Properties

Label 168.4.q.d
Level 168168
Weight 44
Character orbit 168.q
Analytic conductor 9.9129.912
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(25,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.25"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 168=2337 168 = 2^{3} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 168.q (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,6,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.912320880969.91232088096
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(3,505)\Q(\sqrt{-3}, \sqrt{505})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+127x2+126x+15876 x^{4} - x^{3} + 127x^{2} + 126x + 15876 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(3β2+3)q3+(5β2+β1)q5+(β317β2+8)q79β2q9+(5β3+5β25β1)q11+(β39)q13++45β3q99+O(q100) q + ( - 3 \beta_{2} + 3) q^{3} + ( - 5 \beta_{2} + \beta_1) q^{5} + (\beta_{3} - 17 \beta_{2} + 8) q^{7} - 9 \beta_{2} q^{9} + ( - 5 \beta_{3} + 5 \beta_{2} - 5 \beta_1) q^{11} + ( - \beta_{3} - 9) q^{13}+ \cdots + 45 \beta_{3} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+6q39q518q95q1138q1354q15+4q17117q19153q21148q2343q25108q27190q29+360q31+15q33482q35+53q37++90q99+O(q100) 4 q + 6 q^{3} - 9 q^{5} - 18 q^{9} - 5 q^{11} - 38 q^{13} - 54 q^{15} + 4 q^{17} - 117 q^{19} - 153 q^{21} - 148 q^{23} - 43 q^{25} - 108 q^{27} - 190 q^{29} + 360 q^{31} + 15 q^{33} - 482 q^{35} + 53 q^{37}+ \cdots + 90 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x3+127x2+126x+15876 x^{4} - x^{3} + 127x^{2} + 126x + 15876 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+127ν2127ν+15876)/16002 ( -\nu^{3} + 127\nu^{2} - 127\nu + 15876 ) / 16002 Copy content Toggle raw display
β3\beta_{3}== (ν3+253)/127 ( \nu^{3} + 253 ) / 127 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+126β2+β1127 \beta_{3} + 126\beta_{2} + \beta _1 - 127 Copy content Toggle raw display
ν3\nu^{3}== 127β3253 127\beta_{3} - 253 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/168Z)×\left(\mathbb{Z}/168\mathbb{Z}\right)^\times.

nn 7373 8585 113113 127127
χ(n)\chi(n) β2-\beta_{2} 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
25.1
−5.36805 9.29774i
5.86805 + 10.1638i
−5.36805 + 9.29774i
5.86805 10.1638i
0 1.50000 2.59808i 0 −7.86805 13.6279i 0 11.2361 14.7224i 0 −4.50000 7.79423i 0
25.2 0 1.50000 2.59808i 0 3.36805 + 5.83364i 0 −11.2361 14.7224i 0 −4.50000 7.79423i 0
121.1 0 1.50000 + 2.59808i 0 −7.86805 + 13.6279i 0 11.2361 + 14.7224i 0 −4.50000 + 7.79423i 0
121.2 0 1.50000 + 2.59808i 0 3.36805 5.83364i 0 −11.2361 + 14.7224i 0 −4.50000 + 7.79423i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 168.4.q.d 4
3.b odd 2 1 504.4.s.f 4
4.b odd 2 1 336.4.q.g 4
7.c even 3 1 inner 168.4.q.d 4
7.c even 3 1 1176.4.a.r 2
7.d odd 6 1 1176.4.a.u 2
21.h odd 6 1 504.4.s.f 4
28.f even 6 1 2352.4.a.bo 2
28.g odd 6 1 336.4.q.g 4
28.g odd 6 1 2352.4.a.cc 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.4.q.d 4 1.a even 1 1 trivial
168.4.q.d 4 7.c even 3 1 inner
336.4.q.g 4 4.b odd 2 1
336.4.q.g 4 28.g odd 6 1
504.4.s.f 4 3.b odd 2 1
504.4.s.f 4 21.h odd 6 1
1176.4.a.r 2 7.c even 3 1
1176.4.a.u 2 7.d odd 6 1
2352.4.a.bo 2 28.f even 6 1
2352.4.a.cc 2 28.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54+9T53+187T52954T5+11236 T_{5}^{4} + 9T_{5}^{3} + 187T_{5}^{2} - 954T_{5} + 11236 acting on S4new(168,[χ])S_{4}^{\mathrm{new}}(168, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T23T+9)2 (T^{2} - 3 T + 9)^{2} Copy content Toggle raw display
55 T4+9T3++11236 T^{4} + 9 T^{3} + \cdots + 11236 Copy content Toggle raw display
77 T4+181T2+117649 T^{4} + 181 T^{2} + 117649 Copy content Toggle raw display
1111 T4+5T3++9922500 T^{4} + 5 T^{3} + \cdots + 9922500 Copy content Toggle raw display
1313 (T2+19T36)2 (T^{2} + 19 T - 36)^{2} Copy content Toggle raw display
1717 T44T3++4064256 T^{4} - 4 T^{3} + \cdots + 4064256 Copy content Toggle raw display
1919 T4+117T3++7639696 T^{4} + 117 T^{3} + \cdots + 7639696 Copy content Toggle raw display
2323 T4+148T3++11943936 T^{4} + 148 T^{3} + \cdots + 11943936 Copy content Toggle raw display
2929 (T2+95T900)2 (T^{2} + 95 T - 900)^{2} Copy content Toggle raw display
3131 T4++1017291025 T^{4} + \cdots + 1017291025 Copy content Toggle raw display
3737 T453T3++331776 T^{4} - 53 T^{3} + \cdots + 331776 Copy content Toggle raw display
4141 (T2+170T33680)2 (T^{2} + 170 T - 33680)^{2} Copy content Toggle raw display
4343 (T2403T51434)2 (T^{2} - 403 T - 51434)^{2} Copy content Toggle raw display
4747 T4++16838695696 T^{4} + \cdots + 16838695696 Copy content Toggle raw display
5353 T4++13993943616 T^{4} + \cdots + 13993943616 Copy content Toggle raw display
5959 T4585T3++41990400 T^{4} - 585 T^{3} + \cdots + 41990400 Copy content Toggle raw display
6161 T4++56368256400 T^{4} + \cdots + 56368256400 Copy content Toggle raw display
6767 T4++434563097796 T^{4} + \cdots + 434563097796 Copy content Toggle raw display
7171 (T2616T634356)2 (T^{2} - 616 T - 634356)^{2} Copy content Toggle raw display
7373 T4++111698997796 T^{4} + \cdots + 111698997796 Copy content Toggle raw display
7979 T4++16920546241 T^{4} + \cdots + 16920546241 Copy content Toggle raw display
8383 (T2+283T546714)2 (T^{2} + 283 T - 546714)^{2} Copy content Toggle raw display
8989 T4++643101348096 T^{4} + \cdots + 643101348096 Copy content Toggle raw display
9797 (T21729T+365454)2 (T^{2} - 1729 T + 365454)^{2} Copy content Toggle raw display
show more
show less