Properties

Label 168.4.q
Level 168168
Weight 44
Character orbit 168.q
Rep. character χ168(25,)\chi_{168}(25,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 2424
Newform subspaces 66
Sturm bound 128128
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 168=2337 168 = 2^{3} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 168.q (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 7 7
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 6 6
Sturm bound: 128128
Trace bound: 55
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M4(168,[χ])M_{4}(168, [\chi]).

Total New Old
Modular forms 208 24 184
Cusp forms 176 24 152
Eisenstein series 32 0 32

Trace form

24q6q3+24q7108q928q11140q1384q154q17250q1960q21+84q23138q25+108q27280q29+168q31+114q33708q35318q37++504q99+O(q100) 24 q - 6 q^{3} + 24 q^{7} - 108 q^{9} - 28 q^{11} - 140 q^{13} - 84 q^{15} - 4 q^{17} - 250 q^{19} - 60 q^{21} + 84 q^{23} - 138 q^{25} + 108 q^{27} - 280 q^{29} + 168 q^{31} + 114 q^{33} - 708 q^{35} - 318 q^{37}+ \cdots + 504 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(168,[χ])S_{4}^{\mathrm{new}}(168, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
168.4.q.a 168.q 7.c 22 9.9129.912 Q(3)\Q(\sqrt{-3}) None 168.4.q.a 00 33 7-7 35-35 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+3ζ6q3+(7+7ζ6)q5+(14+)q7+q+3\zeta_{6}q^{3}+(-7+7\zeta_{6})q^{5}+(-14+\cdots)q^{7}+\cdots
168.4.q.b 168.q 7.c 22 9.9129.912 Q(3)\Q(\sqrt{-3}) None 168.4.q.b 00 33 2-2 3535 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+3ζ6q3+(2+2ζ6)q5+(217ζ6)q7+q+3\zeta_{6}q^{3}+(-2+2\zeta_{6})q^{5}+(21-7\zeta_{6})q^{7}+\cdots
168.4.q.c 168.q 7.c 22 9.9129.912 Q(3)\Q(\sqrt{-3}) None 168.4.q.c 00 33 1111 77 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+3ζ6q3+(1111ζ6)q5+(1421ζ6)q7+q+3\zeta_{6}q^{3}+(11-11\zeta_{6})q^{5}+(14-21\zeta_{6})q^{7}+\cdots
168.4.q.d 168.q 7.c 44 9.9129.912 Q(3,505)\Q(\sqrt{-3}, \sqrt{505}) None 168.4.q.d 00 66 9-9 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(33β2)q3+(β15β2)q5+(817β2+)q7+q+(3-3\beta _{2})q^{3}+(\beta _{1}-5\beta _{2})q^{5}+(8-17\beta _{2}+\cdots)q^{7}+\cdots
168.4.q.e 168.q 7.c 66 9.9129.912 6.0.\cdots.1 None 168.4.q.e 00 9-9 1111 1-1 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(3+3β3)q3+(4β3β4β5)q5+q+(-3+3\beta _{3})q^{3}+(4\beta _{3}-\beta _{4}-\beta _{5})q^{5}+\cdots
168.4.q.f 168.q 7.c 88 9.9129.912 Q[x]/(x8+)\mathbb{Q}[x]/(x^{8} + \cdots) None 168.4.q.f 00 12-12 4-4 1818 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+3β1q3+(1β1+β6)q5+(2+)q7+q+3\beta _{1}q^{3}+(-1-\beta _{1}+\beta _{6})q^{5}+(2+\cdots)q^{7}+\cdots

Decomposition of S4old(168,[χ])S_{4}^{\mathrm{old}}(168, [\chi]) into lower level spaces