gp: [N,k,chi] = [168,4,Mod(25,168)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(168, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("168.25");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,3,0,-2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 168 Z ) × \left(\mathbb{Z}/168\mathbb{Z}\right)^\times ( Z / 1 6 8 Z ) × .
n n n
73 73 7 3
85 85 8 5
113 113 1 1 3
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
− 1 + ζ 6 -1 + \zeta_{6} − 1 + ζ 6
1 1 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 2 + 2 T 5 + 4 T_{5}^{2} + 2T_{5} + 4 T 5 2 + 2 T 5 + 4
T5^2 + 2*T5 + 4
acting on S 4 n e w ( 168 , [ χ ] ) S_{4}^{\mathrm{new}}(168, [\chi]) S 4 n e w ( 1 6 8 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 − 3 T + 9 T^{2} - 3T + 9 T 2 − 3 T + 9
T^2 - 3*T + 9
5 5 5
T 2 + 2 T + 4 T^{2} + 2T + 4 T 2 + 2 T + 4
T^2 + 2*T + 4
7 7 7
T 2 − 35 T + 343 T^{2} - 35T + 343 T 2 − 3 5 T + 3 4 3
T^2 - 35*T + 343
11 11 1 1
T 2 − 18 T + 324 T^{2} - 18T + 324 T 2 − 1 8 T + 3 2 4
T^2 - 18*T + 324
13 13 1 3
( T − 33 ) 2 (T - 33)^{2} ( T − 3 3 ) 2
(T - 33)^2
17 17 1 7
T 2 − 68 T + 4624 T^{2} - 68T + 4624 T 2 − 6 8 T + 4 6 2 4
T^2 - 68*T + 4624
19 19 1 9
T 2 + 25 T + 625 T^{2} + 25T + 625 T 2 + 2 5 T + 6 2 5
T^2 + 25*T + 625
23 23 2 3
T 2 + 92 T + 8464 T^{2} + 92T + 8464 T 2 + 9 2 T + 8 4 6 4
T^2 + 92*T + 8464
29 29 2 9
( T − 92 ) 2 (T - 92)^{2} ( T − 9 2 ) 2
(T - 92)^2
31 31 3 1
T 2 + 25 T + 625 T^{2} + 25T + 625 T 2 + 2 5 T + 6 2 5
T^2 + 25*T + 625
37 37 3 7
T 2 − 213 T + 45369 T^{2} - 213T + 45369 T 2 − 2 1 3 T + 4 5 3 6 9
T^2 - 213*T + 45369
41 41 4 1
( T − 94 ) 2 (T - 94)^{2} ( T − 9 4 ) 2
(T - 94)^2
43 43 4 3
( T + 67 ) 2 (T + 67)^{2} ( T + 6 7 ) 2
(T + 67)^2
47 47 4 7
T 2 + 278 T + 77284 T^{2} + 278T + 77284 T 2 + 2 7 8 T + 7 7 2 8 4
T^2 + 278*T + 77284
53 53 5 3
T 2 − 400 T + 160000 T^{2} - 400T + 160000 T 2 − 4 0 0 T + 1 6 0 0 0 0
T^2 - 400*T + 160000
59 59 5 9
T 2 + 744 T + 553536 T^{2} + 744T + 553536 T 2 + 7 4 4 T + 5 5 3 5 3 6
T^2 + 744*T + 553536
61 61 6 1
T 2 − 734 T + 538756 T^{2} - 734T + 538756 T 2 − 7 3 4 T + 5 3 8 7 5 6
T^2 - 734*T + 538756
67 67 6 7
T 2 + 555 T + 308025 T^{2} + 555T + 308025 T 2 + 5 5 5 T + 3 0 8 0 2 5
T^2 + 555*T + 308025
71 71 7 1
( T + 642 ) 2 (T + 642)^{2} ( T + 6 4 2 ) 2
(T + 642)^2
73 73 7 3
T 2 + 973 T + 946729 T^{2} + 973T + 946729 T 2 + 9 7 3 T + 9 4 6 7 2 9
T^2 + 973*T + 946729
79 79 7 9
T 2 − 785 T + 616225 T^{2} - 785T + 616225 T 2 − 7 8 5 T + 6 1 6 2 2 5
T^2 - 785*T + 616225
83 83 8 3
( T + 822 ) 2 (T + 822)^{2} ( T + 8 2 2 ) 2
(T + 822)^2
89 89 8 9
T 2 + 424 T + 179776 T^{2} + 424T + 179776 T 2 + 4 2 4 T + 1 7 9 7 7 6
T^2 + 424*T + 179776
97 97 9 7
( T + 734 ) 2 (T + 734)^{2} ( T + 7 3 4 ) 2
(T + 734)^2
show more
show less