Properties

Label 168.4.q.c.121.1
Level $168$
Weight $4$
Character 168.121
Analytic conductor $9.912$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(25,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.25"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,3,0,11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 168.121
Dual form 168.4.q.c.25.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 2.59808i) q^{3} +(5.50000 - 9.52628i) q^{5} +(3.50000 - 18.1865i) q^{7} +(-4.50000 + 7.79423i) q^{9} +(-19.5000 - 33.7750i) q^{11} -32.0000 q^{13} +33.0000 q^{15} +(-6.00000 - 10.3923i) q^{17} +(44.0000 - 76.2102i) q^{19} +(52.5000 - 18.1865i) q^{21} +(46.0000 - 79.6743i) q^{23} +(2.00000 + 3.46410i) q^{25} -27.0000 q^{27} +255.000 q^{29} +(17.5000 + 30.3109i) q^{31} +(58.5000 - 101.325i) q^{33} +(-154.000 - 133.368i) q^{35} +(2.00000 - 3.46410i) q^{37} +(-48.0000 - 83.1384i) q^{39} +16.0000 q^{41} -330.000 q^{43} +(49.5000 + 85.7365i) q^{45} +(149.000 - 258.076i) q^{47} +(-318.500 - 127.306i) q^{49} +(18.0000 - 31.1769i) q^{51} +(358.500 + 620.940i) q^{53} -429.000 q^{55} +264.000 q^{57} +(108.500 + 187.928i) q^{59} +(-193.000 + 334.286i) q^{61} +(126.000 + 109.119i) q^{63} +(-176.000 + 304.841i) q^{65} +(-453.000 - 784.619i) q^{67} +276.000 q^{69} -34.0000 q^{71} +(419.000 + 725.729i) q^{73} +(-6.00000 + 10.3923i) q^{75} +(-682.500 + 236.425i) q^{77} +(-662.500 + 1147.48i) q^{79} +(-40.5000 - 70.1481i) q^{81} +1163.00 q^{83} -132.000 q^{85} +(382.500 + 662.509i) q^{87} +(27.0000 - 46.7654i) q^{89} +(-112.000 + 581.969i) q^{91} +(-52.5000 + 90.9327i) q^{93} +(-484.000 - 838.313i) q^{95} +7.00000 q^{97} +351.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} + 11 q^{5} + 7 q^{7} - 9 q^{9} - 39 q^{11} - 64 q^{13} + 66 q^{15} - 12 q^{17} + 88 q^{19} + 105 q^{21} + 92 q^{23} + 4 q^{25} - 54 q^{27} + 510 q^{29} + 35 q^{31} + 117 q^{33} - 308 q^{35}+ \cdots + 702 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 + 2.59808i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) 5.50000 9.52628i 0.491935 0.852056i −0.508022 0.861344i \(-0.669623\pi\)
0.999957 + 0.00928781i \(0.00295644\pi\)
\(6\) 0 0
\(7\) 3.50000 18.1865i 0.188982 0.981981i
\(8\) 0 0
\(9\) −4.50000 + 7.79423i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −19.5000 33.7750i −0.534497 0.925777i −0.999187 0.0403032i \(-0.987168\pi\)
0.464690 0.885473i \(-0.346166\pi\)
\(12\) 0 0
\(13\) −32.0000 −0.682708 −0.341354 0.939935i \(-0.610885\pi\)
−0.341354 + 0.939935i \(0.610885\pi\)
\(14\) 0 0
\(15\) 33.0000 0.568038
\(16\) 0 0
\(17\) −6.00000 10.3923i −0.0856008 0.148265i 0.820046 0.572297i \(-0.193948\pi\)
−0.905647 + 0.424032i \(0.860614\pi\)
\(18\) 0 0
\(19\) 44.0000 76.2102i 0.531279 0.920201i −0.468055 0.883699i \(-0.655045\pi\)
0.999334 0.0365021i \(-0.0116216\pi\)
\(20\) 0 0
\(21\) 52.5000 18.1865i 0.545545 0.188982i
\(22\) 0 0
\(23\) 46.0000 79.6743i 0.417029 0.722315i −0.578610 0.815604i \(-0.696405\pi\)
0.995639 + 0.0932891i \(0.0297381\pi\)
\(24\) 0 0
\(25\) 2.00000 + 3.46410i 0.0160000 + 0.0277128i
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 255.000 1.63284 0.816419 0.577460i \(-0.195956\pi\)
0.816419 + 0.577460i \(0.195956\pi\)
\(30\) 0 0
\(31\) 17.5000 + 30.3109i 0.101390 + 0.175613i 0.912258 0.409617i \(-0.134338\pi\)
−0.810868 + 0.585230i \(0.801004\pi\)
\(32\) 0 0
\(33\) 58.5000 101.325i 0.308592 0.534497i
\(34\) 0 0
\(35\) −154.000 133.368i −0.743736 0.644094i
\(36\) 0 0
\(37\) 2.00000 3.46410i 0.00888643 0.0153918i −0.861548 0.507676i \(-0.830505\pi\)
0.870434 + 0.492284i \(0.163838\pi\)
\(38\) 0 0
\(39\) −48.0000 83.1384i −0.197081 0.341354i
\(40\) 0 0
\(41\) 16.0000 0.0609459 0.0304729 0.999536i \(-0.490299\pi\)
0.0304729 + 0.999536i \(0.490299\pi\)
\(42\) 0 0
\(43\) −330.000 −1.17034 −0.585169 0.810911i \(-0.698972\pi\)
−0.585169 + 0.810911i \(0.698972\pi\)
\(44\) 0 0
\(45\) 49.5000 + 85.7365i 0.163978 + 0.284019i
\(46\) 0 0
\(47\) 149.000 258.076i 0.462423 0.800940i −0.536658 0.843800i \(-0.680313\pi\)
0.999081 + 0.0428596i \(0.0136468\pi\)
\(48\) 0 0
\(49\) −318.500 127.306i −0.928571 0.371154i
\(50\) 0 0
\(51\) 18.0000 31.1769i 0.0494217 0.0856008i
\(52\) 0 0
\(53\) 358.500 + 620.940i 0.929128 + 1.60930i 0.784785 + 0.619768i \(0.212773\pi\)
0.144343 + 0.989528i \(0.453893\pi\)
\(54\) 0 0
\(55\) −429.000 −1.05175
\(56\) 0 0
\(57\) 264.000 0.613468
\(58\) 0 0
\(59\) 108.500 + 187.928i 0.239415 + 0.414679i 0.960547 0.278119i \(-0.0897110\pi\)
−0.721131 + 0.692798i \(0.756378\pi\)
\(60\) 0 0
\(61\) −193.000 + 334.286i −0.405100 + 0.701654i −0.994333 0.106309i \(-0.966097\pi\)
0.589233 + 0.807963i \(0.299430\pi\)
\(62\) 0 0
\(63\) 126.000 + 109.119i 0.251976 + 0.218218i
\(64\) 0 0
\(65\) −176.000 + 304.841i −0.335848 + 0.581706i
\(66\) 0 0
\(67\) −453.000 784.619i −0.826011 1.43069i −0.901144 0.433520i \(-0.857271\pi\)
0.0751326 0.997174i \(-0.476062\pi\)
\(68\) 0 0
\(69\) 276.000 0.481543
\(70\) 0 0
\(71\) −34.0000 −0.0568318 −0.0284159 0.999596i \(-0.509046\pi\)
−0.0284159 + 0.999596i \(0.509046\pi\)
\(72\) 0 0
\(73\) 419.000 + 725.729i 0.671784 + 1.16356i 0.977398 + 0.211409i \(0.0678051\pi\)
−0.305614 + 0.952156i \(0.598862\pi\)
\(74\) 0 0
\(75\) −6.00000 + 10.3923i −0.00923760 + 0.0160000i
\(76\) 0 0
\(77\) −682.500 + 236.425i −1.01011 + 0.349911i
\(78\) 0 0
\(79\) −662.500 + 1147.48i −0.943507 + 1.63420i −0.184795 + 0.982777i \(0.559162\pi\)
−0.758713 + 0.651425i \(0.774171\pi\)
\(80\) 0 0
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 1163.00 1.53802 0.769011 0.639235i \(-0.220749\pi\)
0.769011 + 0.639235i \(0.220749\pi\)
\(84\) 0 0
\(85\) −132.000 −0.168440
\(86\) 0 0
\(87\) 382.500 + 662.509i 0.471360 + 0.816419i
\(88\) 0 0
\(89\) 27.0000 46.7654i 0.0321572 0.0556980i −0.849499 0.527590i \(-0.823096\pi\)
0.881656 + 0.471892i \(0.156429\pi\)
\(90\) 0 0
\(91\) −112.000 + 581.969i −0.129020 + 0.670406i
\(92\) 0 0
\(93\) −52.5000 + 90.9327i −0.0585376 + 0.101390i
\(94\) 0 0
\(95\) −484.000 838.313i −0.522709 0.905358i
\(96\) 0 0
\(97\) 7.00000 0.00732724 0.00366362 0.999993i \(-0.498834\pi\)
0.00366362 + 0.999993i \(0.498834\pi\)
\(98\) 0 0
\(99\) 351.000 0.356332
\(100\) 0 0
\(101\) 23.0000 + 39.8372i 0.0226593 + 0.0392470i 0.877133 0.480248i \(-0.159453\pi\)
−0.854473 + 0.519495i \(0.826120\pi\)
\(102\) 0 0
\(103\) −828.000 + 1434.14i −0.792090 + 1.37194i 0.132581 + 0.991172i \(0.457674\pi\)
−0.924671 + 0.380768i \(0.875660\pi\)
\(104\) 0 0
\(105\) 115.500 600.156i 0.107349 0.557802i
\(106\) 0 0
\(107\) 183.500 317.831i 0.165791 0.287158i −0.771145 0.636660i \(-0.780316\pi\)
0.936936 + 0.349501i \(0.113649\pi\)
\(108\) 0 0
\(109\) −811.000 1404.69i −0.712658 1.23436i −0.963856 0.266424i \(-0.914158\pi\)
0.251198 0.967936i \(-0.419175\pi\)
\(110\) 0 0
\(111\) 12.0000 0.0102612
\(112\) 0 0
\(113\) −736.000 −0.612717 −0.306359 0.951916i \(-0.599111\pi\)
−0.306359 + 0.951916i \(0.599111\pi\)
\(114\) 0 0
\(115\) −506.000 876.418i −0.410302 0.710664i
\(116\) 0 0
\(117\) 144.000 249.415i 0.113785 0.197081i
\(118\) 0 0
\(119\) −210.000 + 72.7461i −0.161770 + 0.0560389i
\(120\) 0 0
\(121\) −95.0000 + 164.545i −0.0713749 + 0.123625i
\(122\) 0 0
\(123\) 24.0000 + 41.5692i 0.0175936 + 0.0304729i
\(124\) 0 0
\(125\) 1419.00 1.01535
\(126\) 0 0
\(127\) 1175.00 0.820979 0.410490 0.911865i \(-0.365358\pi\)
0.410490 + 0.911865i \(0.365358\pi\)
\(128\) 0 0
\(129\) −495.000 857.365i −0.337847 0.585169i
\(130\) 0 0
\(131\) 1270.50 2200.57i 0.847360 1.46767i −0.0361967 0.999345i \(-0.511524\pi\)
0.883556 0.468325i \(-0.155142\pi\)
\(132\) 0 0
\(133\) −1232.00 1066.94i −0.803218 0.695607i
\(134\) 0 0
\(135\) −148.500 + 257.210i −0.0946729 + 0.163978i
\(136\) 0 0
\(137\) 401.000 + 694.552i 0.250071 + 0.433136i 0.963545 0.267546i \(-0.0862127\pi\)
−0.713474 + 0.700682i \(0.752879\pi\)
\(138\) 0 0
\(139\) 3110.00 1.89775 0.948873 0.315657i \(-0.102225\pi\)
0.948873 + 0.315657i \(0.102225\pi\)
\(140\) 0 0
\(141\) 894.000 0.533960
\(142\) 0 0
\(143\) 624.000 + 1080.80i 0.364906 + 0.632035i
\(144\) 0 0
\(145\) 1402.50 2429.20i 0.803250 1.39127i
\(146\) 0 0
\(147\) −147.000 1018.45i −0.0824786 0.571429i
\(148\) 0 0
\(149\) −1299.00 + 2249.93i −0.714216 + 1.23706i 0.249045 + 0.968492i \(0.419883\pi\)
−0.963261 + 0.268567i \(0.913450\pi\)
\(150\) 0 0
\(151\) −666.500 1154.41i −0.359199 0.622150i 0.628628 0.777706i \(-0.283617\pi\)
−0.987827 + 0.155555i \(0.950283\pi\)
\(152\) 0 0
\(153\) 108.000 0.0570672
\(154\) 0 0
\(155\) 385.000 0.199509
\(156\) 0 0
\(157\) −790.000 1368.32i −0.401585 0.695566i 0.592332 0.805694i \(-0.298207\pi\)
−0.993917 + 0.110128i \(0.964874\pi\)
\(158\) 0 0
\(159\) −1075.50 + 1862.82i −0.536432 + 0.929128i
\(160\) 0 0
\(161\) −1288.00 1115.44i −0.630488 0.546019i
\(162\) 0 0
\(163\) −634.000 + 1098.12i −0.304655 + 0.527677i −0.977184 0.212393i \(-0.931874\pi\)
0.672530 + 0.740070i \(0.265208\pi\)
\(164\) 0 0
\(165\) −643.500 1114.57i −0.303615 0.525876i
\(166\) 0 0
\(167\) 878.000 0.406836 0.203418 0.979092i \(-0.434795\pi\)
0.203418 + 0.979092i \(0.434795\pi\)
\(168\) 0 0
\(169\) −1173.00 −0.533910
\(170\) 0 0
\(171\) 396.000 + 685.892i 0.177093 + 0.306734i
\(172\) 0 0
\(173\) 1441.00 2495.89i 0.633279 1.09687i −0.353598 0.935397i \(-0.615042\pi\)
0.986877 0.161473i \(-0.0516246\pi\)
\(174\) 0 0
\(175\) 70.0000 24.2487i 0.0302372 0.0104745i
\(176\) 0 0
\(177\) −325.500 + 563.783i −0.138226 + 0.239415i
\(178\) 0 0
\(179\) −738.000 1278.25i −0.308160 0.533749i 0.669800 0.742542i \(-0.266380\pi\)
−0.977960 + 0.208792i \(0.933047\pi\)
\(180\) 0 0
\(181\) 4368.00 1.79376 0.896881 0.442272i \(-0.145827\pi\)
0.896881 + 0.442272i \(0.145827\pi\)
\(182\) 0 0
\(183\) −1158.00 −0.467770
\(184\) 0 0
\(185\) −22.0000 38.1051i −0.00874309 0.0151435i
\(186\) 0 0
\(187\) −234.000 + 405.300i −0.0915068 + 0.158494i
\(188\) 0 0
\(189\) −94.5000 + 491.036i −0.0363696 + 0.188982i
\(190\) 0 0
\(191\) −1508.00 + 2611.93i −0.571283 + 0.989491i 0.425152 + 0.905122i \(0.360221\pi\)
−0.996435 + 0.0843690i \(0.973113\pi\)
\(192\) 0 0
\(193\) 781.500 + 1353.60i 0.291469 + 0.504840i 0.974157 0.225870i \(-0.0725225\pi\)
−0.682688 + 0.730710i \(0.739189\pi\)
\(194\) 0 0
\(195\) −1056.00 −0.387804
\(196\) 0 0
\(197\) −1846.00 −0.667625 −0.333812 0.942640i \(-0.608335\pi\)
−0.333812 + 0.942640i \(0.608335\pi\)
\(198\) 0 0
\(199\) 1998.00 + 3460.64i 0.711731 + 1.23275i 0.964207 + 0.265151i \(0.0854218\pi\)
−0.252476 + 0.967603i \(0.581245\pi\)
\(200\) 0 0
\(201\) 1359.00 2353.86i 0.476898 0.826011i
\(202\) 0 0
\(203\) 892.500 4637.57i 0.308577 1.60342i
\(204\) 0 0
\(205\) 88.0000 152.420i 0.0299814 0.0519293i
\(206\) 0 0
\(207\) 414.000 + 717.069i 0.139010 + 0.240772i
\(208\) 0 0
\(209\) −3432.00 −1.13587
\(210\) 0 0
\(211\) 4182.00 1.36446 0.682229 0.731138i \(-0.261011\pi\)
0.682229 + 0.731138i \(0.261011\pi\)
\(212\) 0 0
\(213\) −51.0000 88.3346i −0.0164059 0.0284159i
\(214\) 0 0
\(215\) −1815.00 + 3143.67i −0.575730 + 0.997194i
\(216\) 0 0
\(217\) 612.500 212.176i 0.191609 0.0663754i
\(218\) 0 0
\(219\) −1257.00 + 2177.19i −0.387855 + 0.671784i
\(220\) 0 0
\(221\) 192.000 + 332.554i 0.0584404 + 0.101222i
\(222\) 0 0
\(223\) 1159.00 0.348038 0.174019 0.984742i \(-0.444325\pi\)
0.174019 + 0.984742i \(0.444325\pi\)
\(224\) 0 0
\(225\) −36.0000 −0.0106667
\(226\) 0 0
\(227\) −892.500 1545.86i −0.260957 0.451991i 0.705539 0.708671i \(-0.250705\pi\)
−0.966497 + 0.256680i \(0.917372\pi\)
\(228\) 0 0
\(229\) −294.000 + 509.223i −0.0848387 + 0.146945i −0.905322 0.424725i \(-0.860371\pi\)
0.820484 + 0.571670i \(0.193704\pi\)
\(230\) 0 0
\(231\) −1638.00 1418.55i −0.466548 0.404042i
\(232\) 0 0
\(233\) −3414.00 + 5913.22i −0.959908 + 1.66261i −0.237194 + 0.971462i \(0.576228\pi\)
−0.722714 + 0.691147i \(0.757106\pi\)
\(234\) 0 0
\(235\) −1639.00 2838.83i −0.454964 0.788021i
\(236\) 0 0
\(237\) −3975.00 −1.08947
\(238\) 0 0
\(239\) 2508.00 0.678783 0.339391 0.940645i \(-0.389779\pi\)
0.339391 + 0.940645i \(0.389779\pi\)
\(240\) 0 0
\(241\) 2148.50 + 3721.31i 0.574262 + 0.994650i 0.996121 + 0.0879892i \(0.0280441\pi\)
−0.421860 + 0.906661i \(0.638623\pi\)
\(242\) 0 0
\(243\) 121.500 210.444i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) −2964.50 + 2333.94i −0.773041 + 0.608612i
\(246\) 0 0
\(247\) −1408.00 + 2438.73i −0.362708 + 0.628229i
\(248\) 0 0
\(249\) 1744.50 + 3021.56i 0.443989 + 0.769011i
\(250\) 0 0
\(251\) −2489.00 −0.625913 −0.312957 0.949767i \(-0.601319\pi\)
−0.312957 + 0.949767i \(0.601319\pi\)
\(252\) 0 0
\(253\) −3588.00 −0.891603
\(254\) 0 0
\(255\) −198.000 342.946i −0.0486245 0.0842201i
\(256\) 0 0
\(257\) −893.000 + 1546.72i −0.216746 + 0.375416i −0.953811 0.300406i \(-0.902878\pi\)
0.737065 + 0.675822i \(0.236211\pi\)
\(258\) 0 0
\(259\) −56.0000 48.4974i −0.0134350 0.0116351i
\(260\) 0 0
\(261\) −1147.50 + 1987.53i −0.272140 + 0.471360i
\(262\) 0 0
\(263\) −1159.00 2007.45i −0.271738 0.470663i 0.697569 0.716517i \(-0.254265\pi\)
−0.969307 + 0.245854i \(0.920932\pi\)
\(264\) 0 0
\(265\) 7887.00 1.82828
\(266\) 0 0
\(267\) 162.000 0.0371320
\(268\) 0 0
\(269\) 1374.50 + 2380.70i 0.311542 + 0.539606i 0.978696 0.205313i \(-0.0658213\pi\)
−0.667155 + 0.744919i \(0.732488\pi\)
\(270\) 0 0
\(271\) −912.500 + 1580.50i −0.204540 + 0.354274i −0.949986 0.312292i \(-0.898903\pi\)
0.745446 + 0.666566i \(0.232237\pi\)
\(272\) 0 0
\(273\) −1680.00 + 581.969i −0.372448 + 0.129020i
\(274\) 0 0
\(275\) 78.0000 135.100i 0.0171039 0.0296249i
\(276\) 0 0
\(277\) 152.000 + 263.272i 0.0329704 + 0.0571064i 0.882040 0.471175i \(-0.156170\pi\)
−0.849069 + 0.528281i \(0.822837\pi\)
\(278\) 0 0
\(279\) −315.000 −0.0675934
\(280\) 0 0
\(281\) 4578.00 0.971888 0.485944 0.873990i \(-0.338476\pi\)
0.485944 + 0.873990i \(0.338476\pi\)
\(282\) 0 0
\(283\) −2151.00 3725.64i −0.451815 0.782567i 0.546684 0.837339i \(-0.315890\pi\)
−0.998499 + 0.0547724i \(0.982557\pi\)
\(284\) 0 0
\(285\) 1452.00 2514.94i 0.301786 0.522709i
\(286\) 0 0
\(287\) 56.0000 290.985i 0.0115177 0.0598476i
\(288\) 0 0
\(289\) 2384.50 4130.08i 0.485345 0.840642i
\(290\) 0 0
\(291\) 10.5000 + 18.1865i 0.00211519 + 0.00366362i
\(292\) 0 0
\(293\) 6727.00 1.34128 0.670641 0.741782i \(-0.266019\pi\)
0.670641 + 0.741782i \(0.266019\pi\)
\(294\) 0 0
\(295\) 2387.00 0.471107
\(296\) 0 0
\(297\) 526.500 + 911.925i 0.102864 + 0.178166i
\(298\) 0 0
\(299\) −1472.00 + 2549.58i −0.284709 + 0.493130i
\(300\) 0 0
\(301\) −1155.00 + 6001.56i −0.221173 + 1.14925i
\(302\) 0 0
\(303\) −69.0000 + 119.512i −0.0130823 + 0.0226593i
\(304\) 0 0
\(305\) 2123.00 + 3677.14i 0.398566 + 0.690337i
\(306\) 0 0
\(307\) 116.000 0.0215650 0.0107825 0.999942i \(-0.496568\pi\)
0.0107825 + 0.999942i \(0.496568\pi\)
\(308\) 0 0
\(309\) −4968.00 −0.914627
\(310\) 0 0
\(311\) 1896.00 + 3283.97i 0.345699 + 0.598768i 0.985480 0.169789i \(-0.0543086\pi\)
−0.639782 + 0.768557i \(0.720975\pi\)
\(312\) 0 0
\(313\) 1843.50 3193.04i 0.332910 0.576617i −0.650171 0.759788i \(-0.725303\pi\)
0.983081 + 0.183171i \(0.0586362\pi\)
\(314\) 0 0
\(315\) 1732.50 600.156i 0.309890 0.107349i
\(316\) 0 0
\(317\) 4140.50 7171.56i 0.733608 1.27065i −0.221724 0.975110i \(-0.571168\pi\)
0.955331 0.295536i \(-0.0954983\pi\)
\(318\) 0 0
\(319\) −4972.50 8612.62i −0.872748 1.51164i
\(320\) 0 0
\(321\) 1101.00 0.191439
\(322\) 0 0
\(323\) −1056.00 −0.181911
\(324\) 0 0
\(325\) −64.0000 110.851i −0.0109233 0.0189198i
\(326\) 0 0
\(327\) 2433.00 4214.08i 0.411453 0.712658i
\(328\) 0 0
\(329\) −4172.00 3613.06i −0.699118 0.605454i
\(330\) 0 0
\(331\) 3334.00 5774.66i 0.553635 0.958924i −0.444373 0.895842i \(-0.646574\pi\)
0.998008 0.0630824i \(-0.0200931\pi\)
\(332\) 0 0
\(333\) 18.0000 + 31.1769i 0.00296214 + 0.00513058i
\(334\) 0 0
\(335\) −9966.00 −1.62538
\(336\) 0 0
\(337\) −8679.00 −1.40289 −0.701447 0.712722i \(-0.747462\pi\)
−0.701447 + 0.712722i \(0.747462\pi\)
\(338\) 0 0
\(339\) −1104.00 1912.18i −0.176876 0.306359i
\(340\) 0 0
\(341\) 682.500 1182.12i 0.108385 0.187729i
\(342\) 0 0
\(343\) −3430.00 + 5346.84i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 1518.00 2629.25i 0.236888 0.410302i
\(346\) 0 0
\(347\) −4546.00 7873.90i −0.703291 1.21814i −0.967305 0.253617i \(-0.918380\pi\)
0.264013 0.964519i \(-0.414954\pi\)
\(348\) 0 0
\(349\) 11642.0 1.78562 0.892811 0.450432i \(-0.148730\pi\)
0.892811 + 0.450432i \(0.148730\pi\)
\(350\) 0 0
\(351\) 864.000 0.131387
\(352\) 0 0
\(353\) −3404.00 5895.90i −0.513248 0.888972i −0.999882 0.0153659i \(-0.995109\pi\)
0.486634 0.873606i \(-0.338225\pi\)
\(354\) 0 0
\(355\) −187.000 + 323.894i −0.0279575 + 0.0484239i
\(356\) 0 0
\(357\) −504.000 436.477i −0.0747185 0.0647081i
\(358\) 0 0
\(359\) −555.000 + 961.288i −0.0815927 + 0.141323i −0.903934 0.427672i \(-0.859334\pi\)
0.822342 + 0.568994i \(0.192667\pi\)
\(360\) 0 0
\(361\) −442.500 766.432i −0.0645138 0.111741i
\(362\) 0 0
\(363\) −570.000 −0.0824166
\(364\) 0 0
\(365\) 9218.00 1.32190
\(366\) 0 0
\(367\) −479.500 830.518i −0.0682008 0.118127i 0.829909 0.557899i \(-0.188393\pi\)
−0.898109 + 0.439772i \(0.855059\pi\)
\(368\) 0 0
\(369\) −72.0000 + 124.708i −0.0101576 + 0.0175936i
\(370\) 0 0
\(371\) 12547.5 4346.58i 1.75589 0.608257i
\(372\) 0 0
\(373\) −8.00000 + 13.8564i −0.00111052 + 0.00192348i −0.866580 0.499038i \(-0.833687\pi\)
0.865470 + 0.500961i \(0.167020\pi\)
\(374\) 0 0
\(375\) 2128.50 + 3686.67i 0.293107 + 0.507677i
\(376\) 0 0
\(377\) −8160.00 −1.11475
\(378\) 0 0
\(379\) −736.000 −0.0997514 −0.0498757 0.998755i \(-0.515883\pi\)
−0.0498757 + 0.998755i \(0.515883\pi\)
\(380\) 0 0
\(381\) 1762.50 + 3052.74i 0.236996 + 0.410490i
\(382\) 0 0
\(383\) 4207.00 7286.74i 0.561273 0.972154i −0.436112 0.899892i \(-0.643645\pi\)
0.997386 0.0722616i \(-0.0230217\pi\)
\(384\) 0 0
\(385\) −1501.50 + 7802.02i −0.198762 + 1.03280i
\(386\) 0 0
\(387\) 1485.00 2572.10i 0.195056 0.337847i
\(388\) 0 0
\(389\) −347.000 601.022i −0.0452278 0.0783368i 0.842525 0.538657i \(-0.181068\pi\)
−0.887753 + 0.460320i \(0.847735\pi\)
\(390\) 0 0
\(391\) −1104.00 −0.142792
\(392\) 0 0
\(393\) 7623.00 0.978447
\(394\) 0 0
\(395\) 7287.50 + 12622.3i 0.928288 + 1.60784i
\(396\) 0 0
\(397\) −5738.00 + 9938.51i −0.725395 + 1.25642i 0.233416 + 0.972377i \(0.425010\pi\)
−0.958811 + 0.284045i \(0.908324\pi\)
\(398\) 0 0
\(399\) 924.000 4801.24i 0.115934 0.602413i
\(400\) 0 0
\(401\) 6020.00 10426.9i 0.749687 1.29850i −0.198286 0.980144i \(-0.563537\pi\)
0.947973 0.318352i \(-0.103129\pi\)
\(402\) 0 0
\(403\) −560.000 969.948i −0.0692198 0.119892i
\(404\) 0 0
\(405\) −891.000 −0.109319
\(406\) 0 0
\(407\) −156.000 −0.0189991
\(408\) 0 0
\(409\) −6855.50 11874.1i −0.828808 1.43554i −0.898974 0.438003i \(-0.855686\pi\)
0.0701651 0.997535i \(-0.477647\pi\)
\(410\) 0 0
\(411\) −1203.00 + 2083.66i −0.144379 + 0.250071i
\(412\) 0 0
\(413\) 3797.50 1315.49i 0.452452 0.156734i
\(414\) 0 0
\(415\) 6396.50 11079.1i 0.756607 1.31048i
\(416\) 0 0
\(417\) 4665.00 + 8080.02i 0.547832 + 0.948873i
\(418\) 0 0
\(419\) −4128.00 −0.481303 −0.240652 0.970612i \(-0.577361\pi\)
−0.240652 + 0.970612i \(0.577361\pi\)
\(420\) 0 0
\(421\) −8442.00 −0.977287 −0.488644 0.872483i \(-0.662508\pi\)
−0.488644 + 0.872483i \(0.662508\pi\)
\(422\) 0 0
\(423\) 1341.00 + 2322.68i 0.154141 + 0.266980i
\(424\) 0 0
\(425\) 24.0000 41.5692i 0.00273923 0.00474448i
\(426\) 0 0
\(427\) 5404.00 + 4680.00i 0.612454 + 0.530401i
\(428\) 0 0
\(429\) −1872.00 + 3242.40i −0.210678 + 0.364906i
\(430\) 0 0
\(431\) 4782.00 + 8282.67i 0.534433 + 0.925666i 0.999191 + 0.0402277i \(0.0128083\pi\)
−0.464757 + 0.885438i \(0.653858\pi\)
\(432\) 0 0
\(433\) −13394.0 −1.48655 −0.743273 0.668988i \(-0.766728\pi\)
−0.743273 + 0.668988i \(0.766728\pi\)
\(434\) 0 0
\(435\) 8415.00 0.927513
\(436\) 0 0
\(437\) −4048.00 7011.34i −0.443117 0.767501i
\(438\) 0 0
\(439\) −7756.50 + 13434.7i −0.843275 + 1.46059i 0.0438366 + 0.999039i \(0.486042\pi\)
−0.887111 + 0.461556i \(0.847291\pi\)
\(440\) 0 0
\(441\) 2425.50 1909.59i 0.261905 0.206197i
\(442\) 0 0
\(443\) −6189.50 + 10720.5i −0.663819 + 1.14977i 0.315784 + 0.948831i \(0.397732\pi\)
−0.979604 + 0.200938i \(0.935601\pi\)
\(444\) 0 0
\(445\) −297.000 514.419i −0.0316385 0.0547996i
\(446\) 0 0
\(447\) −7794.00 −0.824706
\(448\) 0 0
\(449\) −8368.00 −0.879533 −0.439767 0.898112i \(-0.644939\pi\)
−0.439767 + 0.898112i \(0.644939\pi\)
\(450\) 0 0
\(451\) −312.000 540.400i −0.0325754 0.0564223i
\(452\) 0 0
\(453\) 1999.50 3463.24i 0.207383 0.359199i
\(454\) 0 0
\(455\) 4928.00 + 4267.77i 0.507754 + 0.439728i
\(456\) 0 0
\(457\) 788.500 1365.72i 0.0807100 0.139794i −0.822845 0.568266i \(-0.807615\pi\)
0.903555 + 0.428472i \(0.140948\pi\)
\(458\) 0 0
\(459\) 162.000 + 280.592i 0.0164739 + 0.0285336i
\(460\) 0 0
\(461\) 8202.00 0.828645 0.414322 0.910130i \(-0.364019\pi\)
0.414322 + 0.910130i \(0.364019\pi\)
\(462\) 0 0
\(463\) −1936.00 −0.194327 −0.0971637 0.995268i \(-0.530977\pi\)
−0.0971637 + 0.995268i \(0.530977\pi\)
\(464\) 0 0
\(465\) 577.500 + 1000.26i 0.0575934 + 0.0997547i
\(466\) 0 0
\(467\) −6578.00 + 11393.4i −0.651806 + 1.12896i 0.330878 + 0.943674i \(0.392655\pi\)
−0.982684 + 0.185288i \(0.940678\pi\)
\(468\) 0 0
\(469\) −15855.0 + 5492.33i −1.56101 + 0.540751i
\(470\) 0 0
\(471\) 2370.00 4104.96i 0.231855 0.401585i
\(472\) 0 0
\(473\) 6435.00 + 11145.7i 0.625543 + 1.08347i
\(474\) 0 0
\(475\) 352.000 0.0340018
\(476\) 0 0
\(477\) −6453.00 −0.619418
\(478\) 0 0
\(479\) 3315.00 + 5741.75i 0.316213 + 0.547698i 0.979695 0.200495i \(-0.0642551\pi\)
−0.663481 + 0.748193i \(0.730922\pi\)
\(480\) 0 0
\(481\) −64.0000 + 110.851i −0.00606684 + 0.0105081i
\(482\) 0 0
\(483\) 966.000 5019.48i 0.0910032 0.472866i
\(484\) 0 0
\(485\) 38.5000 66.6840i 0.00360453 0.00624322i
\(486\) 0 0
\(487\) −2097.50 3632.98i −0.195168 0.338041i 0.751788 0.659405i \(-0.229192\pi\)
−0.946956 + 0.321365i \(0.895859\pi\)
\(488\) 0 0
\(489\) −3804.00 −0.351785
\(490\) 0 0
\(491\) 1107.00 0.101748 0.0508739 0.998705i \(-0.483799\pi\)
0.0508739 + 0.998705i \(0.483799\pi\)
\(492\) 0 0
\(493\) −1530.00 2650.04i −0.139772 0.242093i
\(494\) 0 0
\(495\) 1930.50 3343.72i 0.175292 0.303615i
\(496\) 0 0
\(497\) −119.000 + 618.342i −0.0107402 + 0.0558077i
\(498\) 0 0
\(499\) −6815.00 + 11803.9i −0.611385 + 1.05895i 0.379622 + 0.925142i \(0.376054\pi\)
−0.991007 + 0.133809i \(0.957279\pi\)
\(500\) 0 0
\(501\) 1317.00 + 2281.11i 0.117444 + 0.203418i
\(502\) 0 0
\(503\) −11760.0 −1.04245 −0.521225 0.853419i \(-0.674525\pi\)
−0.521225 + 0.853419i \(0.674525\pi\)
\(504\) 0 0
\(505\) 506.000 0.0445875
\(506\) 0 0
\(507\) −1759.50 3047.54i −0.154127 0.266955i
\(508\) 0 0
\(509\) 9550.50 16542.0i 0.831667 1.44049i −0.0650486 0.997882i \(-0.520720\pi\)
0.896716 0.442607i \(-0.145946\pi\)
\(510\) 0 0
\(511\) 14665.0 5080.11i 1.26955 0.439786i
\(512\) 0 0
\(513\) −1188.00 + 2057.68i −0.102245 + 0.177093i
\(514\) 0 0
\(515\) 9108.00 + 15775.5i 0.779313 + 1.34981i
\(516\) 0 0
\(517\) −11622.0 −0.988656
\(518\) 0 0
\(519\) 8646.00 0.731247
\(520\) 0 0
\(521\) −5295.00 9171.21i −0.445256 0.771205i 0.552814 0.833304i \(-0.313554\pi\)
−0.998070 + 0.0620991i \(0.980221\pi\)
\(522\) 0 0
\(523\) −8700.00 + 15068.8i −0.727389 + 1.25987i 0.230594 + 0.973050i \(0.425933\pi\)
−0.957983 + 0.286825i \(0.907400\pi\)
\(524\) 0 0
\(525\) 168.000 + 145.492i 0.0139659 + 0.0120949i
\(526\) 0 0
\(527\) 210.000 363.731i 0.0173581 0.0300652i
\(528\) 0 0
\(529\) 1851.50 + 3206.89i 0.152174 + 0.263573i
\(530\) 0 0
\(531\) −1953.00 −0.159610
\(532\) 0 0
\(533\) −512.000 −0.0416082
\(534\) 0 0
\(535\) −2018.50 3496.14i −0.163117 0.282526i
\(536\) 0 0
\(537\) 2214.00 3834.76i 0.177916 0.308160i
\(538\) 0 0
\(539\) 1911.00 + 13239.8i 0.152714 + 1.05803i
\(540\) 0 0
\(541\) 3205.00 5551.22i 0.254702 0.441157i −0.710113 0.704088i \(-0.751356\pi\)
0.964814 + 0.262932i \(0.0846893\pi\)
\(542\) 0 0
\(543\) 6552.00 + 11348.4i 0.517814 + 0.896881i
\(544\) 0 0
\(545\) −17842.0 −1.40233
\(546\) 0 0
\(547\) −24020.0 −1.87755 −0.938776 0.344528i \(-0.888039\pi\)
−0.938776 + 0.344528i \(0.888039\pi\)
\(548\) 0 0
\(549\) −1737.00 3008.57i −0.135033 0.233885i
\(550\) 0 0
\(551\) 11220.0 19433.6i 0.867492 1.50254i
\(552\) 0 0
\(553\) 18550.0 + 16064.8i 1.42645 + 1.23534i
\(554\) 0 0
\(555\) 66.0000 114.315i 0.00504783 0.00874309i
\(556\) 0 0
\(557\) 13069.5 + 22637.0i 0.994206 + 1.72201i 0.590197 + 0.807259i \(0.299050\pi\)
0.404009 + 0.914755i \(0.367617\pi\)
\(558\) 0 0
\(559\) 10560.0 0.798999
\(560\) 0 0
\(561\) −1404.00 −0.105663
\(562\) 0 0
\(563\) −4585.50 7942.32i −0.343261 0.594545i 0.641775 0.766893i \(-0.278198\pi\)
−0.985036 + 0.172348i \(0.944865\pi\)
\(564\) 0 0
\(565\) −4048.00 + 7011.34i −0.301417 + 0.522070i
\(566\) 0 0
\(567\) −1417.50 + 491.036i −0.104990 + 0.0363696i
\(568\) 0 0
\(569\) 9804.00 16981.0i 0.722329 1.25111i −0.237735 0.971330i \(-0.576405\pi\)
0.960064 0.279780i \(-0.0902616\pi\)
\(570\) 0 0
\(571\) 1837.00 + 3181.78i 0.134634 + 0.233193i 0.925458 0.378851i \(-0.123681\pi\)
−0.790824 + 0.612044i \(0.790347\pi\)
\(572\) 0 0
\(573\) −9048.00 −0.659661
\(574\) 0 0
\(575\) 368.000 0.0266898
\(576\) 0 0
\(577\) 1936.50 + 3354.12i 0.139718 + 0.241999i 0.927390 0.374096i \(-0.122047\pi\)
−0.787672 + 0.616095i \(0.788714\pi\)
\(578\) 0 0
\(579\) −2344.50 + 4060.79i −0.168280 + 0.291469i
\(580\) 0 0
\(581\) 4070.50 21150.9i 0.290659 1.51031i
\(582\) 0 0
\(583\) 13981.5 24216.7i 0.993233 1.72033i
\(584\) 0 0
\(585\) −1584.00 2743.57i −0.111949 0.193902i
\(586\) 0 0
\(587\) −13743.0 −0.966328 −0.483164 0.875530i \(-0.660512\pi\)
−0.483164 + 0.875530i \(0.660512\pi\)
\(588\) 0 0
\(589\) 3080.00 0.215466
\(590\) 0 0
\(591\) −2769.00 4796.05i −0.192727 0.333812i
\(592\) 0 0
\(593\) −8178.00 + 14164.7i −0.566324 + 0.980902i 0.430601 + 0.902542i \(0.358302\pi\)
−0.996925 + 0.0783598i \(0.975032\pi\)
\(594\) 0 0
\(595\) −462.000 + 2400.62i −0.0318322 + 0.165405i
\(596\) 0 0
\(597\) −5994.00 + 10381.9i −0.410918 + 0.711731i
\(598\) 0 0
\(599\) −5391.00 9337.49i −0.367730 0.636927i 0.621480 0.783430i \(-0.286532\pi\)
−0.989210 + 0.146503i \(0.953198\pi\)
\(600\) 0 0
\(601\) 25547.0 1.73392 0.866958 0.498381i \(-0.166072\pi\)
0.866958 + 0.498381i \(0.166072\pi\)
\(602\) 0 0
\(603\) 8154.00 0.550674
\(604\) 0 0
\(605\) 1045.00 + 1809.99i 0.0702236 + 0.121631i
\(606\) 0 0
\(607\) −7149.50 + 12383.3i −0.478071 + 0.828044i −0.999684 0.0251387i \(-0.991997\pi\)
0.521613 + 0.853182i \(0.325331\pi\)
\(608\) 0 0
\(609\) 13387.5 4637.57i 0.890786 0.308577i
\(610\) 0 0
\(611\) −4768.00 + 8258.42i −0.315700 + 0.546808i
\(612\) 0 0
\(613\) −11950.0 20698.0i −0.787367 1.36376i −0.927575 0.373638i \(-0.878110\pi\)
0.140208 0.990122i \(-0.455223\pi\)
\(614\) 0 0
\(615\) 528.000 0.0346195
\(616\) 0 0
\(617\) −9246.00 −0.603290 −0.301645 0.953420i \(-0.597536\pi\)
−0.301645 + 0.953420i \(0.597536\pi\)
\(618\) 0 0
\(619\) −6975.00 12081.1i −0.452906 0.784456i 0.545659 0.838007i \(-0.316279\pi\)
−0.998565 + 0.0535508i \(0.982946\pi\)
\(620\) 0 0
\(621\) −1242.00 + 2151.21i −0.0802572 + 0.139010i
\(622\) 0 0
\(623\) −756.000 654.715i −0.0486172 0.0421037i
\(624\) 0 0
\(625\) 7554.50 13084.8i 0.483488 0.837426i
\(626\) 0 0
\(627\) −5148.00 8916.60i −0.327897 0.567934i
\(628\) 0 0
\(629\) −48.0000 −0.00304274
\(630\) 0 0
\(631\) 15787.0 0.995991 0.497996 0.867180i \(-0.334070\pi\)
0.497996 + 0.867180i \(0.334070\pi\)
\(632\) 0 0
\(633\) 6273.00 + 10865.2i 0.393885 + 0.682229i
\(634\) 0 0
\(635\) 6462.50 11193.4i 0.403868 0.699521i
\(636\) 0 0
\(637\) 10192.0 + 4073.78i 0.633943 + 0.253390i
\(638\) 0 0
\(639\) 153.000 265.004i 0.00947197 0.0164059i
\(640\) 0 0
\(641\) 4219.00 + 7307.52i 0.259970 + 0.450280i 0.966233 0.257668i \(-0.0829541\pi\)
−0.706264 + 0.707949i \(0.749621\pi\)
\(642\) 0 0
\(643\) 22522.0 1.38131 0.690654 0.723185i \(-0.257323\pi\)
0.690654 + 0.723185i \(0.257323\pi\)
\(644\) 0 0
\(645\) −10890.0 −0.664796
\(646\) 0 0
\(647\) −8569.00 14841.9i −0.520683 0.901850i −0.999711 0.0240501i \(-0.992344\pi\)
0.479027 0.877800i \(-0.340989\pi\)
\(648\) 0 0
\(649\) 4231.50 7329.17i 0.255934 0.443290i
\(650\) 0 0
\(651\) 1470.00 + 1273.06i 0.0885005 + 0.0766437i
\(652\) 0 0
\(653\) 4981.50 8628.21i 0.298532 0.517072i −0.677269 0.735736i \(-0.736836\pi\)
0.975800 + 0.218664i \(0.0701698\pi\)
\(654\) 0 0
\(655\) −13975.5 24206.3i −0.833692 1.44400i
\(656\) 0 0
\(657\) −7542.00 −0.447856
\(658\) 0 0
\(659\) −8664.00 −0.512142 −0.256071 0.966658i \(-0.582428\pi\)
−0.256071 + 0.966658i \(0.582428\pi\)
\(660\) 0 0
\(661\) −1225.00 2121.76i −0.0720832 0.124852i 0.827731 0.561125i \(-0.189631\pi\)
−0.899814 + 0.436273i \(0.856298\pi\)
\(662\) 0 0
\(663\) −576.000 + 997.661i −0.0337406 + 0.0584404i
\(664\) 0 0
\(665\) −16940.0 + 5868.19i −0.987827 + 0.342193i
\(666\) 0 0
\(667\) 11730.0 20317.0i 0.680941 1.17942i
\(668\) 0 0
\(669\) 1738.50 + 3011.17i 0.100470 + 0.174019i
\(670\) 0 0
\(671\) 15054.0 0.866100
\(672\) 0 0
\(673\) −6643.00 −0.380489 −0.190244 0.981737i \(-0.560928\pi\)
−0.190244 + 0.981737i \(0.560928\pi\)
\(674\) 0 0
\(675\) −54.0000 93.5307i −0.00307920 0.00533333i
\(676\) 0 0
\(677\) −7796.50 + 13503.9i −0.442605 + 0.766615i −0.997882 0.0650508i \(-0.979279\pi\)
0.555277 + 0.831666i \(0.312612\pi\)
\(678\) 0 0
\(679\) 24.5000 127.306i 0.00138472 0.00719521i
\(680\) 0 0
\(681\) 2677.50 4637.57i 0.150664 0.260957i
\(682\) 0 0
\(683\) 185.500 + 321.295i 0.0103923 + 0.0180000i 0.871175 0.490973i \(-0.163359\pi\)
−0.860782 + 0.508973i \(0.830025\pi\)
\(684\) 0 0
\(685\) 8822.00 0.492075
\(686\) 0 0
\(687\) −1764.00 −0.0979633
\(688\) 0 0
\(689\) −11472.0 19870.1i −0.634323 1.09868i
\(690\) 0 0
\(691\) −4116.00 + 7129.12i −0.226599 + 0.392481i −0.956798 0.290753i \(-0.906094\pi\)
0.730199 + 0.683235i \(0.239427\pi\)
\(692\) 0 0
\(693\) 1228.50 6383.47i 0.0673403 0.349911i
\(694\) 0 0
\(695\) 17105.0 29626.7i 0.933568 1.61699i
\(696\) 0 0
\(697\) −96.0000 166.277i −0.00521701 0.00903613i
\(698\) 0 0
\(699\) −20484.0 −1.10841
\(700\) 0 0
\(701\) 30751.0 1.65685 0.828423 0.560103i \(-0.189238\pi\)
0.828423 + 0.560103i \(0.189238\pi\)
\(702\) 0 0
\(703\) −176.000 304.841i −0.00944234 0.0163546i
\(704\) 0 0
\(705\) 4917.00 8516.49i 0.262674 0.454964i
\(706\) 0 0
\(707\) 805.000 278.860i 0.0428220 0.0148340i
\(708\) 0 0
\(709\) −6159.00 + 10667.7i −0.326243 + 0.565069i −0.981763 0.190109i \(-0.939116\pi\)
0.655520 + 0.755178i \(0.272449\pi\)
\(710\) 0 0
\(711\) −5962.50 10327.4i −0.314502 0.544734i
\(712\) 0 0
\(713\) 3220.00 0.169130
\(714\) 0 0
\(715\) 13728.0 0.718039
\(716\) 0 0
\(717\) 3762.00 + 6515.98i 0.195948 + 0.339391i
\(718\) 0 0
\(719\) −9011.00 + 15607.5i −0.467390 + 0.809544i −0.999306 0.0372537i \(-0.988139\pi\)
0.531916 + 0.846797i \(0.321472\pi\)
\(720\) 0 0
\(721\) 23184.0 + 20077.9i 1.19753 + 1.03709i
\(722\) 0 0
\(723\) −6445.50 + 11163.9i −0.331550 + 0.574262i
\(724\) 0 0
\(725\) 510.000 + 883.346i 0.0261254 + 0.0452505i
\(726\) 0 0
\(727\) −1279.00 −0.0652483 −0.0326241 0.999468i \(-0.510386\pi\)
−0.0326241 + 0.999468i \(0.510386\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 1980.00 + 3429.46i 0.100182 + 0.173520i
\(732\) 0 0
\(733\) 18455.0 31965.0i 0.929947 1.61072i 0.146541 0.989205i \(-0.453186\pi\)
0.783406 0.621510i \(-0.213481\pi\)
\(734\) 0 0
\(735\) −10510.5 4201.09i −0.527463 0.210829i
\(736\) 0 0
\(737\) −17667.0 + 30600.1i −0.883002 + 1.52940i
\(738\) 0 0
\(739\) 15613.0 + 27042.5i 0.777177 + 1.34611i 0.933563 + 0.358413i \(0.116682\pi\)
−0.156386 + 0.987696i \(0.549985\pi\)
\(740\) 0 0
\(741\) −8448.00 −0.418819
\(742\) 0 0
\(743\) −17758.0 −0.876821 −0.438410 0.898775i \(-0.644458\pi\)
−0.438410 + 0.898775i \(0.644458\pi\)
\(744\) 0 0
\(745\) 14289.0 + 24749.3i 0.702696 + 1.21711i
\(746\) 0 0
\(747\) −5233.50 + 9064.69i −0.256337 + 0.443989i
\(748\) 0 0
\(749\) −5138.00 4449.64i −0.250652 0.217071i
\(750\) 0 0
\(751\) −1009.50 + 1748.51i −0.0490508 + 0.0849585i −0.889508 0.456919i \(-0.848953\pi\)
0.840458 + 0.541877i \(0.182286\pi\)
\(752\) 0 0
\(753\) −3733.50 6466.61i −0.180686 0.312957i
\(754\) 0 0
\(755\) −14663.0 −0.706810
\(756\) 0 0
\(757\) −2398.00 −0.115134 −0.0575672 0.998342i \(-0.518334\pi\)
−0.0575672 + 0.998342i \(0.518334\pi\)
\(758\) 0 0
\(759\) −5382.00 9321.90i −0.257384 0.445802i
\(760\) 0 0
\(761\) −5220.00 + 9041.31i −0.248653 + 0.430679i −0.963152 0.268957i \(-0.913321\pi\)
0.714499 + 0.699636i \(0.246655\pi\)
\(762\) 0 0
\(763\) −28385.0 + 9832.85i −1.34680 + 0.466544i
\(764\) 0 0
\(765\) 594.000 1028.84i 0.0280734 0.0486245i
\(766\) 0 0
\(767\) −3472.00 6013.68i −0.163451 0.283105i
\(768\) 0 0
\(769\) −4739.00 −0.222227 −0.111114 0.993808i \(-0.535442\pi\)
−0.111114 + 0.993808i \(0.535442\pi\)
\(770\) 0 0
\(771\) −5358.00 −0.250277
\(772\) 0 0
\(773\) 17015.0 + 29470.8i 0.791704 + 1.37127i 0.924911 + 0.380183i \(0.124139\pi\)
−0.133208 + 0.991088i \(0.542528\pi\)
\(774\) 0 0
\(775\) −70.0000 + 121.244i −0.00324448 + 0.00561961i
\(776\) 0 0
\(777\) 42.0000 218.238i 0.00193918 0.0100763i
\(778\) 0 0
\(779\) 704.000 1219.36i 0.0323792 0.0560825i
\(780\) 0 0
\(781\) 663.000 + 1148.35i 0.0303764 + 0.0526135i
\(782\) 0 0
\(783\) −6885.00 −0.314240
\(784\) 0 0
\(785\) −17380.0 −0.790215
\(786\) 0 0
\(787\) −3613.00 6257.90i −0.163646 0.283443i 0.772528 0.634981i \(-0.218992\pi\)
−0.936174 + 0.351538i \(0.885659\pi\)
\(788\) 0 0
\(789\) 3477.00 6022.34i 0.156888 0.271738i
\(790\) 0 0
\(791\) −2576.00 + 13385.3i −0.115793 + 0.601676i
\(792\) 0 0
\(793\) 6176.00 10697.1i 0.276565 0.479025i
\(794\) 0 0
\(795\) 11830.5 + 20491.0i 0.527779 + 0.914141i
\(796\) 0 0
\(797\) 4881.00 0.216931 0.108465 0.994100i \(-0.465406\pi\)
0.108465 + 0.994100i \(0.465406\pi\)
\(798\) 0 0
\(799\) −3576.00 −0.158335
\(800\) 0 0
\(801\) 243.000 + 420.888i 0.0107191 + 0.0185660i
\(802\) 0 0
\(803\) 16341.0 28303.4i 0.718134 1.24384i
\(804\) 0 0
\(805\) −17710.0 + 6134.92i −0.775398 + 0.268606i
\(806\) 0 0
\(807\) −4123.50 + 7142.11i −0.179869 + 0.311542i
\(808\) 0 0
\(809\) 6556.00 + 11355.3i 0.284916 + 0.493488i 0.972589 0.232532i \(-0.0747011\pi\)
−0.687673 + 0.726020i \(0.741368\pi\)
\(810\) 0 0
\(811\) 40982.0 1.77444 0.887221 0.461344i \(-0.152633\pi\)
0.887221 + 0.461344i \(0.152633\pi\)
\(812\) 0 0
\(813\) −5475.00 −0.236183
\(814\) 0 0
\(815\) 6974.00 + 12079.3i 0.299741 + 0.519166i
\(816\) 0 0
\(817\) −14520.0 + 25149.4i −0.621775 + 1.07695i
\(818\) 0 0
\(819\) −4032.00 3491.81i −0.172026 0.148979i
\(820\) 0 0
\(821\) −19921.5 + 34505.1i −0.846852 + 1.46679i 0.0371519 + 0.999310i \(0.488171\pi\)
−0.884003 + 0.467480i \(0.845162\pi\)
\(822\) 0 0
\(823\) −3628.00 6283.88i −0.153662 0.266151i 0.778909 0.627137i \(-0.215773\pi\)
−0.932571 + 0.360986i \(0.882440\pi\)
\(824\) 0 0
\(825\) 468.000 0.0197499
\(826\) 0 0
\(827\) −23005.0 −0.967306 −0.483653 0.875260i \(-0.660690\pi\)
−0.483653 + 0.875260i \(0.660690\pi\)
\(828\) 0 0
\(829\) −184.000 318.697i −0.00770879 0.0133520i 0.862145 0.506661i \(-0.169120\pi\)
−0.869854 + 0.493309i \(0.835787\pi\)
\(830\) 0 0
\(831\) −456.000 + 789.815i −0.0190355 + 0.0329704i
\(832\) 0 0
\(833\) 588.000 + 4073.78i 0.0244574 + 0.169446i
\(834\) 0 0
\(835\) 4829.00 8364.07i 0.200137 0.346648i
\(836\) 0 0
\(837\) −472.500 818.394i −0.0195125 0.0337967i
\(838\) 0 0
\(839\) −5556.00 −0.228623 −0.114311 0.993445i \(-0.536466\pi\)
−0.114311 + 0.993445i \(0.536466\pi\)
\(840\) 0 0
\(841\) 40636.0 1.66616
\(842\) 0 0
\(843\) 6867.00 + 11894.0i 0.280560 + 0.485944i
\(844\) 0 0
\(845\) −6451.50 + 11174.3i −0.262649 + 0.454921i
\(846\) 0 0
\(847\) 2660.00 + 2303.63i 0.107909 + 0.0934517i
\(848\) 0 0
\(849\) 6453.00 11176.9i 0.260856 0.451815i
\(850\) 0 0
\(851\) −184.000 318.697i −0.00741180 0.0128376i
\(852\) 0 0
\(853\) −5674.00 −0.227754 −0.113877 0.993495i \(-0.536327\pi\)
−0.113877 + 0.993495i \(0.536327\pi\)
\(854\) 0 0
\(855\) 8712.00 0.348473
\(856\) 0 0
\(857\) 3913.00 + 6777.51i 0.155969 + 0.270146i 0.933411 0.358808i \(-0.116817\pi\)
−0.777442 + 0.628954i \(0.783483\pi\)
\(858\) 0 0
\(859\) −1685.00 + 2918.51i −0.0669284 + 0.115923i −0.897548 0.440917i \(-0.854653\pi\)
0.830619 + 0.556841i \(0.187987\pi\)
\(860\) 0 0
\(861\) 840.000 290.985i 0.0332487 0.0115177i
\(862\) 0 0
\(863\) −13867.0 + 24018.3i −0.546974 + 0.947386i 0.451506 + 0.892268i \(0.350887\pi\)
−0.998480 + 0.0551180i \(0.982446\pi\)
\(864\) 0 0
\(865\) −15851.0 27454.7i −0.623064 1.07918i
\(866\) 0 0
\(867\) 14307.0 0.560428
\(868\) 0 0
\(869\) 51675.0 2.01721
\(870\) 0 0
\(871\) 14496.0 + 25107.8i 0.563924 + 0.976746i
\(872\) 0 0
\(873\) −31.5000 + 54.5596i −0.00122121 + 0.00211519i
\(874\) 0 0
\(875\) 4966.50 25806.7i 0.191884 0.997058i
\(876\) 0 0
\(877\) −22640.0 + 39213.6i −0.871720 + 1.50986i −0.0115039 + 0.999934i \(0.503662\pi\)
−0.860216 + 0.509930i \(0.829671\pi\)
\(878\) 0 0
\(879\) 10090.5 + 17477.3i 0.387195 + 0.670641i
\(880\) 0 0
\(881\) −47610.0 −1.82068 −0.910341 0.413858i \(-0.864181\pi\)
−0.910341 + 0.413858i \(0.864181\pi\)
\(882\) 0 0
\(883\) −28328.0 −1.07963 −0.539815 0.841784i \(-0.681506\pi\)
−0.539815 + 0.841784i \(0.681506\pi\)
\(884\) 0 0
\(885\) 3580.50 + 6201.61i 0.135997 + 0.235553i
\(886\) 0 0
\(887\) 24306.0 42099.2i 0.920085 1.59363i 0.120805 0.992676i \(-0.461453\pi\)
0.799281 0.600958i \(-0.205214\pi\)
\(888\) 0 0
\(889\) 4112.50 21369.2i 0.155151 0.806186i
\(890\) 0 0
\(891\) −1579.50 + 2735.77i −0.0593886 + 0.102864i
\(892\) 0 0
\(893\) −13112.0 22710.7i −0.491351 0.851045i
\(894\) 0 0
\(895\) −16236.0 −0.606379
\(896\) 0 0
\(897\) −8832.00 −0.328754
\(898\) 0 0
\(899\) 4462.50 + 7729.28i 0.165554 + 0.286747i
\(900\) 0 0
\(901\) 4302.00 7451.28i 0.159068 0.275514i
\(902\) 0 0
\(903\) −17325.0 + 6001.56i −0.638472 + 0.221173i
\(904\) 0 0
\(905\) 24024.0 41610.8i 0.882414 1.52839i
\(906\) 0 0
\(907\) −2050.00 3550.70i −0.0750487 0.129988i 0.826059 0.563584i \(-0.190578\pi\)
−0.901107 + 0.433596i \(0.857245\pi\)
\(908\) 0 0
\(909\) −414.000 −0.0151062
\(910\) 0 0
\(911\) −13902.0 −0.505591 −0.252796 0.967520i \(-0.581350\pi\)
−0.252796 + 0.967520i \(0.581350\pi\)
\(912\) 0 0
\(913\) −22678.5 39280.3i −0.822069 1.42386i
\(914\) 0 0
\(915\) −6369.00 + 11031.4i −0.230112 + 0.398566i
\(916\) 0 0
\(917\) −35574.0 30808.0i −1.28109 1.10945i
\(918\) 0 0
\(919\) −22912.0 + 39684.7i −0.822413 + 1.42446i 0.0814682 + 0.996676i \(0.474039\pi\)
−0.903881 + 0.427784i \(0.859294\pi\)
\(920\) 0 0
\(921\) 174.000 + 301.377i 0.00622529 + 0.0107825i
\(922\) 0 0
\(923\) 1088.00 0.0387995
\(924\) 0 0
\(925\) 16.0000 0.000568732
\(926\) 0 0
\(927\) −7452.00 12907.2i −0.264030 0.457313i
\(928\) 0 0
\(929\) −19437.0 + 33665.9i −0.686445 + 1.18896i 0.286536 + 0.958070i \(0.407496\pi\)
−0.972980 + 0.230888i \(0.925837\pi\)
\(930\) 0 0
\(931\) −23716.0 + 18671.5i −0.834866 + 0.657287i
\(932\) 0 0
\(933\) −5688.00 + 9851.90i −0.199589 + 0.345699i
\(934\) 0 0
\(935\) 2574.00 + 4458.30i 0.0900308 + 0.155938i
\(936\) 0 0
\(937\) −1829.00 −0.0637682 −0.0318841 0.999492i \(-0.510151\pi\)
−0.0318841 + 0.999492i \(0.510151\pi\)
\(938\) 0 0
\(939\) 11061.0 0.384411
\(940\) 0 0
\(941\) 2927.50 + 5070.58i 0.101417 + 0.175660i 0.912269 0.409592i \(-0.134329\pi\)
−0.810851 + 0.585252i \(0.800996\pi\)
\(942\) 0 0
\(943\) 736.000 1274.79i 0.0254162 0.0440221i
\(944\) 0 0
\(945\) 4158.00 + 3600.93i 0.143132 + 0.123956i
\(946\) 0 0
\(947\) −10560.0 + 18290.5i −0.362359 + 0.627624i −0.988349 0.152207i \(-0.951362\pi\)
0.625990 + 0.779831i \(0.284695\pi\)
\(948\) 0 0
\(949\) −13408.0 23223.3i −0.458632 0.794375i
\(950\) 0 0
\(951\) 24843.0 0.847097
\(952\) 0 0
\(953\) 21650.0 0.735900 0.367950 0.929846i \(-0.380060\pi\)
0.367950 + 0.929846i \(0.380060\pi\)
\(954\) 0 0
\(955\) 16588.0 + 28731.3i 0.562068 + 0.973531i
\(956\) 0 0
\(957\) 14917.5 25837.9i 0.503881 0.872748i
\(958\) 0 0
\(959\) 14035.0 4861.87i 0.472590 0.163710i
\(960\) 0 0
\(961\) 14283.0 24738.9i 0.479440 0.830415i
\(962\) 0 0
\(963\) 1651.50 + 2860.48i 0.0552636 + 0.0957194i
\(964\) 0 0
\(965\) 17193.0 0.573536
\(966\) 0 0
\(967\) 36597.0 1.21704 0.608521 0.793538i \(-0.291763\pi\)
0.608521 + 0.793538i \(0.291763\pi\)
\(968\) 0 0
\(969\) −1584.00 2743.57i −0.0525133 0.0909557i
\(970\) 0 0
\(971\) 27093.5 46927.3i 0.895440 1.55095i 0.0621799 0.998065i \(-0.480195\pi\)
0.833260 0.552882i \(-0.186472\pi\)
\(972\) 0 0
\(973\) 10885.0 56560.1i 0.358640 1.86355i
\(974\) 0 0
\(975\) 192.000 332.554i 0.00630659 0.0109233i
\(976\) 0 0
\(977\) −18017.0 31206.4i −0.589985 1.02188i −0.994234 0.107234i \(-0.965800\pi\)
0.404249 0.914649i \(-0.367533\pi\)
\(978\) 0 0
\(979\) −2106.00 −0.0687518
\(980\) 0 0
\(981\) 14598.0 0.475105
\(982\) 0 0
\(983\) 20314.0 + 35184.9i 0.659121 + 1.14163i 0.980844 + 0.194797i \(0.0624048\pi\)
−0.321723 + 0.946834i \(0.604262\pi\)
\(984\) 0 0
\(985\) −10153.0 + 17585.5i −0.328428 + 0.568854i
\(986\) 0 0
\(987\) 3129.00 16258.8i 0.100909 0.524338i
\(988\) 0 0
\(989\) −15180.0 + 26292.5i −0.488065 + 0.845353i
\(990\) 0 0
\(991\) 20215.5 + 35014.3i 0.647999 + 1.12237i 0.983600 + 0.180362i \(0.0577270\pi\)
−0.335602 + 0.942004i \(0.608940\pi\)
\(992\) 0 0
\(993\) 20004.0 0.639283
\(994\) 0 0
\(995\) 43956.0 1.40050
\(996\) 0 0
\(997\) 16633.0 + 28809.2i 0.528357 + 0.915142i 0.999453 + 0.0330600i \(0.0105252\pi\)
−0.471096 + 0.882082i \(0.656141\pi\)
\(998\) 0 0
\(999\) −54.0000 + 93.5307i −0.00171019 + 0.00296214i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.q.c.121.1 yes 2
3.2 odd 2 504.4.s.a.289.1 2
4.3 odd 2 336.4.q.c.289.1 2
7.2 even 3 1176.4.a.c.1.1 1
7.4 even 3 inner 168.4.q.c.25.1 2
7.5 odd 6 1176.4.a.n.1.1 1
21.11 odd 6 504.4.s.a.361.1 2
28.11 odd 6 336.4.q.c.193.1 2
28.19 even 6 2352.4.a.o.1.1 1
28.23 odd 6 2352.4.a.y.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.q.c.25.1 2 7.4 even 3 inner
168.4.q.c.121.1 yes 2 1.1 even 1 trivial
336.4.q.c.193.1 2 28.11 odd 6
336.4.q.c.289.1 2 4.3 odd 2
504.4.s.a.289.1 2 3.2 odd 2
504.4.s.a.361.1 2 21.11 odd 6
1176.4.a.c.1.1 1 7.2 even 3
1176.4.a.n.1.1 1 7.5 odd 6
2352.4.a.o.1.1 1 28.19 even 6
2352.4.a.y.1.1 1 28.23 odd 6