Properties

Label 168.4.q.b
Level 168168
Weight 44
Character orbit 168.q
Analytic conductor 9.9129.912
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(25,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.25"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 168=2337 168 = 2^{3} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 168.q (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,3,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.912320880969.91232088096
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3ζ6q3+(2ζ62)q5+(7ζ6+21)q7+(9ζ69)q9+18ζ6q11+33q136q15+68ζ6q17+(25ζ625)q19+(42ζ6+21)q21+162q99+O(q100) q + 3 \zeta_{6} q^{3} + (2 \zeta_{6} - 2) q^{5} + ( - 7 \zeta_{6} + 21) q^{7} + (9 \zeta_{6} - 9) q^{9} + 18 \zeta_{6} q^{11} + 33 q^{13} - 6 q^{15} + 68 \zeta_{6} q^{17} + (25 \zeta_{6} - 25) q^{19} + (42 \zeta_{6} + 21) q^{21}+ \cdots - 162 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+3q32q5+35q79q9+18q11+66q1312q15+68q1725q19+84q2192q23+121q2554q27+184q2925q3154q3314q35+324q99+O(q100) 2 q + 3 q^{3} - 2 q^{5} + 35 q^{7} - 9 q^{9} + 18 q^{11} + 66 q^{13} - 12 q^{15} + 68 q^{17} - 25 q^{19} + 84 q^{21} - 92 q^{23} + 121 q^{25} - 54 q^{27} + 184 q^{29} - 25 q^{31} - 54 q^{33} - 14 q^{35}+ \cdots - 324 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/168Z)×\left(\mathbb{Z}/168\mathbb{Z}\right)^\times.

nn 7373 8585 113113 127127
χ(n)\chi(n) 1+ζ6-1 + \zeta_{6} 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
25.1
0.500000 0.866025i
0.500000 + 0.866025i
0 1.50000 2.59808i 0 −1.00000 1.73205i 0 17.5000 + 6.06218i 0 −4.50000 7.79423i 0
121.1 0 1.50000 + 2.59808i 0 −1.00000 + 1.73205i 0 17.5000 6.06218i 0 −4.50000 + 7.79423i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 168.4.q.b 2
3.b odd 2 1 504.4.s.d 2
4.b odd 2 1 336.4.q.b 2
7.c even 3 1 inner 168.4.q.b 2
7.c even 3 1 1176.4.a.d 1
7.d odd 6 1 1176.4.a.k 1
21.h odd 6 1 504.4.s.d 2
28.f even 6 1 2352.4.a.j 1
28.g odd 6 1 336.4.q.b 2
28.g odd 6 1 2352.4.a.bc 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.4.q.b 2 1.a even 1 1 trivial
168.4.q.b 2 7.c even 3 1 inner
336.4.q.b 2 4.b odd 2 1
336.4.q.b 2 28.g odd 6 1
504.4.s.d 2 3.b odd 2 1
504.4.s.d 2 21.h odd 6 1
1176.4.a.d 1 7.c even 3 1
1176.4.a.k 1 7.d odd 6 1
2352.4.a.j 1 28.f even 6 1
2352.4.a.bc 1 28.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T52+2T5+4 T_{5}^{2} + 2T_{5} + 4 acting on S4new(168,[χ])S_{4}^{\mathrm{new}}(168, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
55 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
77 T235T+343 T^{2} - 35T + 343 Copy content Toggle raw display
1111 T218T+324 T^{2} - 18T + 324 Copy content Toggle raw display
1313 (T33)2 (T - 33)^{2} Copy content Toggle raw display
1717 T268T+4624 T^{2} - 68T + 4624 Copy content Toggle raw display
1919 T2+25T+625 T^{2} + 25T + 625 Copy content Toggle raw display
2323 T2+92T+8464 T^{2} + 92T + 8464 Copy content Toggle raw display
2929 (T92)2 (T - 92)^{2} Copy content Toggle raw display
3131 T2+25T+625 T^{2} + 25T + 625 Copy content Toggle raw display
3737 T2213T+45369 T^{2} - 213T + 45369 Copy content Toggle raw display
4141 (T94)2 (T - 94)^{2} Copy content Toggle raw display
4343 (T+67)2 (T + 67)^{2} Copy content Toggle raw display
4747 T2+278T+77284 T^{2} + 278T + 77284 Copy content Toggle raw display
5353 T2400T+160000 T^{2} - 400T + 160000 Copy content Toggle raw display
5959 T2+744T+553536 T^{2} + 744T + 553536 Copy content Toggle raw display
6161 T2734T+538756 T^{2} - 734T + 538756 Copy content Toggle raw display
6767 T2+555T+308025 T^{2} + 555T + 308025 Copy content Toggle raw display
7171 (T+642)2 (T + 642)^{2} Copy content Toggle raw display
7373 T2+973T+946729 T^{2} + 973T + 946729 Copy content Toggle raw display
7979 T2785T+616225 T^{2} - 785T + 616225 Copy content Toggle raw display
8383 (T+822)2 (T + 822)^{2} Copy content Toggle raw display
8989 T2+424T+179776 T^{2} + 424T + 179776 Copy content Toggle raw display
9797 (T+734)2 (T + 734)^{2} Copy content Toggle raw display
show more
show less