Properties

Label 168.4.p.a.139.46
Level $168$
Weight $4$
Character 168.139
Analytic conductor $9.912$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(139,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.139"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.p (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 139.46
Character \(\chi\) \(=\) 168.139
Dual form 168.4.p.a.139.47

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.81393 - 0.285994i) q^{2} +3.00000i q^{3} +(7.83641 - 1.60954i) q^{4} +17.9897 q^{5} +(0.857983 + 8.44179i) q^{6} +(4.95393 - 17.8454i) q^{7} +(21.5908 - 6.77030i) q^{8} -9.00000 q^{9} +(50.6217 - 5.14495i) q^{10} -49.0130 q^{11} +(4.82861 + 23.5092i) q^{12} -3.98265 q^{13} +(8.83633 - 51.6325i) q^{14} +53.9691i q^{15} +(58.8188 - 25.2260i) q^{16} -25.2793i q^{17} +(-25.3254 + 2.57395i) q^{18} +134.046i q^{19} +(140.975 - 28.9551i) q^{20} +(53.5362 + 14.8618i) q^{21} +(-137.919 + 14.0175i) q^{22} -79.8326i q^{23} +(20.3109 + 64.7724i) q^{24} +198.629 q^{25} +(-11.2069 + 1.13901i) q^{26} -27.0000i q^{27} +(10.0982 - 147.818i) q^{28} +210.026i q^{29} +(15.4349 + 151.865i) q^{30} -107.371 q^{31} +(158.297 - 87.8061i) q^{32} -147.039i q^{33} +(-7.22973 - 71.1341i) q^{34} +(89.1197 - 321.033i) q^{35} +(-70.5277 + 14.4858i) q^{36} -51.8170i q^{37} +(38.3365 + 377.197i) q^{38} -11.9479i q^{39} +(388.412 - 121.796i) q^{40} +414.210i q^{41} +(154.898 + 26.5090i) q^{42} -186.321 q^{43} +(-384.086 + 78.8883i) q^{44} -161.907 q^{45} +(-22.8317 - 224.643i) q^{46} -517.341 q^{47} +(75.6780 + 176.456i) q^{48} +(-293.917 - 176.810i) q^{49} +(558.928 - 56.8068i) q^{50} +75.8378 q^{51} +(-31.2097 + 6.41022i) q^{52} -442.451i q^{53} +(-7.72185 - 75.9761i) q^{54} -881.729 q^{55} +(-13.8593 - 418.836i) q^{56} -402.139 q^{57} +(60.0661 + 590.997i) q^{58} -225.075i q^{59} +(86.8652 + 422.924i) q^{60} +111.256 q^{61} +(-302.136 + 30.7076i) q^{62} +(-44.5854 + 160.609i) q^{63} +(420.326 - 292.352i) q^{64} -71.6466 q^{65} +(-42.0524 - 413.758i) q^{66} +544.441 q^{67} +(-40.6879 - 198.099i) q^{68} +239.498 q^{69} +(158.963 - 928.853i) q^{70} +942.439i q^{71} +(-194.317 + 60.9327i) q^{72} -96.0065i q^{73} +(-14.8194 - 145.809i) q^{74} +595.887i q^{75} +(215.752 + 1050.44i) q^{76} +(-242.807 + 874.658i) q^{77} +(-3.41704 - 33.6207i) q^{78} -1229.26i q^{79} +(1058.13 - 453.808i) q^{80} +81.0000 q^{81} +(118.462 + 1165.56i) q^{82} -365.940i q^{83} +(443.453 + 30.2946i) q^{84} -454.766i q^{85} +(-524.295 + 53.2868i) q^{86} -630.077 q^{87} +(-1058.23 + 331.833i) q^{88} +395.170i q^{89} +(-455.596 + 46.3046i) q^{90} +(-19.7298 + 71.0720i) q^{91} +(-128.494 - 625.602i) q^{92} -322.114i q^{93} +(-1455.76 + 147.957i) q^{94} +2411.45i q^{95} +(263.418 + 474.892i) q^{96} -1071.98i q^{97} +(-877.629 - 413.472i) q^{98} +441.117 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{2} + 10 q^{4} + 118 q^{8} - 432 q^{9} - 40 q^{11} + 38 q^{14} - 142 q^{16} + 18 q^{18} - 376 q^{22} + 1200 q^{25} - 274 q^{28} + 336 q^{30} + 318 q^{32} - 456 q^{35} - 90 q^{36} + 564 q^{42}+ \cdots + 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.81393 0.285994i 0.994875 0.101114i
\(3\) 3.00000i 0.577350i
\(4\) 7.83641 1.60954i 0.979552 0.201192i
\(5\) 17.9897 1.60905 0.804523 0.593921i \(-0.202421\pi\)
0.804523 + 0.593921i \(0.202421\pi\)
\(6\) 0.857983 + 8.44179i 0.0583784 + 0.574391i
\(7\) 4.95393 17.8454i 0.267487 0.963561i
\(8\) 21.5908 6.77030i 0.954188 0.299208i
\(9\) −9.00000 −0.333333
\(10\) 50.6217 5.14495i 1.60080 0.162698i
\(11\) −49.0130 −1.34345 −0.671727 0.740799i \(-0.734447\pi\)
−0.671727 + 0.740799i \(0.734447\pi\)
\(12\) 4.82861 + 23.5092i 0.116158 + 0.565544i
\(13\) −3.98265 −0.0849683 −0.0424841 0.999097i \(-0.513527\pi\)
−0.0424841 + 0.999097i \(0.513527\pi\)
\(14\) 8.83633 51.6325i 0.168686 0.985670i
\(15\) 53.9691i 0.928984i
\(16\) 58.8188 25.2260i 0.919043 0.394156i
\(17\) 25.2793i 0.360654i −0.983607 0.180327i \(-0.942284\pi\)
0.983607 0.180327i \(-0.0577156\pi\)
\(18\) −25.3254 + 2.57395i −0.331625 + 0.0337048i
\(19\) 134.046i 1.61854i 0.587435 + 0.809271i \(0.300138\pi\)
−0.587435 + 0.809271i \(0.699862\pi\)
\(20\) 140.975 28.9551i 1.57614 0.323728i
\(21\) 53.5362 + 14.8618i 0.556312 + 0.154434i
\(22\) −137.919 + 14.0175i −1.33657 + 0.135842i
\(23\) 79.8326i 0.723750i −0.932227 0.361875i \(-0.882137\pi\)
0.932227 0.361875i \(-0.117863\pi\)
\(24\) 20.3109 + 64.7724i 0.172748 + 0.550901i
\(25\) 198.629 1.58903
\(26\) −11.2069 + 1.13901i −0.0845328 + 0.00859151i
\(27\) 27.0000i 0.192450i
\(28\) 10.0982 147.818i 0.0681565 0.997675i
\(29\) 210.026i 1.34485i 0.740163 + 0.672427i \(0.234748\pi\)
−0.740163 + 0.672427i \(0.765252\pi\)
\(30\) 15.4349 + 151.865i 0.0939335 + 0.924222i
\(31\) −107.371 −0.622080 −0.311040 0.950397i \(-0.600677\pi\)
−0.311040 + 0.950397i \(0.600677\pi\)
\(32\) 158.297 87.8061i 0.874478 0.485065i
\(33\) 147.039i 0.775643i
\(34\) −7.22973 71.1341i −0.0364673 0.358806i
\(35\) 89.1197 321.033i 0.430399 1.55042i
\(36\) −70.5277 + 14.4858i −0.326517 + 0.0670641i
\(37\) 51.8170i 0.230234i −0.993352 0.115117i \(-0.963276\pi\)
0.993352 0.115117i \(-0.0367243\pi\)
\(38\) 38.3365 + 377.197i 0.163658 + 1.61025i
\(39\) 11.9479i 0.0490565i
\(40\) 388.412 121.796i 1.53533 0.481439i
\(41\) 414.210i 1.57777i 0.614539 + 0.788887i \(0.289342\pi\)
−0.614539 + 0.788887i \(0.710658\pi\)
\(42\) 154.898 + 26.5090i 0.569077 + 0.0973911i
\(43\) −186.321 −0.660784 −0.330392 0.943844i \(-0.607181\pi\)
−0.330392 + 0.943844i \(0.607181\pi\)
\(44\) −384.086 + 78.8883i −1.31598 + 0.270292i
\(45\) −161.907 −0.536349
\(46\) −22.8317 224.643i −0.0731815 0.720041i
\(47\) −517.341 −1.60557 −0.802787 0.596266i \(-0.796650\pi\)
−0.802787 + 0.596266i \(0.796650\pi\)
\(48\) 75.6780 + 176.456i 0.227566 + 0.530610i
\(49\) −293.917 176.810i −0.856901 0.515481i
\(50\) 558.928 56.8068i 1.58089 0.160674i
\(51\) 75.8378 0.208224
\(52\) −31.2097 + 6.41022i −0.0832308 + 0.0170949i
\(53\) 442.451i 1.14671i −0.819309 0.573353i \(-0.805643\pi\)
0.819309 0.573353i \(-0.194357\pi\)
\(54\) −7.72185 75.9761i −0.0194595 0.191464i
\(55\) −881.729 −2.16168
\(56\) −13.8593 418.836i −0.0330720 0.999453i
\(57\) −402.139 −0.934466
\(58\) 60.0661 + 590.997i 0.135984 + 1.33796i
\(59\) 225.075i 0.496649i −0.968677 0.248325i \(-0.920120\pi\)
0.968677 0.248325i \(-0.0798800\pi\)
\(60\) 86.8652 + 422.924i 0.186904 + 0.909988i
\(61\) 111.256 0.233523 0.116762 0.993160i \(-0.462749\pi\)
0.116762 + 0.993160i \(0.462749\pi\)
\(62\) −302.136 + 30.7076i −0.618892 + 0.0629012i
\(63\) −44.5854 + 160.609i −0.0891624 + 0.321187i
\(64\) 420.326 292.352i 0.820950 0.571001i
\(65\) −71.6466 −0.136718
\(66\) −42.0524 413.758i −0.0784286 0.771668i
\(67\) 544.441 0.992747 0.496374 0.868109i \(-0.334665\pi\)
0.496374 + 0.868109i \(0.334665\pi\)
\(68\) −40.6879 198.099i −0.0725608 0.353280i
\(69\) 239.498 0.417857
\(70\) 158.963 928.853i 0.271424 1.58599i
\(71\) 942.439i 1.57531i 0.616118 + 0.787654i \(0.288705\pi\)
−0.616118 + 0.787654i \(0.711295\pi\)
\(72\) −194.317 + 60.9327i −0.318063 + 0.0997359i
\(73\) 96.0065i 0.153927i −0.997034 0.0769637i \(-0.975477\pi\)
0.997034 0.0769637i \(-0.0245226\pi\)
\(74\) −14.8194 145.809i −0.0232800 0.229054i
\(75\) 595.887i 0.917428i
\(76\) 215.752 + 1050.44i 0.325638 + 1.58545i
\(77\) −242.807 + 874.658i −0.359356 + 1.29450i
\(78\) −3.41704 33.6207i −0.00496031 0.0488050i
\(79\) 1229.26i 1.75067i −0.483521 0.875333i \(-0.660642\pi\)
0.483521 0.875333i \(-0.339358\pi\)
\(80\) 1058.13 453.808i 1.47878 0.634216i
\(81\) 81.0000 0.111111
\(82\) 118.462 + 1165.56i 0.159535 + 1.56969i
\(83\) 365.940i 0.483941i −0.970284 0.241970i \(-0.922206\pi\)
0.970284 0.241970i \(-0.0777937\pi\)
\(84\) 443.453 + 30.2946i 0.576008 + 0.0393502i
\(85\) 454.766i 0.580310i
\(86\) −524.295 + 53.2868i −0.657397 + 0.0668147i
\(87\) −630.077 −0.776452
\(88\) −1058.23 + 331.833i −1.28191 + 0.401972i
\(89\) 395.170i 0.470651i 0.971917 + 0.235325i \(0.0756156\pi\)
−0.971917 + 0.235325i \(0.924384\pi\)
\(90\) −455.596 + 46.3046i −0.533600 + 0.0542325i
\(91\) −19.7298 + 71.0720i −0.0227279 + 0.0818721i
\(92\) −128.494 625.602i −0.145613 0.708951i
\(93\) 322.114i 0.359158i
\(94\) −1455.76 + 147.957i −1.59734 + 0.162346i
\(95\) 2411.45i 2.60431i
\(96\) 263.418 + 474.892i 0.280052 + 0.504880i
\(97\) 1071.98i 1.12209i −0.827784 0.561047i \(-0.810399\pi\)
0.827784 0.561047i \(-0.189601\pi\)
\(98\) −877.629 413.472i −0.904632 0.426194i
\(99\) 441.117 0.447818
\(100\) 1556.54 319.701i 1.55654 0.319701i
\(101\) 1529.51 1.50685 0.753427 0.657532i \(-0.228399\pi\)
0.753427 + 0.657532i \(0.228399\pi\)
\(102\) 213.402 21.6892i 0.207157 0.0210544i
\(103\) −944.040 −0.903097 −0.451549 0.892246i \(-0.649128\pi\)
−0.451549 + 0.892246i \(0.649128\pi\)
\(104\) −85.9886 + 26.9637i −0.0810757 + 0.0254232i
\(105\) 963.100 + 267.359i 0.895133 + 0.248491i
\(106\) −126.539 1245.03i −0.115948 1.14083i
\(107\) −1406.01 −1.27032 −0.635161 0.772380i \(-0.719066\pi\)
−0.635161 + 0.772380i \(0.719066\pi\)
\(108\) −43.4575 211.583i −0.0387194 0.188515i
\(109\) 1319.50i 1.15950i −0.814795 0.579749i \(-0.803150\pi\)
0.814795 0.579749i \(-0.196850\pi\)
\(110\) −2481.13 + 252.170i −2.15060 + 0.218577i
\(111\) 155.451 0.132926
\(112\) −158.784 1174.61i −0.133961 0.990987i
\(113\) 141.191 0.117541 0.0587704 0.998272i \(-0.481282\pi\)
0.0587704 + 0.998272i \(0.481282\pi\)
\(114\) −1131.59 + 115.009i −0.929677 + 0.0944879i
\(115\) 1436.16i 1.16455i
\(116\) 338.044 + 1645.85i 0.270574 + 1.31735i
\(117\) 35.8438 0.0283228
\(118\) −64.3703 633.346i −0.0502183 0.494104i
\(119\) −451.119 125.232i −0.347513 0.0964704i
\(120\) 365.387 + 1165.24i 0.277959 + 0.886425i
\(121\) 1071.28 0.804866
\(122\) 313.068 31.8187i 0.232326 0.0236125i
\(123\) −1242.63 −0.910928
\(124\) −841.407 + 172.818i −0.609360 + 0.125158i
\(125\) 1324.56 0.947779
\(126\) −79.5270 + 464.693i −0.0562288 + 0.328557i
\(127\) 928.424i 0.648695i −0.945938 0.324348i \(-0.894855\pi\)
0.945938 0.324348i \(-0.105145\pi\)
\(128\) 1099.16 942.870i 0.759006 0.651084i
\(129\) 558.964i 0.381504i
\(130\) −201.609 + 20.4905i −0.136017 + 0.0138241i
\(131\) 2560.59i 1.70778i 0.520450 + 0.853892i \(0.325764\pi\)
−0.520450 + 0.853892i \(0.674236\pi\)
\(132\) −236.665 1152.26i −0.156053 0.759783i
\(133\) 2392.11 + 664.056i 1.55957 + 0.432939i
\(134\) 1532.02 155.707i 0.987659 0.100381i
\(135\) 485.722i 0.309661i
\(136\) −171.148 545.800i −0.107911 0.344132i
\(137\) 364.333 0.227205 0.113602 0.993526i \(-0.463761\pi\)
0.113602 + 0.993526i \(0.463761\pi\)
\(138\) 673.930 68.4951i 0.415716 0.0422514i
\(139\) 363.877i 0.222041i 0.993818 + 0.111020i \(0.0354119\pi\)
−0.993818 + 0.111020i \(0.964588\pi\)
\(140\) 181.664 2659.19i 0.109667 1.60531i
\(141\) 1552.02i 0.926978i
\(142\) 269.532 + 2651.96i 0.159286 + 1.56723i
\(143\) 195.202 0.114151
\(144\) −529.369 + 227.034i −0.306348 + 0.131385i
\(145\) 3778.29i 2.16393i
\(146\) −27.4573 270.156i −0.0155643 0.153139i
\(147\) 530.430 881.751i 0.297613 0.494732i
\(148\) −83.4014 406.059i −0.0463213 0.225526i
\(149\) 1203.32i 0.661607i 0.943700 + 0.330803i \(0.107320\pi\)
−0.943700 + 0.330803i \(0.892680\pi\)
\(150\) 170.420 + 1676.78i 0.0927651 + 0.912726i
\(151\) 59.0521i 0.0318251i 0.999873 + 0.0159126i \(0.00506534\pi\)
−0.999873 + 0.0159126i \(0.994935\pi\)
\(152\) 907.533 + 2894.17i 0.484281 + 1.54439i
\(153\) 227.513i 0.120218i
\(154\) −433.095 + 2530.67i −0.226622 + 1.32420i
\(155\) −1931.58 −1.00096
\(156\) −19.2307 93.6290i −0.00986977 0.0480533i
\(157\) 2240.11 1.13873 0.569365 0.822085i \(-0.307189\pi\)
0.569365 + 0.822085i \(0.307189\pi\)
\(158\) −351.562 3459.05i −0.177017 1.74169i
\(159\) 1327.35 0.662051
\(160\) 2847.72 1579.60i 1.40708 0.780492i
\(161\) −1424.65 395.485i −0.697378 0.193594i
\(162\) 227.928 23.1655i 0.110542 0.0112349i
\(163\) 1108.33 0.532581 0.266291 0.963893i \(-0.414202\pi\)
0.266291 + 0.963893i \(0.414202\pi\)
\(164\) 666.686 + 3245.92i 0.317436 + 1.54551i
\(165\) 2645.19i 1.24805i
\(166\) −104.657 1029.73i −0.0489333 0.481461i
\(167\) 3481.99 1.61344 0.806721 0.590933i \(-0.201240\pi\)
0.806721 + 0.590933i \(0.201240\pi\)
\(168\) 1256.51 41.5780i 0.577034 0.0190941i
\(169\) −2181.14 −0.992780
\(170\) −130.061 1279.68i −0.0586776 0.577335i
\(171\) 1206.42i 0.539514i
\(172\) −1460.09 + 299.891i −0.647272 + 0.132945i
\(173\) 2149.38 0.944593 0.472297 0.881440i \(-0.343425\pi\)
0.472297 + 0.881440i \(0.343425\pi\)
\(174\) −1772.99 + 180.198i −0.772472 + 0.0785104i
\(175\) 983.994 3544.61i 0.425046 1.53113i
\(176\) −2882.89 + 1236.40i −1.23469 + 0.529530i
\(177\) 675.226 0.286741
\(178\) 113.016 + 1111.98i 0.0475895 + 0.468239i
\(179\) 3291.14 1.37425 0.687126 0.726538i \(-0.258872\pi\)
0.687126 + 0.726538i \(0.258872\pi\)
\(180\) −1268.77 + 260.596i −0.525382 + 0.107909i
\(181\) −692.415 −0.284347 −0.142173 0.989842i \(-0.545409\pi\)
−0.142173 + 0.989842i \(0.545409\pi\)
\(182\) −35.1920 + 205.634i −0.0143330 + 0.0837506i
\(183\) 333.769i 0.134825i
\(184\) −540.491 1723.65i −0.216552 0.690594i
\(185\) 932.172i 0.370457i
\(186\) −92.1229 906.407i −0.0363160 0.357317i
\(187\) 1239.01i 0.484522i
\(188\) −4054.10 + 832.680i −1.57274 + 0.323029i
\(189\) −481.826 133.756i −0.185437 0.0514779i
\(190\) 689.661 + 6785.65i 0.263333 + 2.59096i
\(191\) 838.537i 0.317667i 0.987305 + 0.158834i \(0.0507733\pi\)
−0.987305 + 0.158834i \(0.949227\pi\)
\(192\) 877.057 + 1260.98i 0.329667 + 0.473975i
\(193\) 469.002 0.174920 0.0874599 0.996168i \(-0.472125\pi\)
0.0874599 + 0.996168i \(0.472125\pi\)
\(194\) −306.580 3016.48i −0.113460 1.11634i
\(195\) 214.940i 0.0789341i
\(196\) −2587.84 912.485i −0.943090 0.332538i
\(197\) 1210.67i 0.437850i −0.975742 0.218925i \(-0.929745\pi\)
0.975742 0.218925i \(-0.0702550\pi\)
\(198\) 1241.27 126.157i 0.445523 0.0452808i
\(199\) 2002.69 0.713403 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(200\) 4288.56 1344.78i 1.51623 0.475450i
\(201\) 1633.32i 0.573163i
\(202\) 4303.94 437.432i 1.49913 0.152364i
\(203\) 3747.99 + 1040.45i 1.29585 + 0.359731i
\(204\) 594.296 122.064i 0.203966 0.0418930i
\(205\) 7451.51i 2.53871i
\(206\) −2656.46 + 269.990i −0.898469 + 0.0913161i
\(207\) 718.494i 0.241250i
\(208\) −234.254 + 100.466i −0.0780895 + 0.0334908i
\(209\) 6570.01i 2.17444i
\(210\) 2786.56 + 476.889i 0.915671 + 0.156707i
\(211\) 4390.91 1.43262 0.716310 0.697782i \(-0.245830\pi\)
0.716310 + 0.697782i \(0.245830\pi\)
\(212\) −712.142 3467.23i −0.230708 1.12326i
\(213\) −2827.32 −0.909505
\(214\) −3956.42 + 402.112i −1.26381 + 0.128448i
\(215\) −3351.86 −1.06323
\(216\) −182.798 582.952i −0.0575825 0.183634i
\(217\) −531.911 + 1916.09i −0.166398 + 0.599412i
\(218\) −377.370 3712.99i −0.117242 1.15356i
\(219\) 288.019 0.0888701
\(220\) −6909.60 + 1419.18i −2.11748 + 0.434913i
\(221\) 100.678i 0.0306442i
\(222\) 437.428 44.4581i 0.132244 0.0134407i
\(223\) −4483.21 −1.34627 −0.673134 0.739521i \(-0.735052\pi\)
−0.673134 + 0.739521i \(0.735052\pi\)
\(224\) −782.740 3259.87i −0.233478 0.972362i
\(225\) −1787.66 −0.529677
\(226\) 397.301 40.3797i 0.116938 0.0118850i
\(227\) 2457.30i 0.718487i −0.933244 0.359243i \(-0.883035\pi\)
0.933244 0.359243i \(-0.116965\pi\)
\(228\) −3151.33 + 647.257i −0.915358 + 0.188007i
\(229\) −5046.86 −1.45636 −0.728179 0.685387i \(-0.759633\pi\)
−0.728179 + 0.685387i \(0.759633\pi\)
\(230\) −410.735 4041.27i −0.117752 1.15858i
\(231\) −2623.97 728.422i −0.747380 0.207475i
\(232\) 1421.94 + 4534.62i 0.402391 + 1.28324i
\(233\) −1771.32 −0.498038 −0.249019 0.968499i \(-0.580108\pi\)
−0.249019 + 0.968499i \(0.580108\pi\)
\(234\) 100.862 10.2511i 0.0281776 0.00286384i
\(235\) −9306.81 −2.58344
\(236\) −362.267 1763.78i −0.0999219 0.486494i
\(237\) 3687.78 1.01075
\(238\) −1305.23 223.376i −0.355486 0.0608375i
\(239\) 760.957i 0.205951i 0.994684 + 0.102975i \(0.0328363\pi\)
−0.994684 + 0.102975i \(0.967164\pi\)
\(240\) 1361.42 + 3174.39i 0.366165 + 0.853776i
\(241\) 694.787i 0.185706i 0.995680 + 0.0928530i \(0.0295987\pi\)
−0.995680 + 0.0928530i \(0.970401\pi\)
\(242\) 3014.50 306.379i 0.800741 0.0813835i
\(243\) 243.000i 0.0641500i
\(244\) 871.851 179.071i 0.228748 0.0469830i
\(245\) −5287.48 3180.75i −1.37879 0.829432i
\(246\) −3496.67 + 355.385i −0.906259 + 0.0921078i
\(247\) 533.859i 0.137525i
\(248\) −2318.24 + 726.936i −0.593581 + 0.186131i
\(249\) 1097.82 0.279403
\(250\) 3727.22 378.817i 0.942922 0.0958340i
\(251\) 1607.06i 0.404131i 0.979372 + 0.202066i \(0.0647654\pi\)
−0.979372 + 0.202066i \(0.935235\pi\)
\(252\) −90.8839 + 1330.36i −0.0227188 + 0.332558i
\(253\) 3912.84i 0.972324i
\(254\) −265.524 2612.52i −0.0655924 0.645371i
\(255\) 1364.30 0.335042
\(256\) 2823.30 2967.53i 0.689282 0.724493i
\(257\) 6933.24i 1.68282i 0.540400 + 0.841408i \(0.318273\pi\)
−0.540400 + 0.841408i \(0.681727\pi\)
\(258\) −159.860 1572.88i −0.0385755 0.379549i
\(259\) −924.695 256.698i −0.221845 0.0615847i
\(260\) −561.452 + 115.318i −0.133922 + 0.0275066i
\(261\) 1890.23i 0.448285i
\(262\) 732.314 + 7205.32i 0.172681 + 1.69903i
\(263\) 2831.36i 0.663838i 0.943308 + 0.331919i \(0.107696\pi\)
−0.943308 + 0.331919i \(0.892304\pi\)
\(264\) −995.498 3174.69i −0.232078 0.740109i
\(265\) 7959.56i 1.84510i
\(266\) 6921.15 + 1184.48i 1.59535 + 0.273026i
\(267\) −1185.51 −0.271730
\(268\) 4266.47 876.298i 0.972448 0.199733i
\(269\) −7470.97 −1.69336 −0.846679 0.532105i \(-0.821401\pi\)
−0.846679 + 0.532105i \(0.821401\pi\)
\(270\) −138.914 1366.79i −0.0313112 0.308074i
\(271\) 2680.89 0.600931 0.300466 0.953793i \(-0.402858\pi\)
0.300466 + 0.953793i \(0.402858\pi\)
\(272\) −637.695 1486.90i −0.142154 0.331457i
\(273\) −213.216 59.1893i −0.0472689 0.0131220i
\(274\) 1025.21 104.197i 0.226040 0.0229737i
\(275\) −9735.41 −2.13479
\(276\) 1876.80 385.481i 0.409313 0.0840696i
\(277\) 5749.50i 1.24713i 0.781773 + 0.623563i \(0.214316\pi\)
−0.781773 + 0.623563i \(0.785684\pi\)
\(278\) 104.067 + 1023.93i 0.0224515 + 0.220903i
\(279\) 966.343 0.207360
\(280\) −249.325 7534.74i −0.0532143 1.60817i
\(281\) 4802.46 1.01954 0.509770 0.860311i \(-0.329731\pi\)
0.509770 + 0.860311i \(0.329731\pi\)
\(282\) −443.870 4367.29i −0.0937308 0.922227i
\(283\) 1743.48i 0.366216i −0.983093 0.183108i \(-0.941384\pi\)
0.983093 0.183108i \(-0.0586157\pi\)
\(284\) 1516.89 + 7385.34i 0.316940 + 1.54310i
\(285\) −7234.35 −1.50360
\(286\) 549.284 55.8266i 0.113566 0.0115423i
\(287\) 7391.74 + 2051.97i 1.52028 + 0.422034i
\(288\) −1424.68 + 790.255i −0.291493 + 0.161688i
\(289\) 4273.96 0.869928
\(290\) 1080.57 + 10631.9i 0.218805 + 2.15284i
\(291\) 3215.94 0.647841
\(292\) −154.526 752.346i −0.0309690 0.150780i
\(293\) −6865.86 −1.36897 −0.684485 0.729027i \(-0.739973\pi\)
−0.684485 + 0.729027i \(0.739973\pi\)
\(294\) 1240.42 2632.89i 0.246063 0.522289i
\(295\) 4049.03i 0.799132i
\(296\) −350.816 1118.77i −0.0688878 0.219687i
\(297\) 1323.35i 0.258548i
\(298\) 344.141 + 3386.05i 0.0668979 + 0.658216i
\(299\) 317.945i 0.0614958i
\(300\) 959.102 + 4669.62i 0.184579 + 0.898668i
\(301\) −923.022 + 3324.98i −0.176751 + 0.636706i
\(302\) 16.8886 + 166.169i 0.00321797 + 0.0316620i
\(303\) 4588.54i 0.869983i
\(304\) 3381.45 + 7884.44i 0.637959 + 1.48751i
\(305\) 2001.47 0.375750
\(306\) 65.0676 + 640.207i 0.0121558 + 0.119602i
\(307\) 6083.49i 1.13096i −0.824764 0.565478i \(-0.808692\pi\)
0.824764 0.565478i \(-0.191308\pi\)
\(308\) −494.944 + 7244.99i −0.0915651 + 1.34033i
\(309\) 2832.12i 0.521404i
\(310\) −5435.33 + 552.421i −0.995826 + 0.101211i
\(311\) −5268.97 −0.960694 −0.480347 0.877079i \(-0.659489\pi\)
−0.480347 + 0.877079i \(0.659489\pi\)
\(312\) −80.8911 257.966i −0.0146781 0.0468091i
\(313\) 6377.14i 1.15162i −0.817583 0.575811i \(-0.804686\pi\)
0.817583 0.575811i \(-0.195314\pi\)
\(314\) 6303.52 640.660i 1.13289 0.115142i
\(315\) −802.077 + 2889.30i −0.143466 + 0.516805i
\(316\) −1978.54 9632.99i −0.352220 1.71487i
\(317\) 5401.16i 0.956970i −0.878096 0.478485i \(-0.841186\pi\)
0.878096 0.478485i \(-0.158814\pi\)
\(318\) 3735.08 379.616i 0.658657 0.0669428i
\(319\) 10294.0i 1.80675i
\(320\) 7561.54 5259.33i 1.32095 0.918767i
\(321\) 4218.04i 0.733421i
\(322\) −4121.96 705.428i −0.713379 0.122087i
\(323\) 3388.59 0.583734
\(324\) 634.750 130.373i 0.108839 0.0223547i
\(325\) −791.069 −0.135017
\(326\) 3118.75 316.975i 0.529852 0.0538516i
\(327\) 3958.51 0.669437
\(328\) 2804.32 + 8943.13i 0.472082 + 1.50549i
\(329\) −2562.87 + 9232.16i −0.429470 + 1.54707i
\(330\) −756.509 7443.38i −0.126195 1.24165i
\(331\) 4418.61 0.733743 0.366872 0.930272i \(-0.380429\pi\)
0.366872 + 0.930272i \(0.380429\pi\)
\(332\) −588.993 2867.65i −0.0973651 0.474045i
\(333\) 466.353i 0.0767447i
\(334\) 9798.09 995.831i 1.60517 0.163142i
\(335\) 9794.33 1.59738
\(336\) 3523.84 476.352i 0.572146 0.0773427i
\(337\) 2111.13 0.341249 0.170624 0.985336i \(-0.445422\pi\)
0.170624 + 0.985336i \(0.445422\pi\)
\(338\) −6137.57 + 623.793i −0.987692 + 0.100384i
\(339\) 423.572i 0.0678622i
\(340\) −731.963 3563.74i −0.116754 0.568443i
\(341\) 5262.60 0.835735
\(342\) −345.028 3394.77i −0.0545526 0.536749i
\(343\) −4611.29 + 4369.17i −0.725907 + 0.687793i
\(344\) −4022.82 + 1261.45i −0.630512 + 0.197712i
\(345\) 4308.49 0.672352
\(346\) 6048.22 614.712i 0.939752 0.0955119i
\(347\) 7314.45 1.13159 0.565793 0.824547i \(-0.308570\pi\)
0.565793 + 0.824547i \(0.308570\pi\)
\(348\) −4937.54 + 1014.13i −0.760575 + 0.156216i
\(349\) −332.075 −0.0509328 −0.0254664 0.999676i \(-0.508107\pi\)
−0.0254664 + 0.999676i \(0.508107\pi\)
\(350\) 1755.15 10255.7i 0.268048 1.56626i
\(351\) 107.531i 0.0163522i
\(352\) −7758.64 + 4303.64i −1.17482 + 0.651662i
\(353\) 3201.11i 0.482656i −0.970444 0.241328i \(-0.922417\pi\)
0.970444 0.241328i \(-0.0775830\pi\)
\(354\) 1900.04 193.111i 0.285271 0.0289936i
\(355\) 16954.2i 2.53474i
\(356\) 636.040 + 3096.71i 0.0946912 + 0.461027i
\(357\) 375.695 1353.36i 0.0556972 0.200636i
\(358\) 9261.04 941.247i 1.36721 0.138957i
\(359\) 2489.55i 0.365999i −0.983113 0.183000i \(-0.941419\pi\)
0.983113 0.183000i \(-0.0585807\pi\)
\(360\) −3495.71 + 1096.16i −0.511778 + 0.160480i
\(361\) −11109.4 −1.61968
\(362\) −1948.41 + 198.027i −0.282890 + 0.0287515i
\(363\) 3213.83i 0.464690i
\(364\) −40.2176 + 588.705i −0.00579114 + 0.0847707i
\(365\) 1727.13i 0.247676i
\(366\) 95.4561 + 939.203i 0.0136327 + 0.134134i
\(367\) 10747.1 1.52859 0.764297 0.644864i \(-0.223086\pi\)
0.764297 + 0.644864i \(0.223086\pi\)
\(368\) −2013.86 4695.66i −0.285271 0.665158i
\(369\) 3727.89i 0.525924i
\(370\) −266.596 2623.07i −0.0374585 0.368559i
\(371\) −7895.73 2191.87i −1.10492 0.306729i
\(372\) −518.455 2524.22i −0.0722598 0.351814i
\(373\) 8517.68i 1.18238i −0.806531 0.591191i \(-0.798658\pi\)
0.806531 0.591191i \(-0.201342\pi\)
\(374\) 354.351 + 3486.50i 0.0489921 + 0.482039i
\(375\) 3973.68i 0.547201i
\(376\) −11169.8 + 3502.55i −1.53202 + 0.480400i
\(377\) 836.458i 0.114270i
\(378\) −1394.08 238.581i −0.189692 0.0324637i
\(379\) 9286.94 1.25868 0.629338 0.777132i \(-0.283326\pi\)
0.629338 + 0.777132i \(0.283326\pi\)
\(380\) 3881.32 + 18897.1i 0.523967 + 2.55106i
\(381\) 2785.27 0.374524
\(382\) 239.817 + 2359.58i 0.0321207 + 0.316039i
\(383\) −3123.30 −0.416692 −0.208346 0.978055i \(-0.566808\pi\)
−0.208346 + 0.978055i \(0.566808\pi\)
\(384\) 2828.61 + 3297.47i 0.375904 + 0.438212i
\(385\) −4368.03 + 15734.8i −0.578221 + 2.08291i
\(386\) 1319.74 134.132i 0.174023 0.0176869i
\(387\) 1676.89 0.220261
\(388\) −1725.39 8400.48i −0.225756 1.09915i
\(389\) 5041.45i 0.657099i 0.944487 + 0.328549i \(0.106560\pi\)
−0.944487 + 0.328549i \(0.893440\pi\)
\(390\) −61.4716 604.826i −0.00798137 0.0785296i
\(391\) −2018.11 −0.261024
\(392\) −7542.96 1827.56i −0.971881 0.235474i
\(393\) −7681.77 −0.985990
\(394\) −346.244 3406.73i −0.0442729 0.435606i
\(395\) 22114.0i 2.81690i
\(396\) 3456.78 709.995i 0.438661 0.0900974i
\(397\) −2500.99 −0.316174 −0.158087 0.987425i \(-0.550533\pi\)
−0.158087 + 0.987425i \(0.550533\pi\)
\(398\) 5635.44 572.759i 0.709747 0.0721353i
\(399\) −1992.17 + 7176.33i −0.249958 + 0.900416i
\(400\) 11683.1 5010.61i 1.46039 0.626327i
\(401\) −1012.94 −0.126144 −0.0630720 0.998009i \(-0.520090\pi\)
−0.0630720 + 0.998009i \(0.520090\pi\)
\(402\) 467.121 + 4596.06i 0.0579550 + 0.570225i
\(403\) 427.622 0.0528571
\(404\) 11985.9 2461.81i 1.47604 0.303167i
\(405\) 1457.16 0.178783
\(406\) 10844.2 + 1855.86i 1.32558 + 0.226859i
\(407\) 2539.71i 0.309309i
\(408\) 1637.40 513.444i 0.198685 0.0623022i
\(409\) 8986.88i 1.08649i −0.839576 0.543243i \(-0.817196\pi\)
0.839576 0.543243i \(-0.182804\pi\)
\(410\) 2131.09 + 20968.0i 0.256700 + 2.52570i
\(411\) 1093.00i 0.131177i
\(412\) −7397.89 + 1519.47i −0.884631 + 0.181696i
\(413\) −4016.56 1115.01i −0.478552 0.132847i
\(414\) 205.485 + 2021.79i 0.0243938 + 0.240014i
\(415\) 6583.14i 0.778684i
\(416\) −630.443 + 349.701i −0.0743029 + 0.0412151i
\(417\) −1091.63 −0.128195
\(418\) −1878.99 18487.6i −0.219867 2.16329i
\(419\) 10182.4i 1.18721i 0.804756 + 0.593605i \(0.202296\pi\)
−0.804756 + 0.593605i \(0.797704\pi\)
\(420\) 7977.58 + 544.991i 0.926823 + 0.0633163i
\(421\) 16474.2i 1.90714i 0.301175 + 0.953569i \(0.402621\pi\)
−0.301175 + 0.953569i \(0.597379\pi\)
\(422\) 12355.7 1255.78i 1.42528 0.144858i
\(423\) 4656.07 0.535191
\(424\) −2995.53 9552.88i −0.343103 1.09417i
\(425\) 5021.19i 0.573091i
\(426\) −7955.87 + 808.597i −0.904843 + 0.0919639i
\(427\) 551.156 1985.41i 0.0624644 0.225014i
\(428\) −11018.1 + 2263.03i −1.24435 + 0.255579i
\(429\) 585.605i 0.0659050i
\(430\) −9431.90 + 958.613i −1.05778 + 0.107508i
\(431\) 12206.2i 1.36416i −0.731279 0.682079i \(-0.761076\pi\)
0.731279 0.682079i \(-0.238924\pi\)
\(432\) −681.102 1588.11i −0.0758554 0.176870i
\(433\) 8186.21i 0.908555i 0.890860 + 0.454277i \(0.150102\pi\)
−0.890860 + 0.454277i \(0.849898\pi\)
\(434\) −948.770 + 5543.86i −0.104936 + 0.613165i
\(435\) −11334.9 −1.24935
\(436\) −2123.79 10340.2i −0.233282 1.13579i
\(437\) 10701.3 1.17142
\(438\) 810.467 82.3719i 0.0884146 0.00898603i
\(439\) −770.764 −0.0837963 −0.0418981 0.999122i \(-0.513340\pi\)
−0.0418981 + 0.999122i \(0.513340\pi\)
\(440\) −19037.2 + 5969.57i −2.06265 + 0.646791i
\(441\) 2645.25 + 1591.29i 0.285634 + 0.171827i
\(442\) 28.7935 + 283.302i 0.00309856 + 0.0304871i
\(443\) 1199.43 0.128638 0.0643191 0.997929i \(-0.479512\pi\)
0.0643191 + 0.997929i \(0.479512\pi\)
\(444\) 1218.18 250.204i 0.130208 0.0267436i
\(445\) 7108.98i 0.757299i
\(446\) −12615.4 + 1282.17i −1.33937 + 0.136127i
\(447\) −3609.95 −0.381979
\(448\) −3134.88 8949.19i −0.330601 0.943771i
\(449\) −7474.09 −0.785577 −0.392789 0.919629i \(-0.628490\pi\)
−0.392789 + 0.919629i \(0.628490\pi\)
\(450\) −5030.35 + 511.261i −0.526962 + 0.0535579i
\(451\) 20301.7i 2.11966i
\(452\) 1106.43 227.252i 0.115137 0.0236483i
\(453\) −177.156 −0.0183742
\(454\) −702.773 6914.66i −0.0726493 0.714804i
\(455\) −354.932 + 1278.56i −0.0365703 + 0.131736i
\(456\) −8682.50 + 2722.60i −0.891656 + 0.279599i
\(457\) −2601.21 −0.266257 −0.133129 0.991099i \(-0.542502\pi\)
−0.133129 + 0.991099i \(0.542502\pi\)
\(458\) −14201.5 + 1443.37i −1.44889 + 0.147259i
\(459\) −682.540 −0.0694079
\(460\) −2311.56 11254.4i −0.234298 1.14073i
\(461\) −10407.9 −1.05150 −0.525752 0.850638i \(-0.676216\pi\)
−0.525752 + 0.850638i \(0.676216\pi\)
\(462\) −7592.00 1299.29i −0.764528 0.130840i
\(463\) 3988.70i 0.400368i 0.979758 + 0.200184i \(0.0641540\pi\)
−0.979758 + 0.200184i \(0.935846\pi\)
\(464\) 5298.10 + 12353.4i 0.530083 + 1.23598i
\(465\) 5794.74i 0.577902i
\(466\) −4984.36 + 506.587i −0.495485 + 0.0503587i
\(467\) 9030.77i 0.894848i 0.894322 + 0.447424i \(0.147659\pi\)
−0.894322 + 0.447424i \(0.852341\pi\)
\(468\) 280.887 57.6920i 0.0277436 0.00569832i
\(469\) 2697.12 9715.77i 0.265547 0.956573i
\(470\) −26188.7 + 2661.69i −2.57020 + 0.261223i
\(471\) 6720.34i 0.657446i
\(472\) −1523.83 4859.56i −0.148601 0.473897i
\(473\) 9132.17 0.887732
\(474\) 10377.2 1054.68i 1.00557 0.102201i
\(475\) 26625.5i 2.57192i
\(476\) −3736.72 255.275i −0.359816 0.0245809i
\(477\) 3982.06i 0.382235i
\(478\) 217.629 + 2141.28i 0.0208246 + 0.204895i
\(479\) 11039.0 1.05300 0.526498 0.850176i \(-0.323505\pi\)
0.526498 + 0.850176i \(0.323505\pi\)
\(480\) 4738.81 + 8543.17i 0.450617 + 0.812376i
\(481\) 206.369i 0.0195626i
\(482\) 198.705 + 1955.08i 0.0187775 + 0.184754i
\(483\) 1186.46 4273.94i 0.111771 0.402631i
\(484\) 8394.97 1724.26i 0.788408 0.161933i
\(485\) 19284.6i 1.80550i
\(486\) 69.4966 + 683.785i 0.00648649 + 0.0638212i
\(487\) 17874.5i 1.66318i −0.555387 0.831592i \(-0.687430\pi\)
0.555387 0.831592i \(-0.312570\pi\)
\(488\) 2402.11 753.238i 0.222825 0.0698719i
\(489\) 3324.98i 0.307486i
\(490\) −15788.3 7438.23i −1.45560 0.685766i
\(491\) 6063.89 0.557351 0.278676 0.960385i \(-0.410105\pi\)
0.278676 + 0.960385i \(0.410105\pi\)
\(492\) −9737.76 + 2000.06i −0.892301 + 0.183272i
\(493\) 5309.29 0.485027
\(494\) −152.681 1502.24i −0.0139057 0.136820i
\(495\) 7935.56 0.720560
\(496\) −6315.46 + 2708.55i −0.571718 + 0.245197i
\(497\) 16818.2 + 4668.78i 1.51791 + 0.421375i
\(498\) 3089.19 313.970i 0.277971 0.0282517i
\(499\) 1084.55 0.0972968 0.0486484 0.998816i \(-0.484509\pi\)
0.0486484 + 0.998816i \(0.484509\pi\)
\(500\) 10379.8 2131.93i 0.928399 0.190686i
\(501\) 10446.0i 0.931521i
\(502\) 459.611 + 4522.16i 0.0408634 + 0.402060i
\(503\) −8014.53 −0.710438 −0.355219 0.934783i \(-0.615594\pi\)
−0.355219 + 0.934783i \(0.615594\pi\)
\(504\) 124.734 + 3769.53i 0.0110240 + 0.333151i
\(505\) 27515.5 2.42460
\(506\) 1119.05 + 11010.5i 0.0983159 + 0.967341i
\(507\) 6543.42i 0.573182i
\(508\) −1494.33 7275.52i −0.130512 0.635431i
\(509\) 16820.5 1.46474 0.732372 0.680905i \(-0.238413\pi\)
0.732372 + 0.680905i \(0.238413\pi\)
\(510\) 3839.04 390.182i 0.333325 0.0338775i
\(511\) −1713.27 475.609i −0.148319 0.0411736i
\(512\) 7095.87 9157.86i 0.612492 0.790477i
\(513\) 3619.25 0.311489
\(514\) 1982.87 + 19509.7i 0.170157 + 1.67419i
\(515\) −16983.0 −1.45313
\(516\) −899.673 4380.27i −0.0767556 0.373703i
\(517\) 25356.5 2.15701
\(518\) −2675.44 457.872i −0.226935 0.0388374i
\(519\) 6448.15i 0.545361i
\(520\) −1546.91 + 485.069i −0.130455 + 0.0409071i
\(521\) 10049.0i 0.845022i 0.906358 + 0.422511i \(0.138851\pi\)
−0.906358 + 0.422511i \(0.861149\pi\)
\(522\) −540.595 5318.98i −0.0453280 0.445987i
\(523\) 20900.8i 1.74747i −0.486399 0.873737i \(-0.661690\pi\)
0.486399 0.873737i \(-0.338310\pi\)
\(524\) 4121.36 + 20065.8i 0.343593 + 1.67286i
\(525\) 10633.8 + 2951.98i 0.883998 + 0.245400i
\(526\) 809.754 + 7967.26i 0.0671235 + 0.660436i
\(527\) 2714.27i 0.224356i
\(528\) −3709.21 8648.66i −0.305725 0.712850i
\(529\) 5793.75 0.476186
\(530\) −2276.39 22397.7i −0.186566 1.83565i
\(531\) 2025.68i 0.165550i
\(532\) 19814.4 + 1353.63i 1.61478 + 0.110314i
\(533\) 1649.65i 0.134061i
\(534\) −3335.94 + 339.049i −0.270338 + 0.0274758i
\(535\) −25293.7 −2.04401
\(536\) 11754.9 3686.03i 0.947268 0.297038i
\(537\) 9873.42i 0.793425i
\(538\) −21022.8 + 2136.66i −1.68468 + 0.171223i
\(539\) 14405.8 + 8665.99i 1.15121 + 0.692524i
\(540\) −781.787 3806.32i −0.0623014 0.303329i
\(541\) 6378.46i 0.506897i 0.967349 + 0.253449i \(0.0815649\pi\)
−0.967349 + 0.253449i \(0.918435\pi\)
\(542\) 7543.84 766.719i 0.597852 0.0607628i
\(543\) 2077.24i 0.164168i
\(544\) −2219.67 4001.64i −0.174941 0.315384i
\(545\) 23737.4i 1.86569i
\(546\) −616.902 105.576i −0.0483535 0.00827516i
\(547\) −17810.4 −1.39217 −0.696086 0.717958i \(-0.745077\pi\)
−0.696086 + 0.717958i \(0.745077\pi\)
\(548\) 2855.06 586.407i 0.222559 0.0457118i
\(549\) −1001.31 −0.0778410
\(550\) −27394.8 + 2784.27i −2.12385 + 0.215858i
\(551\) −28153.1 −2.17670
\(552\) 5170.95 1621.47i 0.398714 0.125026i
\(553\) −21936.7 6089.67i −1.68687 0.468281i
\(554\) 1644.33 + 16178.7i 0.126102 + 1.24074i
\(555\) 2796.52 0.213884
\(556\) 585.674 + 2851.49i 0.0446728 + 0.217500i
\(557\) 20174.1i 1.53466i −0.641254 0.767328i \(-0.721586\pi\)
0.641254 0.767328i \(-0.278414\pi\)
\(558\) 2719.22 276.369i 0.206297 0.0209671i
\(559\) 742.051 0.0561457
\(560\) −2856.48 21130.9i −0.215550 1.59454i
\(561\) −3717.04 −0.279739
\(562\) 13513.8 1373.48i 1.01431 0.103090i
\(563\) 445.596i 0.0333564i 0.999861 + 0.0166782i \(0.00530908\pi\)
−0.999861 + 0.0166782i \(0.994691\pi\)
\(564\) −2498.04 12162.3i −0.186501 0.908023i
\(565\) 2539.98 0.189129
\(566\) −498.625 4906.03i −0.0370296 0.364339i
\(567\) 401.268 1445.48i 0.0297208 0.107062i
\(568\) 6380.59 + 20348.0i 0.471344 + 1.50314i
\(569\) −14296.1 −1.05329 −0.526646 0.850085i \(-0.676551\pi\)
−0.526646 + 0.850085i \(0.676551\pi\)
\(570\) −20357.0 + 2068.98i −1.49589 + 0.152035i
\(571\) −997.878 −0.0731347 −0.0365673 0.999331i \(-0.511642\pi\)
−0.0365673 + 0.999331i \(0.511642\pi\)
\(572\) 1529.68 314.184i 0.111817 0.0229663i
\(573\) −2515.61 −0.183405
\(574\) 21386.7 + 3660.10i 1.55516 + 0.266149i
\(575\) 15857.1i 1.15006i
\(576\) −3782.94 + 2631.17i −0.273650 + 0.190334i
\(577\) 14158.8i 1.02156i 0.859712 + 0.510780i \(0.170643\pi\)
−0.859712 + 0.510780i \(0.829357\pi\)
\(578\) 12026.6 1222.33i 0.865470 0.0879622i
\(579\) 1407.01i 0.100990i
\(580\) 6081.31 + 29608.3i 0.435366 + 2.11968i
\(581\) −6530.34 1812.84i −0.466307 0.129448i
\(582\) 9049.43 919.741i 0.644521 0.0655060i
\(583\) 21685.9i 1.54054i
\(584\) −649.992 2072.86i −0.0460563 0.146876i
\(585\) 644.819 0.0455726
\(586\) −19320.1 + 1963.60i −1.36195 + 0.138422i
\(587\) 25354.3i 1.78277i 0.453250 + 0.891383i \(0.350264\pi\)
−0.453250 + 0.891383i \(0.649736\pi\)
\(588\) 2737.45 7763.52i 0.191991 0.544493i
\(589\) 14392.7i 1.00686i
\(590\) −1158.00 11393.7i −0.0808037 0.795036i
\(591\) 3632.00 0.252793
\(592\) −1307.14 3047.81i −0.0907482 0.211595i
\(593\) 10449.0i 0.723592i −0.932257 0.361796i \(-0.882164\pi\)
0.932257 0.361796i \(-0.117836\pi\)
\(594\) 378.471 + 3723.82i 0.0261429 + 0.257223i
\(595\) −8115.49 2252.88i −0.559164 0.155225i
\(596\) 1936.78 + 9429.68i 0.133110 + 0.648078i
\(597\) 6008.08i 0.411883i
\(598\) 90.9305 + 894.676i 0.00621810 + 0.0611806i
\(599\) 5231.47i 0.356848i 0.983954 + 0.178424i \(0.0570999\pi\)
−0.983954 + 0.178424i \(0.942900\pi\)
\(600\) 4034.33 + 12865.7i 0.274501 + 0.875399i
\(601\) 25487.4i 1.72987i −0.501885 0.864935i \(-0.667360\pi\)
0.501885 0.864935i \(-0.332640\pi\)
\(602\) −1646.40 + 9620.24i −0.111465 + 0.651315i
\(603\) −4899.97 −0.330916
\(604\) 95.0465 + 462.757i 0.00640296 + 0.0311743i
\(605\) 19271.9 1.29507
\(606\) 1312.30 + 12911.8i 0.0879677 + 0.865524i
\(607\) 23913.0 1.59901 0.799505 0.600659i \(-0.205095\pi\)
0.799505 + 0.600659i \(0.205095\pi\)
\(608\) 11770.1 + 21219.2i 0.785098 + 1.41538i
\(609\) −3121.36 + 11244.0i −0.207691 + 0.748159i
\(610\) 5631.99 572.408i 0.373824 0.0379937i
\(611\) 2060.39 0.136423
\(612\) 366.191 + 1782.89i 0.0241869 + 0.117760i
\(613\) 603.562i 0.0397678i 0.999802 + 0.0198839i \(0.00632966\pi\)
−0.999802 + 0.0198839i \(0.993670\pi\)
\(614\) −1739.84 17118.5i −0.114356 1.12516i
\(615\) −22354.5 −1.46573
\(616\) 679.287 + 20528.4i 0.0444306 + 1.34272i
\(617\) −18810.0 −1.22733 −0.613665 0.789566i \(-0.710306\pi\)
−0.613665 + 0.789566i \(0.710306\pi\)
\(618\) −809.971 7969.39i −0.0527214 0.518731i
\(619\) 19294.0i 1.25282i −0.779495 0.626408i \(-0.784524\pi\)
0.779495 0.626408i \(-0.215476\pi\)
\(620\) −15136.7 + 3108.95i −0.980488 + 0.201384i
\(621\) −2155.48 −0.139286
\(622\) −14826.5 + 1506.90i −0.955770 + 0.0971399i
\(623\) 7051.97 + 1957.64i 0.453501 + 0.125893i
\(624\) −301.399 702.763i −0.0193359 0.0450850i
\(625\) −1000.16 −0.0640105
\(626\) −1823.83 17944.8i −0.116445 1.14572i
\(627\) 19710.0 1.25541
\(628\) 17554.5 3605.54i 1.11544 0.229103i
\(629\) −1309.90 −0.0830349
\(630\) −1430.67 + 8359.68i −0.0904748 + 0.528663i
\(631\) 2707.27i 0.170800i 0.996347 + 0.0853999i \(0.0272168\pi\)
−0.996347 + 0.0853999i \(0.972783\pi\)
\(632\) −8322.46 26540.7i −0.523813 1.67046i
\(633\) 13172.7i 0.827124i
\(634\) −1544.70 15198.5i −0.0967633 0.952065i
\(635\) 16702.1i 1.04378i
\(636\) 10401.7 2136.43i 0.648513 0.133199i
\(637\) 1170.57 + 704.171i 0.0728094 + 0.0437995i
\(638\) −2944.02 28966.6i −0.182688 1.79749i
\(639\) 8481.95i 0.525103i
\(640\) 19773.5 16961.9i 1.22128 1.04762i
\(641\) −23173.7 −1.42794 −0.713969 0.700177i \(-0.753104\pi\)
−0.713969 + 0.700177i \(0.753104\pi\)
\(642\) −1206.34 11869.3i −0.0741593 0.729662i
\(643\) 23999.2i 1.47191i 0.677033 + 0.735953i \(0.263265\pi\)
−0.677033 + 0.735953i \(0.736735\pi\)
\(644\) −11800.7 806.167i −0.722067 0.0493283i
\(645\) 10055.6i 0.613857i
\(646\) 9535.26 969.118i 0.580743 0.0590239i
\(647\) −10137.5 −0.615988 −0.307994 0.951388i \(-0.599658\pi\)
−0.307994 + 0.951388i \(0.599658\pi\)
\(648\) 1748.86 548.394i 0.106021 0.0332453i
\(649\) 11031.6i 0.667225i
\(650\) −2226.01 + 226.241i −0.134325 + 0.0136522i
\(651\) −5748.26 1595.73i −0.346071 0.0960702i
\(652\) 8685.30 1783.89i 0.521691 0.107151i
\(653\) 16692.2i 1.00033i 0.865929 + 0.500166i \(0.166728\pi\)
−0.865929 + 0.500166i \(0.833272\pi\)
\(654\) 11139.0 1132.11i 0.666006 0.0676897i
\(655\) 46064.2i 2.74790i
\(656\) 10448.9 + 24363.3i 0.621889 + 1.45004i
\(657\) 864.058i 0.0513092i
\(658\) −4571.40 + 26711.6i −0.270838 + 1.58257i
\(659\) 13914.4 0.822500 0.411250 0.911523i \(-0.365092\pi\)
0.411250 + 0.911523i \(0.365092\pi\)
\(660\) −4257.53 20728.8i −0.251097 1.22253i
\(661\) −22714.6 −1.33661 −0.668303 0.743889i \(-0.732979\pi\)
−0.668303 + 0.743889i \(0.732979\pi\)
\(662\) 12433.7 1263.70i 0.729983 0.0741919i
\(663\) −302.035 −0.0176924
\(664\) −2477.52 7900.93i −0.144799 0.461771i
\(665\) 43033.3 + 11946.2i 2.50941 + 0.696620i
\(666\) 133.374 + 1312.29i 0.00775999 + 0.0763514i
\(667\) 16766.9 0.973338
\(668\) 27286.3 5604.40i 1.58045 0.324612i
\(669\) 13449.6i 0.777268i
\(670\) 27560.6 2801.12i 1.58919 0.161518i
\(671\) −5453.01 −0.313727
\(672\) 9779.61 2348.22i 0.561394 0.134798i
\(673\) −1887.15 −0.108090 −0.0540449 0.998539i \(-0.517211\pi\)
−0.0540449 + 0.998539i \(0.517211\pi\)
\(674\) 5940.58 603.773i 0.339500 0.0345051i
\(675\) 5362.98i 0.305809i
\(676\) −17092.3 + 3510.62i −0.972480 + 0.199740i
\(677\) 6620.71 0.375856 0.187928 0.982183i \(-0.439823\pi\)
0.187928 + 0.982183i \(0.439823\pi\)
\(678\) 121.139 + 1191.90i 0.00686184 + 0.0675144i
\(679\) −19129.9 5310.51i −1.08121 0.300146i
\(680\) −3078.90 9818.77i −0.173633 0.553724i
\(681\) 7371.89 0.414818
\(682\) 14808.6 1505.07i 0.831452 0.0845048i
\(683\) 11075.0 0.620457 0.310228 0.950662i \(-0.399595\pi\)
0.310228 + 0.950662i \(0.399595\pi\)
\(684\) −1941.77 9453.98i −0.108546 0.528482i
\(685\) 6554.24 0.365583
\(686\) −11726.3 + 13613.3i −0.652641 + 0.757667i
\(687\) 15140.6i 0.840829i
\(688\) −10959.2 + 4700.14i −0.607289 + 0.260452i
\(689\) 1762.13i 0.0974335i
\(690\) 12123.8 1232.20i 0.668906 0.0679844i
\(691\) 3087.15i 0.169958i −0.996383 0.0849789i \(-0.972918\pi\)
0.996383 0.0849789i \(-0.0270823\pi\)
\(692\) 16843.5 3459.51i 0.925278 0.190045i
\(693\) 2185.26 7871.92i 0.119785 0.431500i
\(694\) 20582.4 2091.89i 1.12579 0.114420i
\(695\) 6546.04i 0.357274i
\(696\) −13603.9 + 4265.81i −0.740881 + 0.232320i
\(697\) 10470.9 0.569031
\(698\) −934.436 + 94.9716i −0.0506718 + 0.00515004i
\(699\) 5313.95i 0.287542i
\(700\) 2005.80 29360.8i 0.108303 1.58534i
\(701\) 17766.5i 0.957250i −0.878019 0.478625i \(-0.841135\pi\)
0.878019 0.478625i \(-0.158865\pi\)
\(702\) 30.7534 + 302.586i 0.00165344 + 0.0162683i
\(703\) 6945.87 0.372644
\(704\) −20601.5 + 14329.1i −1.10291 + 0.767113i
\(705\) 27920.4i 1.49155i
\(706\) −915.499 9007.69i −0.0488035 0.480183i
\(707\) 7577.10 27294.8i 0.403064 1.45195i
\(708\) 5291.35 1086.80i 0.280877 0.0576900i
\(709\) 4977.18i 0.263642i 0.991274 + 0.131821i \(0.0420824\pi\)
−0.991274 + 0.131821i \(0.957918\pi\)
\(710\) 4848.80 + 47707.9i 0.256299 + 2.52175i
\(711\) 11063.3i 0.583555i
\(712\) 2675.42 + 8532.03i 0.140822 + 0.449089i
\(713\) 8571.74i 0.450230i
\(714\) 670.128 3915.70i 0.0351245 0.205240i
\(715\) 3511.62 0.183674
\(716\) 25790.7 5297.21i 1.34615 0.276489i
\(717\) −2282.87 −0.118906
\(718\) −711.999 7005.43i −0.0370077 0.364123i
\(719\) −12592.4 −0.653151 −0.326576 0.945171i \(-0.605895\pi\)
−0.326576 + 0.945171i \(0.605895\pi\)
\(720\) −9523.18 + 4084.27i −0.492928 + 0.211405i
\(721\) −4676.71 + 16846.8i −0.241567 + 0.870190i
\(722\) −31261.1 + 3177.23i −1.61138 + 0.163773i
\(723\) −2084.36 −0.107217
\(724\) −5426.05 + 1114.47i −0.278533 + 0.0572084i
\(725\) 41717.1i 2.13702i
\(726\) 919.138 + 9043.50i 0.0469868 + 0.462308i
\(727\) −7152.93 −0.364907 −0.182453 0.983214i \(-0.558404\pi\)
−0.182453 + 0.983214i \(0.558404\pi\)
\(728\) 55.1968 + 1668.08i 0.00281007 + 0.0849218i
\(729\) −729.000 −0.0370370
\(730\) −493.949 4860.01i −0.0250436 0.246407i
\(731\) 4710.06i 0.238315i
\(732\) 537.214 + 2615.55i 0.0271257 + 0.132068i
\(733\) 10730.6 0.540714 0.270357 0.962760i \(-0.412858\pi\)
0.270357 + 0.962760i \(0.412858\pi\)
\(734\) 30241.6 3073.61i 1.52076 0.154563i
\(735\) 9542.26 15862.4i 0.478873 0.796047i
\(736\) −7009.79 12637.3i −0.351066 0.632904i
\(737\) −26684.7 −1.33371
\(738\) −1066.16 10490.0i −0.0531785 0.523229i
\(739\) −12369.8 −0.615739 −0.307869 0.951429i \(-0.599616\pi\)
−0.307869 + 0.951429i \(0.599616\pi\)
\(740\) −1500.37 7304.88i −0.0745331 0.362882i
\(741\) 1601.58 0.0794000
\(742\) −22844.9 3909.65i −1.13027 0.193434i
\(743\) 7335.02i 0.362175i 0.983467 + 0.181087i \(0.0579616\pi\)
−0.983467 + 0.181087i \(0.942038\pi\)
\(744\) −2180.81 6954.71i −0.107463 0.342704i
\(745\) 21647.3i 1.06456i
\(746\) −2436.01 23968.2i −0.119556 1.17632i
\(747\) 3293.46i 0.161314i
\(748\) 1994.24 + 9709.42i 0.0974821 + 0.474615i
\(749\) −6965.29 + 25090.9i −0.339795 + 1.22403i
\(750\) 1136.45 + 11181.7i 0.0553298 + 0.544396i
\(751\) 1804.43i 0.0876759i 0.999039 + 0.0438379i \(0.0139585\pi\)
−0.999039 + 0.0438379i \(0.986041\pi\)
\(752\) −30429.4 + 13050.4i −1.47559 + 0.632847i
\(753\) −4821.19 −0.233325
\(754\) −239.222 2353.73i −0.0115543 0.113684i
\(755\) 1062.33i 0.0512081i
\(756\) −3991.07 272.652i −0.192003 0.0131167i
\(757\) 14363.2i 0.689616i −0.938673 0.344808i \(-0.887944\pi\)
0.938673 0.344808i \(-0.112056\pi\)
\(758\) 26132.8 2656.01i 1.25222 0.127270i
\(759\) −11738.5 −0.561372
\(760\) 16326.2 + 52065.2i 0.779230 + 2.48500i
\(761\) 12360.1i 0.588768i −0.955687 0.294384i \(-0.904886\pi\)
0.955687 0.294384i \(-0.0951144\pi\)
\(762\) 7837.56 796.572i 0.372605 0.0378698i
\(763\) −23547.1 6536.72i −1.11725 0.310151i
\(764\) 1349.66 + 6571.12i 0.0639121 + 0.311171i
\(765\) 4092.90i 0.193437i
\(766\) −8788.74 + 893.246i −0.414556 + 0.0421335i
\(767\) 896.395i 0.0421994i
\(768\) 8902.58 + 8469.89i 0.418286 + 0.397957i
\(769\) 22355.4i 1.04832i −0.851621 0.524159i \(-0.824380\pi\)
0.851621 0.524159i \(-0.175620\pi\)
\(770\) −7791.25 + 45525.9i −0.364646 + 2.13070i
\(771\) −20799.7 −0.971574
\(772\) 3675.30 754.877i 0.171343 0.0351925i
\(773\) −8766.01 −0.407880 −0.203940 0.978983i \(-0.565375\pi\)
−0.203940 + 0.978983i \(0.565375\pi\)
\(774\) 4718.65 479.581i 0.219132 0.0222716i
\(775\) −21327.1 −0.988505
\(776\) −7257.62 23144.9i −0.335739 1.07069i
\(777\) 770.094 2774.09i 0.0355559 0.128082i
\(778\) 1441.83 + 14186.3i 0.0664421 + 0.653731i
\(779\) −55523.3 −2.55369
\(780\) −345.953 1684.36i −0.0158809 0.0773201i
\(781\) 46191.8i 2.11635i
\(782\) −5678.82 + 577.168i −0.259686 + 0.0263932i
\(783\) 5670.69 0.258817
\(784\) −21748.1 2985.39i −0.990709 0.135996i
\(785\) 40298.9 1.83227
\(786\) −21616.0 + 2196.94i −0.980936 + 0.0996976i
\(787\) 13959.2i 0.632266i 0.948715 + 0.316133i \(0.102385\pi\)
−0.948715 + 0.316133i \(0.897615\pi\)
\(788\) −1948.61 9487.28i −0.0880919 0.428896i
\(789\) −8494.09 −0.383267
\(790\) −6324.49 62227.3i −0.284829 2.80247i
\(791\) 699.449 2519.61i 0.0314406 0.113258i
\(792\) 9524.08 2986.50i 0.427302 0.133991i
\(793\) −443.095 −0.0198421
\(794\) −7037.60 + 715.268i −0.314553 + 0.0319697i
\(795\) 23878.7 1.06527
\(796\) 15693.9 3223.41i 0.698815 0.143531i
\(797\) 4883.76 0.217053 0.108527 0.994094i \(-0.465387\pi\)
0.108527 + 0.994094i \(0.465387\pi\)
\(798\) −3553.43 + 20763.4i −0.157632 + 0.921075i
\(799\) 13078.0i 0.579057i
\(800\) 31442.5 17440.8i 1.38957 0.770783i
\(801\) 3556.53i 0.156884i
\(802\) −2850.34 + 289.695i −0.125497 + 0.0127550i
\(803\) 4705.57i 0.206794i
\(804\) 2628.90 + 12799.4i 0.115316 + 0.561443i
\(805\) −25628.9 7114.66i −1.12211 0.311502i
\(806\) 1203.30 122.298i 0.0525861 0.00534460i
\(807\) 22412.9i 0.977660i
\(808\) 33023.4 10355.3i 1.43782 0.450862i
\(809\) −5194.65 −0.225753 −0.112877 0.993609i \(-0.536006\pi\)
−0.112877 + 0.993609i \(0.536006\pi\)
\(810\) 4100.36 416.741i 0.177867 0.0180775i
\(811\) 12097.1i 0.523783i 0.965097 + 0.261892i \(0.0843463\pi\)
−0.965097 + 0.261892i \(0.915654\pi\)
\(812\) 31045.5 + 2120.88i 1.34173 + 0.0916606i
\(813\) 8042.67i 0.346948i
\(814\) 726.342 + 7146.56i 0.0312755 + 0.307723i
\(815\) 19938.4 0.856948
\(816\) 4460.69 1913.08i 0.191367 0.0820727i
\(817\) 24975.7i 1.06951i
\(818\) −2570.20 25288.5i −0.109859 1.08092i
\(819\) 177.568 639.648i 0.00757597 0.0272907i
\(820\) 11993.5 + 58393.1i 0.510769 + 2.48680i
\(821\) 28449.4i 1.20937i 0.796465 + 0.604685i \(0.206701\pi\)
−0.796465 + 0.604685i \(0.793299\pi\)
\(822\) 312.592 + 3075.62i 0.0132638 + 0.130504i
\(823\) 15491.6i 0.656142i 0.944653 + 0.328071i \(0.106399\pi\)
−0.944653 + 0.328071i \(0.893601\pi\)
\(824\) −20382.6 + 6391.43i −0.861725 + 0.270214i
\(825\) 29206.2i 1.23252i
\(826\) −11621.2 1988.84i −0.489532 0.0837780i
\(827\) −24609.9 −1.03479 −0.517395 0.855747i \(-0.673098\pi\)
−0.517395 + 0.855747i \(0.673098\pi\)
\(828\) 1156.44 + 5630.41i 0.0485376 + 0.236317i
\(829\) −24653.6 −1.03288 −0.516438 0.856325i \(-0.672742\pi\)
−0.516438 + 0.856325i \(0.672742\pi\)
\(830\) −1882.74 18524.5i −0.0787360 0.774693i
\(831\) −17248.5 −0.720029
\(832\) −1674.01 + 1164.34i −0.0697547 + 0.0485169i
\(833\) −4469.62 + 7430.01i −0.185910 + 0.309045i
\(834\) −3071.78 + 312.200i −0.127538 + 0.0129624i
\(835\) 62640.0 2.59610
\(836\) −10574.7 51485.3i −0.437480 2.12997i
\(837\) 2899.03i 0.119719i
\(838\) 2912.10 + 28652.5i 0.120044 + 1.18113i
\(839\) −13820.1 −0.568682 −0.284341 0.958723i \(-0.591775\pi\)
−0.284341 + 0.958723i \(0.591775\pi\)
\(840\) 22604.2 747.975i 0.928475 0.0307233i
\(841\) −19721.7 −0.808632
\(842\) 4711.54 + 46357.3i 0.192839 + 1.89736i
\(843\) 14407.4i 0.588632i
\(844\) 34409.0 7067.34i 1.40333 0.288232i
\(845\) −39238.0 −1.59743
\(846\) 13101.9 1331.61i 0.532448 0.0541155i
\(847\) 5307.03 19117.4i 0.215291 0.775538i
\(848\) −11161.3 26024.5i −0.451981 1.05387i
\(849\) 5230.43 0.211435
\(850\) −1436.03 14129.3i −0.0579477 0.570154i
\(851\) −4136.69 −0.166632
\(852\) −22156.0 + 4550.67i −0.890907 + 0.182985i
\(853\) −18893.4 −0.758381 −0.379190 0.925319i \(-0.623797\pi\)
−0.379190 + 0.925319i \(0.623797\pi\)
\(854\) 983.098 5744.45i 0.0393922 0.230177i
\(855\) 21703.1i 0.868104i
\(856\) −30357.0 + 9519.13i −1.21213 + 0.380090i
\(857\) 31550.3i 1.25757i 0.777579 + 0.628785i \(0.216447\pi\)
−0.777579 + 0.628785i \(0.783553\pi\)
\(858\) 167.480 + 1647.85i 0.00666394 + 0.0655673i
\(859\) 26012.5i 1.03322i 0.856221 + 0.516610i \(0.172806\pi\)
−0.856221 + 0.516610i \(0.827194\pi\)
\(860\) −26266.6 + 5394.94i −1.04149 + 0.213914i
\(861\) −6155.90 + 22175.2i −0.243662 + 0.877735i
\(862\) −3490.91 34347.4i −0.137936 1.35717i
\(863\) 37818.9i 1.49174i −0.666092 0.745869i \(-0.732034\pi\)
0.666092 0.745869i \(-0.267966\pi\)
\(864\) −2370.76 4274.03i −0.0933507 0.168293i
\(865\) 38666.8 1.51989
\(866\) 2341.21 + 23035.4i 0.0918679 + 0.903898i
\(867\) 12821.9i 0.502253i
\(868\) −1084.26 + 15871.4i −0.0423988 + 0.620633i
\(869\) 60249.8i 2.35194i
\(870\) −31895.6 + 3241.71i −1.24294 + 0.126327i
\(871\) −2168.32 −0.0843520
\(872\) −8933.42 28489.1i −0.346931 1.10638i
\(873\) 9647.82i 0.374031i
\(874\) 30112.6 3060.50i 1.16542 0.118447i
\(875\) 6561.79 23637.3i 0.253519 0.913243i
\(876\) 2257.04 463.578i 0.0870528 0.0178800i
\(877\) 12334.9i 0.474939i 0.971395 + 0.237470i \(0.0763180\pi\)
−0.971395 + 0.237470i \(0.923682\pi\)
\(878\) −2168.88 + 220.434i −0.0833668 + 0.00847300i
\(879\) 20597.6i 0.790375i
\(880\) −51862.2 + 22242.5i −1.98668 + 0.852039i
\(881\) 29928.2i 1.14450i −0.820078 0.572252i \(-0.806070\pi\)
0.820078 0.572252i \(-0.193930\pi\)
\(882\) 7898.66 + 3721.25i 0.301544 + 0.142065i
\(883\) −11412.1 −0.434934 −0.217467 0.976068i \(-0.569779\pi\)
−0.217467 + 0.976068i \(0.569779\pi\)
\(884\) 162.046 + 788.958i 0.00616537 + 0.0300175i
\(885\) 12147.1 0.461379
\(886\) 3375.12 343.031i 0.127979 0.0130072i
\(887\) 48774.0 1.84630 0.923151 0.384437i \(-0.125604\pi\)
0.923151 + 0.384437i \(0.125604\pi\)
\(888\) 3356.31 1052.45i 0.126836 0.0397724i
\(889\) −16568.1 4599.35i −0.625058 0.173518i
\(890\) 2033.13 + 20004.2i 0.0765738 + 0.753418i
\(891\) −3970.06 −0.149273
\(892\) −35132.3 + 7215.89i −1.31874 + 0.270858i
\(893\) 69347.6i 2.59869i
\(894\) −10158.1 + 1032.42i −0.380021 + 0.0386235i
\(895\) 59206.6 2.21124
\(896\) −11380.8 24285.8i −0.424335 0.905505i
\(897\) −953.835 −0.0355046
\(898\) −21031.6 + 2137.55i −0.781551 + 0.0794331i
\(899\) 22550.7i 0.836607i
\(900\) −14008.8 + 2877.31i −0.518846 + 0.106567i
\(901\) −11184.8 −0.413564
\(902\) −5806.17 57127.5i −0.214328 2.10880i
\(903\) −9974.93 2769.07i −0.367602 0.102047i
\(904\) 3048.42 955.903i 0.112156 0.0351691i
\(905\) −12456.3 −0.457528
\(906\) −498.506 + 50.6657i −0.0182801 + 0.00185790i
\(907\) −25357.8 −0.928325 −0.464162 0.885750i \(-0.653645\pi\)
−0.464162 + 0.885750i \(0.653645\pi\)
\(908\) −3955.11 19256.4i −0.144554 0.703795i
\(909\) −13765.6 −0.502285
\(910\) −633.093 + 3699.29i −0.0230625 + 0.134759i
\(911\) 27285.0i 0.992309i 0.868234 + 0.496154i \(0.165255\pi\)
−0.868234 + 0.496154i \(0.834745\pi\)
\(912\) −23653.3 + 10144.4i −0.858815 + 0.368326i
\(913\) 17935.8i 0.650152i
\(914\) −7319.63 + 743.932i −0.264893 + 0.0269224i
\(915\) 6004.40i 0.216939i
\(916\) −39549.3 + 8123.11i −1.42658 + 0.293008i
\(917\) 45694.8 + 12685.0i 1.64555 + 0.456810i
\(918\) −1920.62 + 195.203i −0.0690522 + 0.00701814i
\(919\) 4591.82i 0.164821i −0.996598 0.0824103i \(-0.973738\pi\)
0.996598 0.0824103i \(-0.0262618\pi\)
\(920\) −9723.26 31007.9i −0.348442 1.11120i
\(921\) 18250.5 0.652957
\(922\) −29287.0 + 2976.59i −1.04611 + 0.106322i
\(923\) 3753.40i 0.133851i
\(924\) −21735.0 1484.83i −0.773839 0.0528651i
\(925\) 10292.4i 0.365849i
\(926\) 1140.75 + 11223.9i 0.0404830 + 0.398316i
\(927\) 8496.36 0.301032
\(928\) 18441.5 + 33246.5i 0.652341 + 1.17605i
\(929\) 27171.1i 0.959586i 0.877382 + 0.479793i \(0.159288\pi\)
−0.877382 + 0.479793i \(0.840712\pi\)
\(930\) −1657.26 16306.0i −0.0584342 0.574940i
\(931\) 23700.7 39398.5i 0.834328 1.38693i
\(932\) −13880.8 + 2851.00i −0.487854 + 0.100201i
\(933\) 15806.9i 0.554657i
\(934\) 2582.75 + 25412.0i 0.0904819 + 0.890262i
\(935\) 22289.5i 0.779619i
\(936\) 773.897 242.673i 0.0270252 0.00847439i
\(937\) 18475.1i 0.644137i −0.946716 0.322068i \(-0.895622\pi\)
0.946716 0.322068i \(-0.104378\pi\)
\(938\) 4810.86 28110.9i 0.167463 0.978521i
\(939\) 19131.4 0.664889
\(940\) −72932.0 + 14979.6i −2.53062 + 0.519768i
\(941\) −22764.8 −0.788641 −0.394321 0.918973i \(-0.629020\pi\)
−0.394321 + 0.918973i \(0.629020\pi\)
\(942\) 1921.98 + 18910.6i 0.0664771 + 0.654076i
\(943\) 33067.5 1.14191
\(944\) −5677.75 13238.7i −0.195757 0.456442i
\(945\) −8667.90 2406.23i −0.298378 0.0828304i
\(946\) 25697.3 2611.75i 0.883183 0.0897624i
\(947\) 32782.2 1.12490 0.562449 0.826832i \(-0.309859\pi\)
0.562449 + 0.826832i \(0.309859\pi\)
\(948\) 28899.0 5935.62i 0.990079 0.203354i
\(949\) 382.360i 0.0130789i
\(950\) 7614.73 + 74922.2i 0.260057 + 2.55873i
\(951\) 16203.5 0.552507
\(952\) −10587.9 + 350.354i −0.360457 + 0.0119275i
\(953\) 17560.9 0.596909 0.298455 0.954424i \(-0.403529\pi\)
0.298455 + 0.954424i \(0.403529\pi\)
\(954\) 1138.85 + 11205.2i 0.0386494 + 0.380276i
\(955\) 15085.0i 0.511141i
\(956\) 1224.79 + 5963.17i 0.0414357 + 0.201739i
\(957\) 30882.0 1.04313
\(958\) 31063.0 3157.10i 1.04760 0.106473i
\(959\) 1804.88 6501.67i 0.0607744 0.218926i
\(960\) 15778.0 + 22684.6i 0.530450 + 0.762649i
\(961\) −18262.4 −0.613017
\(962\) 59.0203 + 580.708i 0.00197806 + 0.0194623i
\(963\) 12654.1 0.423441
\(964\) 1118.29 + 5444.64i 0.0373626 + 0.181909i
\(965\) 8437.21 0.281454
\(966\) 2116.28 12365.9i 0.0704868 0.411869i
\(967\) 21637.9i 0.719574i 0.933034 + 0.359787i \(0.117151\pi\)
−0.933034 + 0.359787i \(0.882849\pi\)
\(968\) 23129.7 7252.87i 0.767994 0.240822i
\(969\) 10165.8i 0.337019i
\(970\) −5515.28 54265.5i −0.182562 1.79625i
\(971\) 29037.6i 0.959691i 0.877353 + 0.479845i \(0.159307\pi\)
−0.877353 + 0.479845i \(0.840693\pi\)
\(972\) 391.118 + 1904.25i 0.0129065 + 0.0628383i
\(973\) 6493.54 + 1802.62i 0.213950 + 0.0593930i
\(974\) −5112.01 50297.6i −0.168172 1.65466i
\(975\) 2373.21i 0.0779522i
\(976\) 6543.96 2806.55i 0.214618 0.0920446i
\(977\) −28193.5 −0.923225 −0.461613 0.887082i \(-0.652729\pi\)
−0.461613 + 0.887082i \(0.652729\pi\)
\(978\) 950.925 + 9356.26i 0.0310912 + 0.305910i
\(979\) 19368.5i 0.632297i
\(980\) −46554.4 16415.3i −1.51748 0.535069i
\(981\) 11875.5i 0.386500i
\(982\) 17063.4 1734.24i 0.554495 0.0563562i
\(983\) −17518.9 −0.568429 −0.284215 0.958761i \(-0.591733\pi\)
−0.284215 + 0.958761i \(0.591733\pi\)
\(984\) −26829.4 + 8412.97i −0.869196 + 0.272557i
\(985\) 21779.5i 0.704521i
\(986\) 14940.0 1518.43i 0.482541 0.0490432i
\(987\) −27696.5 7688.62i −0.893200 0.247955i
\(988\) −859.266 4183.54i −0.0276689 0.134713i
\(989\) 14874.5i 0.478242i
\(990\) 22330.1 2269.53i 0.716867 0.0728589i
\(991\) 27590.6i 0.884403i −0.896916 0.442202i \(-0.854198\pi\)
0.896916 0.442202i \(-0.145802\pi\)
\(992\) −16996.6 + 9427.86i −0.543995 + 0.301749i
\(993\) 13255.8i 0.423627i
\(994\) 48660.5 + 8327.70i 1.55273 + 0.265733i
\(995\) 36027.8 1.14790
\(996\) 8602.96 1766.98i 0.273690 0.0562138i
\(997\) 43182.7 1.37172 0.685862 0.727731i \(-0.259425\pi\)
0.685862 + 0.727731i \(0.259425\pi\)
\(998\) 3051.85 310.175i 0.0967981 0.00983810i
\(999\) −1399.06 −0.0443086
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.p.a.139.46 yes 48
4.3 odd 2 672.4.p.a.559.29 48
7.6 odd 2 inner 168.4.p.a.139.45 48
8.3 odd 2 inner 168.4.p.a.139.48 yes 48
8.5 even 2 672.4.p.a.559.37 48
28.27 even 2 672.4.p.a.559.38 48
56.13 odd 2 672.4.p.a.559.30 48
56.27 even 2 inner 168.4.p.a.139.47 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.p.a.139.45 48 7.6 odd 2 inner
168.4.p.a.139.46 yes 48 1.1 even 1 trivial
168.4.p.a.139.47 yes 48 56.27 even 2 inner
168.4.p.a.139.48 yes 48 8.3 odd 2 inner
672.4.p.a.559.29 48 4.3 odd 2
672.4.p.a.559.30 48 56.13 odd 2
672.4.p.a.559.37 48 8.5 even 2
672.4.p.a.559.38 48 28.27 even 2