2 + 12 β 1 − 1213 ) / 28 ( -3\beta_{7} - 3\beta_{6} + \beta_{5} + 16\beta_{4} + 9\beta_{3} + 51\beta_{2} + 12\beta _1 - 1213 ) / 28 ( − 3 β 7 − 3 β 6 + β 5 + 1 6 β 4 + 9 β 3 + 5 1 β 2 + 1 2 β 1 − 1 2 1 3 ) / 2 8
(-3*b7 - 3*b6 + b5 + 16*b4 + 9*b3 + 51*b2 + 12*b1 - 1213) / 28
ν 3 \nu^{3} ν 3 = = =
( − 41 β 7 + 155 β 6 + 2 β 5 + 39 β 4 − 115 β 3 − 59 β 2 − 18 β 1 − 11 ) / 7 ( -41\beta_{7} + 155\beta_{6} + 2\beta_{5} + 39\beta_{4} - 115\beta_{3} - 59\beta_{2} - 18\beta _1 - 11 ) / 7 ( − 4 1 β 7 + 1 5 5 β 6 + 2 β 5 + 3 9 β 4 − 1 1 5 β 3 − 5 9 β 2 − 1 8 β 1 − 1 1 ) / 7
(-41*b7 + 155*b6 + 2*b5 + 39*b4 - 115*b3 - 59*b2 - 18*b1 - 11) / 7
ν 4 \nu^{4} ν 4 = = =
( 191 β 7 + 191 β 6 − 241 β 5 − 1196 β 4 − 573 β 3 − 4759 β 2 − 764 β 1 + 77321 ) / 28 ( 191\beta_{7} + 191\beta_{6} - 241\beta_{5} - 1196\beta_{4} - 573\beta_{3} - 4759\beta_{2} - 764\beta _1 + 77321 ) / 28 ( 1 9 1 β 7 + 1 9 1 β 6 − 2 4 1 β 5 − 1 1 9 6 β 4 − 5 7 3 β 3 − 4 7 5 9 β 2 − 7 6 4 β 1 + 7 7 3 2 1 ) / 2 8
(191*b7 + 191*b6 - 241*b5 - 1196*b4 - 573*b3 - 4759*b2 - 764*b1 + 77321) / 28
ν 5 \nu^{5} ν 5 = = =
( 11113 β 7 − 42185 β 6 + 393 β 5 − 11506 β 4 + 34911 β 3 + 15143 β 2 + ⋯ + 32457 ) / 28 ( 11113 \beta_{7} - 42185 \beta_{6} + 393 \beta_{5} - 11506 \beta_{4} + 34911 \beta_{3} + 15143 \beta_{2} + \cdots + 32457 ) / 28 ( 1 1 1 1 3 β 7 − 4 2 1 8 5 β 6 + 3 9 3 β 5 − 1 1 5 0 6 β 4 + 3 4 9 1 1 β 3 + 1 5 1 4 3 β 2 + ⋯ + 3 2 4 5 7 ) / 2 8
(11113*b7 - 42185*b6 + 393*b5 - 11506*b4 + 34911*b3 + 15143*b2 + 65700*b1 + 32457) / 28
ν 6 \nu^{6} ν 6 = = =
( − 3544 β 7 − 3544 β 6 + 3307 β 5 + 21027 β 4 + 10632 β 3 + 93890 β 2 + ⋯ − 1357362 ) / 7 ( - 3544 \beta_{7} - 3544 \beta_{6} + 3307 \beta_{5} + 21027 \beta_{4} + 10632 \beta_{3} + 93890 \beta_{2} + \cdots - 1357362 ) / 7 ( − 3 5 4 4 β 7 − 3 5 4 4 β 6 + 3 3 0 7 β 5 + 2 1 0 2 7 β 4 + 1 0 6 3 2 β 3 + 9 3 8 9 0 β 2 + ⋯ − 1 3 5 7 3 6 2 ) / 7
(-3544*b7 - 3544*b6 + 3307*b5 + 21027*b4 + 10632*b3 + 93890*b2 + 14176*b1 - 1357362) / 7
ν 7 \nu^{7} ν 7 = = =
( − 110295 β 7 + 442367 β 6 − 8363 β 5 + 118658 β 4 − 364337 β 3 + ⋯ − 536767 ) / 4 ( - 110295 \beta_{7} + 442367 \beta_{6} - 8363 \beta_{5} + 118658 \beta_{4} - 364337 \beta_{3} + \cdots - 536767 ) / 4 ( − 1 1 0 2 9 5 β 7 + 4 4 2 3 6 7 β 6 − 8 3 6 3 β 5 + 1 1 8 6 5 8 β 4 − 3 6 4 3 3 7 β 3 + ⋯ − 5 3 6 7 6 7 ) / 4
(-110295*b7 + 442367*b6 - 8363*b5 + 118658*b4 - 364337*b3 - 157673*b2 - 1090260*b1 - 536767) / 4
Character values
We give the values of χ \chi χ on generators for ( Z / 168 Z ) × \left(\mathbb{Z}/168\mathbb{Z}\right)^\times ( Z / 1 6 8 Z ) × .
n n n
73 73 7 3
85 85 8 5
113 113 1 1 3
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
− 1 − β 1 -1 - \beta_{1} − 1 − β 1
1 1 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 8 + 4 T 5 7 + 313 T 5 6 − 676 T 5 5 + 89261 T 5 4 + 76256 T 5 3 + 57220 T 5 2 + 7168 T 5 + 784 T_{5}^{8} + 4T_{5}^{7} + 313T_{5}^{6} - 676T_{5}^{5} + 89261T_{5}^{4} + 76256T_{5}^{3} + 57220T_{5}^{2} + 7168T_{5} + 784 T 5 8 + 4 T 5 7 + 3 1 3 T 5 6 − 6 7 6 T 5 5 + 8 9 2 6 1 T 5 4 + 7 6 2 5 6 T 5 3 + 5 7 2 2 0 T 5 2 + 7 1 6 8 T 5 + 7 8 4
T5^8 + 4*T5^7 + 313*T5^6 - 676*T5^5 + 89261*T5^4 + 76256*T5^3 + 57220*T5^2 + 7168*T5 + 784
acting on S 4 n e w ( 168 , [ χ ] ) S_{4}^{\mathrm{new}}(168, [\chi]) S 4 n e w ( 1 6 8 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
( T 2 + 3 T + 9 ) 4 (T^{2} + 3 T + 9)^{4} ( T 2 + 3 T + 9 ) 4
(T^2 + 3*T + 9)^4
5 5 5
T 8 + 4 T 7 + ⋯ + 784 T^{8} + 4 T^{7} + \cdots + 784 T 8 + 4 T 7 + ⋯ + 7 8 4
T^8 + 4*T^7 + 313*T^6 - 676*T^5 + 89261*T^4 + 76256*T^3 + 57220*T^2 + 7168*T + 784
7 7 7
T 8 + ⋯ + 13841287201 T^{8} + \cdots + 13841287201 T 8 + ⋯ + 1 3 8 4 1 2 8 7 2 0 1
T^8 - 18*T^7 + 84*T^6 + 7560*T^5 - 128723*T^4 + 2593080*T^3 + 9882516*T^2 - 726364926*T + 13841287201
11 11 1 1
T 8 + ⋯ + 33244957032336 T^{8} + \cdots + 33244957032336 T 8 + ⋯ + 3 3 2 4 4 9 5 7 0 3 2 3 3 6
T^8 + 14*T^7 + 5591*T^6 + 60302*T^5 + 24291005*T^4 + 204963188*T^3 + 35719311436*T^2 - 391593061104*T + 33244957032336
13 13 1 3
( T 4 − 22 T 3 + ⋯ + 13795008 ) 2 (T^{4} - 22 T^{3} + \cdots + 13795008)^{2} ( T 4 − 2 2 T 3 + ⋯ + 1 3 7 9 5 0 0 8 ) 2
(T^4 - 22*T^3 - 7423*T^2 + 84004*T + 13795008)^2
17 17 1 7
T 8 + ⋯ + 19 ⋯ 64 T^{8} + \cdots + 19\!\cdots\!64 T 8 + ⋯ + 1 9 ⋯ 6 4
T^8 + 96*T^7 + 23520*T^6 + 2058880*T^5 + 413546496*T^4 + 33033099264*T^3 + 2312485998592*T^2 + 75853776224256*T + 1953905916248064
19 19 1 9
T 8 + ⋯ + 30110417391616 T^{8} + \cdots + 30110417391616 T 8 + ⋯ + 3 0 1 1 0 4 1 7 3 9 1 6 1 6
T^8 - 26*T^7 + 14911*T^6 + 887414*T^5 + 190422977*T^4 + 3967250612*T^3 + 145012515664*T^2 - 1419300084992*T + 30110417391616
23 23 2 3
T 8 + ⋯ + 9663676416 T^{8} + \cdots + 9663676416 T 8 + ⋯ + 9 6 6 3 6 7 6 4 1 6
T^8 + 96*T^7 + 23520*T^6 - 1616512*T^5 + 193022976*T^4 - 1721407488*T^3 + 13395988480*T^2 - 11960057856*T + 9663676416
29 29 2 9
( T 4 + 76 T 3 + ⋯ − 802800 ) 2 (T^{4} + 76 T^{3} + \cdots - 802800)^{2} ( T 4 + 7 6 T 3 + ⋯ − 8 0 2 8 0 0 ) 2
(T^4 + 76*T^3 - 52293*T^2 - 3696384*T - 802800)^2
31 31 3 1
T 8 + ⋯ + 27 ⋯ 25 T^{8} + \cdots + 27\!\cdots\!25 T 8 + ⋯ + 2 7 ⋯ 2 5
T^8 + 238*T^7 + 135412*T^6 + 14770364*T^5 + 10357966421*T^4 + 1398592677692*T^3 + 267850878190996*T^2 + 2765633698693390*T + 27234235833160225
37 37 3 7
T 8 + ⋯ + 21 ⋯ 04 T^{8} + \cdots + 21\!\cdots\!04 T 8 + ⋯ + 2 1 ⋯ 0 4
T^8 + 562*T^7 + 299539*T^6 + 77367450*T^5 + 24055639113*T^4 + 4641849317052*T^3 + 1238349439157040*T^2 + 157703115307512960*T + 21385545645567919104
41 41 4 1
( T 4 − 428 T 3 + ⋯ − 3866949120 ) 2 (T^{4} - 428 T^{3} + \cdots - 3866949120)^{2} ( T 4 − 4 2 8 T 3 + ⋯ − 3 8 6 6 9 4 9 1 2 0 ) 2
(T^4 - 428*T^3 - 41132*T^2 + 36803808*T - 3866949120)^2
43 43 4 3
( T 4 + 258 T 3 + ⋯ − 2654719484 ) 2 (T^{4} + 258 T^{3} + \cdots - 2654719484)^{2} ( T 4 + 2 5 8 T 3 + ⋯ − 2 6 5 4 7 1 9 4 8 4 ) 2
(T^4 + 258*T^3 - 179543*T^2 - 46672932*T - 2654719484)^2
47 47 4 7
T 8 + ⋯ + 56 ⋯ 24 T^{8} + \cdots + 56\!\cdots\!24 T 8 + ⋯ + 5 6 ⋯ 2 4
T^8 - 80*T^7 + 342648*T^6 - 10062848*T^5 + 90674636656*T^4 - 2395660818432*T^3 + 8366652681609600*T^2 + 441086629735406592*T + 569614040327552903424
53 53 5 3
T 8 + ⋯ + 25753595040000 T^{8} + \cdots + 25753595040000 T 8 + ⋯ + 2 5 7 5 3 5 9 5 0 4 0 0 0 0
T^8 + 135309*T^6 + 6027320*T^5 + 18313600281*T^4 + 407775320940*T^3 + 8395480482400*T^2 + 15293721768000*T + 25753595040000
59 59 5 9
T 8 + ⋯ + 26 ⋯ 00 T^{8} + \cdots + 26\!\cdots\!00 T 8 + ⋯ + 2 6 ⋯ 0 0
T^8 + 262*T^7 + 345195*T^6 - 161800754*T^5 + 66418351369*T^4 - 11493726649116*T^3 + 1541505278215296*T^2 - 73352242586819520*T + 2696200518203654400
61 61 6 1
T 8 + ⋯ + 97 ⋯ 00 T^{8} + \cdots + 97\!\cdots\!00 T 8 + ⋯ + 9 7 ⋯ 0 0
T^8 - 276*T^7 + 511872*T^6 + 204566560*T^5 + 168331971984*T^4 + 23812464646272*T^3 + 6074779134836224*T^2 - 415823608078444800*T + 97291323031404960000
67 67 6 7
T 8 + ⋯ + 70 ⋯ 24 T^{8} + \cdots + 70\!\cdots\!24 T 8 + ⋯ + 7 0 ⋯ 2 4
T^8 + 150*T^7 + 613251*T^6 - 138028090*T^5 + 318750682533*T^4 - 22555081338120*T^3 + 16283038431222868*T^2 + 655493426514372960*T + 703835778021398427024
71 71 7 1
( T 4 + 848 T 3 + ⋯ + 1940742864 ) 2 (T^{4} + 848 T^{3} + \cdots + 1940742864)^{2} ( T 4 + 8 4 8 T 3 + ⋯ + 1 9 4 0 7 4 2 8 6 4 ) 2
(T^4 + 848*T^3 - 78520*T^2 - 46164032*T + 1940742864)^2
73 73 7 3
T 8 + ⋯ + 78 ⋯ 76 T^{8} + \cdots + 78\!\cdots\!76 T 8 + ⋯ + 7 8 ⋯ 7 6
T^8 - 218*T^7 + 79039*T^6 - 4410506*T^5 + 1942405933*T^4 - 55505097884*T^3 + 40650589792684*T^2 + 1581530253463888*T + 78620725698303376
79 79 7 9
T 8 + ⋯ + 86 ⋯ 01 T^{8} + \cdots + 86\!\cdots\!01 T 8 + ⋯ + 8 6 ⋯ 0 1
T^8 + 1762*T^7 + 2360908*T^6 + 1563690004*T^5 + 869284996429*T^4 + 233736255591028*T^3 + 85234608753590332*T^2 + 11781219476000650786*T + 8658045721309945280401
83 83 8 3
( T 4 − 3450 T 3 + ⋯ + 352673538780 ) 2 (T^{4} - 3450 T^{3} + \cdots + 352673538780)^{2} ( T 4 − 3 4 5 0 T 3 + ⋯ + 3 5 2 6 7 3 5 3 8 7 8 0 ) 2
(T^4 - 3450*T^3 + 4237149*T^2 - 2140010896*T + 352673538780)^2
89 89 8 9
T 8 + ⋯ + 20 ⋯ 76 T^{8} + \cdots + 20\!\cdots\!76 T 8 + ⋯ + 2 0 ⋯ 7 6
T^8 - 344*T^7 + 1267972*T^6 - 791464416*T^5 + 1571613039120*T^4 - 713782053251712*T^3 + 299556787215937536*T^2 - 27178868651391590400*T + 2097325294722956722176
97 97 9 7
( T 4 + 622 T 3 + ⋯ + 79407506004 ) 2 (T^{4} + 622 T^{3} + \cdots + 79407506004)^{2} ( T 4 + 6 2 2 T 3 + ⋯ + 7 9 4 0 7 5 0 6 0 0 4 ) 2
(T^4 + 622*T^3 - 2800699*T^2 - 1902403156*T + 79407506004)^2
show more
show less