gp: [N,k,chi] = [168,4,Mod(25,168)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(168, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("168.25");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,6,0,-9]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − x 3 + 127 x 2 + 126 x + 15876 x^{4} - x^{3} + 127x^{2} + 126x + 15876 x 4 − x 3 + 1 2 7 x 2 + 1 2 6 x + 1 5 8 7 6
x^4 - x^3 + 127*x^2 + 126*x + 15876
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( − ν 3 + 127 ν 2 − 127 ν + 15876 ) / 16002 ( -\nu^{3} + 127\nu^{2} - 127\nu + 15876 ) / 16002 ( − ν 3 + 1 2 7 ν 2 − 1 2 7 ν + 1 5 8 7 6 ) / 1 6 0 0 2
(-v^3 + 127*v^2 - 127*v + 15876) / 16002
β 3 \beta_{3} β 3 = = =
( ν 3 + 253 ) / 127 ( \nu^{3} + 253 ) / 127 ( ν 3 + 2 5 3 ) / 1 2 7
(v^3 + 253) / 127
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 3 + 126 β 2 + β 1 − 127 \beta_{3} + 126\beta_{2} + \beta _1 - 127 β 3 + 1 2 6 β 2 + β 1 − 1 2 7
b3 + 126*b2 + b1 - 127
ν 3 \nu^{3} ν 3 = = =
127 β 3 − 253 127\beta_{3} - 253 1 2 7 β 3 − 2 5 3
127*b3 - 253
Character values
We give the values of χ \chi χ on generators for ( Z / 168 Z ) × \left(\mathbb{Z}/168\mathbb{Z}\right)^\times ( Z / 1 6 8 Z ) × .
n n n
73 73 7 3
85 85 8 5
113 113 1 1 3
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
− β 2 -\beta_{2} − β 2
1 1 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 4 + 9 T 5 3 + 187 T 5 2 − 954 T 5 + 11236 T_{5}^{4} + 9T_{5}^{3} + 187T_{5}^{2} - 954T_{5} + 11236 T 5 4 + 9 T 5 3 + 1 8 7 T 5 2 − 9 5 4 T 5 + 1 1 2 3 6
T5^4 + 9*T5^3 + 187*T5^2 - 954*T5 + 11236
acting on S 4 n e w ( 168 , [ χ ] ) S_{4}^{\mathrm{new}}(168, [\chi]) S 4 n e w ( 1 6 8 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
( T 2 − 3 T + 9 ) 2 (T^{2} - 3 T + 9)^{2} ( T 2 − 3 T + 9 ) 2
(T^2 - 3*T + 9)^2
5 5 5
T 4 + 9 T 3 + ⋯ + 11236 T^{4} + 9 T^{3} + \cdots + 11236 T 4 + 9 T 3 + ⋯ + 1 1 2 3 6
T^4 + 9*T^3 + 187*T^2 - 954*T + 11236
7 7 7
T 4 + 181 T 2 + 117649 T^{4} + 181 T^{2} + 117649 T 4 + 1 8 1 T 2 + 1 1 7 6 4 9
T^4 + 181*T^2 + 117649
11 11 1 1
T 4 + 5 T 3 + ⋯ + 9922500 T^{4} + 5 T^{3} + \cdots + 9922500 T 4 + 5 T 3 + ⋯ + 9 9 2 2 5 0 0
T^4 + 5*T^3 + 3175*T^2 - 15750*T + 9922500
13 13 1 3
( T 2 + 19 T − 36 ) 2 (T^{2} + 19 T - 36)^{2} ( T 2 + 1 9 T − 3 6 ) 2
(T^2 + 19*T - 36)^2
17 17 1 7
T 4 − 4 T 3 + ⋯ + 4064256 T^{4} - 4 T^{3} + \cdots + 4064256 T 4 − 4 T 3 + ⋯ + 4 0 6 4 2 5 6
T^4 - 4*T^3 + 2032*T^2 + 8064*T + 4064256
19 19 1 9
T 4 + 117 T 3 + ⋯ + 7639696 T^{4} + 117 T^{3} + \cdots + 7639696 T 4 + 1 1 7 T 3 + ⋯ + 7 6 3 9 6 9 6
T^4 + 117*T^3 + 16453*T^2 - 323388*T + 7639696
23 23 2 3
T 4 + 148 T 3 + ⋯ + 11943936 T^{4} + 148 T^{3} + \cdots + 11943936 T 4 + 1 4 8 T 3 + ⋯ + 1 1 9 4 3 9 3 6
T^4 + 148*T^3 + 18448*T^2 + 511488*T + 11943936
29 29 2 9
( T 2 + 95 T − 900 ) 2 (T^{2} + 95 T - 900)^{2} ( T 2 + 9 5 T − 9 0 0 ) 2
(T^2 + 95*T - 900)^2
31 31 3 1
T 4 + ⋯ + 1017291025 T^{4} + \cdots + 1017291025 T 4 + ⋯ + 1 0 1 7 2 9 1 0 2 5
T^4 - 360*T^3 + 97705*T^2 - 11482200*T + 1017291025
37 37 3 7
T 4 − 53 T 3 + ⋯ + 331776 T^{4} - 53 T^{3} + \cdots + 331776 T 4 − 5 3 T 3 + ⋯ + 3 3 1 7 7 6
T^4 - 53*T^3 + 2233*T^2 - 30528*T + 331776
41 41 4 1
( T 2 + 170 T − 33680 ) 2 (T^{2} + 170 T - 33680)^{2} ( T 2 + 1 7 0 T − 3 3 6 8 0 ) 2
(T^2 + 170*T - 33680)^2
43 43 4 3
( T 2 − 403 T − 51434 ) 2 (T^{2} - 403 T - 51434)^{2} ( T 2 − 4 0 3 T − 5 1 4 3 4 ) 2
(T^2 - 403*T - 51434)^2
47 47 4 7
T 4 + ⋯ + 16838695696 T^{4} + \cdots + 16838695696 T 4 + ⋯ + 1 6 8 3 8 6 9 5 6 9 6
T^4 + 368*T^3 + 265188*T^2 - 47753152*T + 16838695696
53 53 5 3
T 4 + ⋯ + 13993943616 T^{4} + \cdots + 13993943616 T 4 + ⋯ + 1 3 9 9 3 9 4 3 6 1 6
T^4 + 697*T^3 + 367513*T^2 + 82452312*T + 13993943616
59 59 5 9
T 4 − 585 T 3 + ⋯ + 41990400 T^{4} - 585 T^{3} + \cdots + 41990400 T 4 − 5 8 5 T 3 + ⋯ + 4 1 9 9 0 4 0 0
T^4 - 585*T^3 + 348705*T^2 + 3790800*T + 41990400
61 61 6 1
T 4 + ⋯ + 56368256400 T^{4} + \cdots + 56368256400 T 4 + ⋯ + 5 6 3 6 8 2 5 6 4 0 0
T^4 - 1160*T^3 + 1108180*T^2 - 275407200*T + 56368256400
67 67 6 7
T 4 + ⋯ + 434563097796 T^{4} + \cdots + 434563097796 T 4 + ⋯ + 4 3 4 5 6 3 0 9 7 7 9 6
T^4 + 233*T^3 + 713503*T^2 - 153596862*T + 434563097796
71 71 7 1
( T 2 − 616 T − 634356 ) 2 (T^{2} - 616 T - 634356)^{2} ( T 2 − 6 1 6 T − 6 3 4 3 5 6 ) 2
(T^2 - 616*T - 634356)^2
73 73 7 3
T 4 + ⋯ + 111698997796 T^{4} + \cdots + 111698997796 T 4 + ⋯ + 1 1 1 6 9 8 9 9 7 7 9 6
T^4 - 817*T^3 + 1001703*T^2 + 273052838*T + 111698997796
79 79 7 9
T 4 + ⋯ + 16920546241 T^{4} + \cdots + 16920546241 T 4 + ⋯ + 1 6 9 2 0 5 4 6 2 4 1
T^4 - 802*T^3 + 773283*T^2 + 104323358*T + 16920546241
83 83 8 3
( T 2 + 283 T − 546714 ) 2 (T^{2} + 283 T - 546714)^{2} ( T 2 + 2 8 3 T − 5 4 6 7 1 4 ) 2
(T^2 + 283*T - 546714)^2
89 89 8 9
T 4 + ⋯ + 643101348096 T^{4} + \cdots + 643101348096 T 4 + ⋯ + 6 4 3 1 0 1 3 4 8 0 9 6
T^4 - 1858*T^3 + 2650228*T^2 - 1489997088*T + 643101348096
97 97 9 7
( T 2 − 1729 T + 365454 ) 2 (T^{2} - 1729 T + 365454)^{2} ( T 2 − 1 7 2 9 T + 3 6 5 4 5 4 ) 2
(T^2 - 1729*T + 365454)^2
show more
show less