Properties

Label 168.4.p.a.139.24
Level $168$
Weight $4$
Character 168.139
Analytic conductor $9.912$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(139,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.139"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.p (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 139.24
Character \(\chi\) \(=\) 168.139
Dual form 168.4.p.a.139.21

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.713005 + 2.73708i) q^{2} +3.00000i q^{3} +(-6.98325 - 3.90311i) q^{4} -14.5659 q^{5} +(-8.21125 - 2.13902i) q^{6} +(11.7275 - 14.3341i) q^{7} +(15.6622 - 16.3308i) q^{8} -9.00000 q^{9} +(10.3856 - 39.8681i) q^{10} -28.6305 q^{11} +(11.7093 - 20.9497i) q^{12} +83.2983 q^{13} +(30.8719 + 42.3194i) q^{14} -43.6977i q^{15} +(33.5315 + 54.5128i) q^{16} -27.2438i q^{17} +(6.41705 - 24.6337i) q^{18} +62.8721i q^{19} +(101.717 + 56.8524i) q^{20} +(43.0023 + 35.1824i) q^{21} +(20.4137 - 78.3642i) q^{22} -200.361i q^{23} +(48.9924 + 46.9867i) q^{24} +87.1659 q^{25} +(-59.3922 + 227.994i) q^{26} -27.0000i q^{27} +(-137.843 + 54.3249i) q^{28} +32.4096i q^{29} +(119.604 + 31.1567i) q^{30} +51.2286 q^{31} +(-173.114 + 52.9105i) q^{32} -85.8916i q^{33} +(74.5686 + 19.4250i) q^{34} +(-170.821 + 208.789i) q^{35} +(62.8492 + 35.1280i) q^{36} -353.375i q^{37} +(-172.086 - 44.8282i) q^{38} +249.895i q^{39} +(-228.135 + 237.873i) q^{40} -83.7633i q^{41} +(-126.958 + 92.6156i) q^{42} +535.865 q^{43} +(199.934 + 111.748i) q^{44} +131.093 q^{45} +(548.406 + 142.859i) q^{46} +411.590 q^{47} +(-163.538 + 100.594i) q^{48} +(-67.9328 - 336.205i) q^{49} +(-62.1497 + 238.580i) q^{50} +81.7315 q^{51} +(-581.693 - 325.123i) q^{52} -210.917i q^{53} +(73.9012 + 19.2511i) q^{54} +417.030 q^{55} +(-50.4087 - 416.023i) q^{56} -188.616 q^{57} +(-88.7077 - 23.1082i) q^{58} -103.520i q^{59} +(-170.557 + 305.152i) q^{60} -425.937 q^{61} +(-36.5263 + 140.217i) q^{62} +(-105.547 + 129.007i) q^{63} +(-21.3892 - 511.553i) q^{64} -1213.32 q^{65} +(235.092 + 61.2412i) q^{66} -796.894 q^{67} +(-106.336 + 190.250i) q^{68} +601.084 q^{69} +(-449.677 - 616.420i) q^{70} -175.826i q^{71} +(-140.960 + 146.977i) q^{72} -1030.12i q^{73} +(967.216 + 251.958i) q^{74} +261.498i q^{75} +(245.397 - 439.052i) q^{76} +(-335.764 + 410.393i) q^{77} +(-683.983 - 178.176i) q^{78} -273.289i q^{79} +(-488.416 - 794.028i) q^{80} +81.0000 q^{81} +(229.267 + 59.7237i) q^{82} +486.916i q^{83} +(-162.975 - 413.530i) q^{84} +396.831i q^{85} +(-382.075 + 1466.71i) q^{86} -97.2288 q^{87} +(-448.418 + 467.559i) q^{88} +267.978i q^{89} +(-93.4702 + 358.813i) q^{90} +(976.879 - 1194.01i) q^{91} +(-782.033 + 1399.17i) q^{92} +153.686i q^{93} +(-293.466 + 1126.56i) q^{94} -915.790i q^{95} +(-158.732 - 519.342i) q^{96} -603.135i q^{97} +(968.659 + 53.7787i) q^{98} +257.675 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{2} + 10 q^{4} + 118 q^{8} - 432 q^{9} - 40 q^{11} + 38 q^{14} - 142 q^{16} + 18 q^{18} - 376 q^{22} + 1200 q^{25} - 274 q^{28} + 336 q^{30} + 318 q^{32} - 456 q^{35} - 90 q^{36} + 564 q^{42}+ \cdots + 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.713005 + 2.73708i −0.252085 + 0.967705i
\(3\) 3.00000i 0.577350i
\(4\) −6.98325 3.90311i −0.872906 0.487889i
\(5\) −14.5659 −1.30281 −0.651407 0.758728i \(-0.725821\pi\)
−0.651407 + 0.758728i \(0.725821\pi\)
\(6\) −8.21125 2.13902i −0.558705 0.145542i
\(7\) 11.7275 14.3341i 0.633224 0.773969i
\(8\) 15.6622 16.3308i 0.692179 0.721726i
\(9\) −9.00000 −0.333333
\(10\) 10.3856 39.8681i 0.328421 1.26074i
\(11\) −28.6305 −0.784767 −0.392383 0.919802i \(-0.628349\pi\)
−0.392383 + 0.919802i \(0.628349\pi\)
\(12\) 11.7093 20.9497i 0.281683 0.503972i
\(13\) 83.2983 1.77714 0.888569 0.458743i \(-0.151700\pi\)
0.888569 + 0.458743i \(0.151700\pi\)
\(14\) 30.8719 + 42.3194i 0.589347 + 0.807880i
\(15\) 43.6977i 0.752181i
\(16\) 33.5315 + 54.5128i 0.523929 + 0.851762i
\(17\) 27.2438i 0.388682i −0.980934 0.194341i \(-0.937743\pi\)
0.980934 0.194341i \(-0.0622569\pi\)
\(18\) 6.41705 24.6337i 0.0840285 0.322568i
\(19\) 62.8721i 0.759150i 0.925161 + 0.379575i \(0.123930\pi\)
−0.925161 + 0.379575i \(0.876070\pi\)
\(20\) 101.717 + 56.8524i 1.13723 + 0.635629i
\(21\) 43.0023 + 35.1824i 0.446851 + 0.365592i
\(22\) 20.4137 78.3642i 0.197828 0.759423i
\(23\) 200.361i 1.81645i −0.418487 0.908223i \(-0.637439\pi\)
0.418487 0.908223i \(-0.362561\pi\)
\(24\) 48.9924 + 46.9867i 0.416688 + 0.399630i
\(25\) 87.1659 0.697327
\(26\) −59.3922 + 227.994i −0.447991 + 1.71975i
\(27\) 27.0000i 0.192450i
\(28\) −137.843 + 54.3249i −0.930355 + 0.366659i
\(29\) 32.4096i 0.207528i 0.994602 + 0.103764i \(0.0330887\pi\)
−0.994602 + 0.103764i \(0.966911\pi\)
\(30\) 119.604 + 31.1567i 0.727889 + 0.189614i
\(31\) 51.2286 0.296804 0.148402 0.988927i \(-0.452587\pi\)
0.148402 + 0.988927i \(0.452587\pi\)
\(32\) −173.114 + 52.9105i −0.956329 + 0.292292i
\(33\) 85.8916i 0.453085i
\(34\) 74.5686 + 19.4250i 0.376130 + 0.0979812i
\(35\) −170.821 + 208.789i −0.824974 + 1.00834i
\(36\) 62.8492 + 35.1280i 0.290969 + 0.162630i
\(37\) 353.375i 1.57012i −0.619419 0.785060i \(-0.712632\pi\)
0.619419 0.785060i \(-0.287368\pi\)
\(38\) −172.086 44.8282i −0.734633 0.191371i
\(39\) 249.895i 1.02603i
\(40\) −228.135 + 237.873i −0.901782 + 0.940275i
\(41\) 83.7633i 0.319064i −0.987193 0.159532i \(-0.949001\pi\)
0.987193 0.159532i \(-0.0509986\pi\)
\(42\) −126.958 + 92.6156i −0.466430 + 0.340259i
\(43\) 535.865 1.90043 0.950217 0.311590i \(-0.100861\pi\)
0.950217 + 0.311590i \(0.100861\pi\)
\(44\) 199.934 + 111.748i 0.685027 + 0.382879i
\(45\) 131.093 0.434272
\(46\) 548.406 + 142.859i 1.75778 + 0.457900i
\(47\) 411.590 1.27737 0.638686 0.769467i \(-0.279478\pi\)
0.638686 + 0.769467i \(0.279478\pi\)
\(48\) −163.538 + 100.594i −0.491765 + 0.302491i
\(49\) −67.9328 336.205i −0.198055 0.980191i
\(50\) −62.1497 + 238.580i −0.175786 + 0.674807i
\(51\) 81.7315 0.224406
\(52\) −581.693 325.123i −1.55127 0.867046i
\(53\) 210.917i 0.546635i −0.961924 0.273317i \(-0.911879\pi\)
0.961924 0.273317i \(-0.0881209\pi\)
\(54\) 73.9012 + 19.2511i 0.186235 + 0.0485139i
\(55\) 417.030 1.02241
\(56\) −50.4087 416.023i −0.120288 0.992739i
\(57\) −188.616 −0.438296
\(58\) −88.7077 23.1082i −0.200826 0.0523148i
\(59\) 103.520i 0.228427i −0.993456 0.114213i \(-0.963565\pi\)
0.993456 0.114213i \(-0.0364348\pi\)
\(60\) −170.557 + 305.152i −0.366980 + 0.656583i
\(61\) −425.937 −0.894028 −0.447014 0.894527i \(-0.647513\pi\)
−0.447014 + 0.894527i \(0.647513\pi\)
\(62\) −36.5263 + 140.217i −0.0748201 + 0.287219i
\(63\) −105.547 + 129.007i −0.211075 + 0.257990i
\(64\) −21.3892 511.553i −0.0417757 0.999127i
\(65\) −1213.32 −2.31528
\(66\) 235.092 + 61.2412i 0.438453 + 0.114216i
\(67\) −796.894 −1.45308 −0.726538 0.687126i \(-0.758872\pi\)
−0.726538 + 0.687126i \(0.758872\pi\)
\(68\) −106.336 + 190.250i −0.189634 + 0.339283i
\(69\) 601.084 1.04873
\(70\) −449.677 616.420i −0.767810 1.05252i
\(71\) 175.826i 0.293898i −0.989144 0.146949i \(-0.953055\pi\)
0.989144 0.146949i \(-0.0469453\pi\)
\(72\) −140.960 + 146.977i −0.230726 + 0.240575i
\(73\) 1030.12i 1.65159i −0.563971 0.825795i \(-0.690727\pi\)
0.563971 0.825795i \(-0.309273\pi\)
\(74\) 967.216 + 251.958i 1.51941 + 0.395805i
\(75\) 261.498i 0.402602i
\(76\) 245.397 439.052i 0.370381 0.662667i
\(77\) −335.764 + 410.393i −0.496933 + 0.607385i
\(78\) −683.983 178.176i −0.992896 0.258648i
\(79\) 273.289i 0.389208i −0.980882 0.194604i \(-0.937658\pi\)
0.980882 0.194604i \(-0.0623421\pi\)
\(80\) −488.416 794.028i −0.682583 1.10969i
\(81\) 81.0000 0.111111
\(82\) 229.267 + 59.7237i 0.308760 + 0.0804315i
\(83\) 486.916i 0.643927i 0.946752 + 0.321964i \(0.104343\pi\)
−0.946752 + 0.321964i \(0.895657\pi\)
\(84\) −162.975 413.530i −0.211691 0.537141i
\(85\) 396.831i 0.506381i
\(86\) −382.075 + 1466.71i −0.479072 + 1.83906i
\(87\) −97.2288 −0.119816
\(88\) −448.418 + 467.559i −0.543199 + 0.566386i
\(89\) 267.978i 0.319164i 0.987185 + 0.159582i \(0.0510147\pi\)
−0.987185 + 0.159582i \(0.948985\pi\)
\(90\) −93.4702 + 358.813i −0.109474 + 0.420247i
\(91\) 976.879 1194.01i 1.12533 1.37545i
\(92\) −782.033 + 1399.17i −0.886224 + 1.58559i
\(93\) 153.686i 0.171360i
\(94\) −293.466 + 1126.56i −0.322007 + 1.23612i
\(95\) 915.790i 0.989032i
\(96\) −158.732 519.342i −0.168755 0.552137i
\(97\) 603.135i 0.631331i −0.948871 0.315665i \(-0.897772\pi\)
0.948871 0.315665i \(-0.102228\pi\)
\(98\) 968.659 + 53.7787i 0.998462 + 0.0554334i
\(99\) 257.675 0.261589
\(100\) −608.701 340.218i −0.608701 0.340218i
\(101\) −995.901 −0.981147 −0.490574 0.871400i \(-0.663213\pi\)
−0.490574 + 0.871400i \(0.663213\pi\)
\(102\) −58.2750 + 223.706i −0.0565695 + 0.217159i
\(103\) −1248.41 −1.19427 −0.597135 0.802141i \(-0.703694\pi\)
−0.597135 + 0.802141i \(0.703694\pi\)
\(104\) 1304.64 1360.33i 1.23010 1.28261i
\(105\) −626.368 512.464i −0.582164 0.476299i
\(106\) 577.297 + 150.385i 0.528981 + 0.137799i
\(107\) 1843.63 1.66571 0.832853 0.553494i \(-0.186706\pi\)
0.832853 + 0.553494i \(0.186706\pi\)
\(108\) −105.384 + 188.548i −0.0938942 + 0.167991i
\(109\) 9.09633i 0.00799330i 0.999992 + 0.00399665i \(0.00127218\pi\)
−0.999992 + 0.00399665i \(0.998728\pi\)
\(110\) −297.345 + 1141.45i −0.257734 + 0.989387i
\(111\) 1060.12 0.906510
\(112\) 1174.63 + 158.654i 0.991001 + 0.133851i
\(113\) −110.854 −0.0922858 −0.0461429 0.998935i \(-0.514693\pi\)
−0.0461429 + 0.998935i \(0.514693\pi\)
\(114\) 134.484 516.259i 0.110488 0.424141i
\(115\) 2918.45i 2.36649i
\(116\) 126.498 226.324i 0.101251 0.181152i
\(117\) −749.685 −0.592379
\(118\) 283.343 + 73.8105i 0.221050 + 0.0575831i
\(119\) −390.516 319.501i −0.300828 0.246123i
\(120\) −713.619 684.404i −0.542868 0.520644i
\(121\) −511.292 −0.384141
\(122\) 303.696 1165.83i 0.225371 0.865155i
\(123\) 251.290 0.184212
\(124\) −357.742 199.951i −0.259082 0.144807i
\(125\) 551.089 0.394327
\(126\) −277.847 380.874i −0.196449 0.269293i
\(127\) 267.721i 0.187058i 0.995617 + 0.0935290i \(0.0298148\pi\)
−0.995617 + 0.0935290i \(0.970185\pi\)
\(128\) 1415.41 + 306.196i 0.977391 + 0.211439i
\(129\) 1607.59i 1.09722i
\(130\) 865.101 3320.95i 0.583649 2.24051i
\(131\) 1023.29i 0.682480i 0.939976 + 0.341240i \(0.110847\pi\)
−0.939976 + 0.341240i \(0.889153\pi\)
\(132\) −335.244 + 599.802i −0.221055 + 0.395501i
\(133\) 901.215 + 737.331i 0.587558 + 0.480712i
\(134\) 568.190 2181.17i 0.366300 1.40615i
\(135\) 393.280i 0.250727i
\(136\) −444.913 426.699i −0.280522 0.269038i
\(137\) 545.766 0.340350 0.170175 0.985414i \(-0.445567\pi\)
0.170175 + 0.985414i \(0.445567\pi\)
\(138\) −428.576 + 1645.22i −0.264368 + 1.01486i
\(139\) 1666.97i 1.01720i 0.861004 + 0.508598i \(0.169836\pi\)
−0.861004 + 0.508598i \(0.830164\pi\)
\(140\) 2007.82 791.292i 1.21208 0.477689i
\(141\) 1234.77i 0.737492i
\(142\) 481.251 + 125.365i 0.284406 + 0.0740873i
\(143\) −2384.88 −1.39464
\(144\) −301.783 490.615i −0.174643 0.283921i
\(145\) 472.075i 0.270370i
\(146\) 2819.51 + 734.479i 1.59825 + 0.416342i
\(147\) 1008.62 203.798i 0.565914 0.114347i
\(148\) −1379.26 + 2467.70i −0.766044 + 1.37057i
\(149\) 590.888i 0.324882i −0.986718 0.162441i \(-0.948063\pi\)
0.986718 0.162441i \(-0.0519367\pi\)
\(150\) −715.741 186.449i −0.389600 0.101490i
\(151\) 2402.33i 1.29469i 0.762196 + 0.647346i \(0.224121\pi\)
−0.762196 + 0.647346i \(0.775879\pi\)
\(152\) 1026.75 + 984.718i 0.547898 + 0.525468i
\(153\) 245.194i 0.129561i
\(154\) −883.878 1211.63i −0.462500 0.633997i
\(155\) −746.192 −0.386681
\(156\) 975.368 1745.08i 0.500589 0.895629i
\(157\) 1782.98 0.906352 0.453176 0.891421i \(-0.350291\pi\)
0.453176 + 0.891421i \(0.350291\pi\)
\(158\) 748.014 + 194.856i 0.376638 + 0.0981136i
\(159\) 632.750 0.315600
\(160\) 2521.56 770.690i 1.24592 0.380802i
\(161\) −2872.00 2349.73i −1.40587 1.15022i
\(162\) −57.7534 + 221.704i −0.0280095 + 0.107523i
\(163\) 539.014 0.259011 0.129506 0.991579i \(-0.458661\pi\)
0.129506 + 0.991579i \(0.458661\pi\)
\(164\) −326.938 + 584.940i −0.155668 + 0.278513i
\(165\) 1251.09i 0.590286i
\(166\) −1332.73 347.174i −0.623131 0.162325i
\(167\) 1578.17 0.731272 0.365636 0.930758i \(-0.380852\pi\)
0.365636 + 0.930758i \(0.380852\pi\)
\(168\) 1248.07 151.226i 0.573158 0.0694486i
\(169\) 4741.61 2.15822
\(170\) −1086.16 282.943i −0.490028 0.127651i
\(171\) 565.849i 0.253050i
\(172\) −3742.08 2091.54i −1.65890 0.927200i
\(173\) −2249.37 −0.988534 −0.494267 0.869310i \(-0.664563\pi\)
−0.494267 + 0.869310i \(0.664563\pi\)
\(174\) 69.3246 266.123i 0.0302039 0.115947i
\(175\) 1022.24 1249.44i 0.441564 0.539709i
\(176\) −960.024 1560.73i −0.411162 0.668434i
\(177\) 310.561 0.131882
\(178\) −733.479 191.070i −0.308857 0.0804567i
\(179\) −120.656 −0.0503813 −0.0251907 0.999683i \(-0.508019\pi\)
−0.0251907 + 0.999683i \(0.508019\pi\)
\(180\) −915.456 511.671i −0.379078 0.211876i
\(181\) −3481.19 −1.42958 −0.714792 0.699337i \(-0.753479\pi\)
−0.714792 + 0.699337i \(0.753479\pi\)
\(182\) 2571.57 + 3525.13i 1.04735 + 1.43571i
\(183\) 1277.81i 0.516167i
\(184\) −3272.06 3138.11i −1.31098 1.25731i
\(185\) 5147.23i 2.04558i
\(186\) −420.651 109.579i −0.165826 0.0431974i
\(187\) 780.006i 0.305025i
\(188\) −2874.23 1606.48i −1.11503 0.623216i
\(189\) −387.021 316.642i −0.148950 0.121864i
\(190\) 2506.59 + 652.963i 0.957091 + 0.249321i
\(191\) 2543.14i 0.963432i 0.876327 + 0.481716i \(0.159986\pi\)
−0.876327 + 0.481716i \(0.840014\pi\)
\(192\) 1534.66 64.1675i 0.576846 0.0241192i
\(193\) 651.477 0.242976 0.121488 0.992593i \(-0.461233\pi\)
0.121488 + 0.992593i \(0.461233\pi\)
\(194\) 1650.83 + 430.039i 0.610942 + 0.159149i
\(195\) 3639.95i 1.33673i
\(196\) −837.856 + 2612.95i −0.305341 + 0.952243i
\(197\) 5020.96i 1.81588i −0.419097 0.907941i \(-0.637653\pi\)
0.419097 0.907941i \(-0.362347\pi\)
\(198\) −183.724 + 705.277i −0.0659428 + 0.253141i
\(199\) 4165.94 1.48400 0.741999 0.670401i \(-0.233878\pi\)
0.741999 + 0.670401i \(0.233878\pi\)
\(200\) 1365.21 1423.49i 0.482675 0.503279i
\(201\) 2390.68i 0.838934i
\(202\) 710.083 2725.86i 0.247333 0.949461i
\(203\) 464.562 + 380.083i 0.160620 + 0.131412i
\(204\) −570.751 319.007i −0.195885 0.109485i
\(205\) 1220.09i 0.415682i
\(206\) 890.125 3417.01i 0.301058 1.15570i
\(207\) 1803.25i 0.605482i
\(208\) 2793.11 + 4540.82i 0.931094 + 1.51370i
\(209\) 1800.06i 0.595756i
\(210\) 1849.26 1349.03i 0.607672 0.443295i
\(211\) −3009.23 −0.981819 −0.490909 0.871211i \(-0.663335\pi\)
−0.490909 + 0.871211i \(0.663335\pi\)
\(212\) −823.231 + 1472.88i −0.266697 + 0.477161i
\(213\) 527.479 0.169682
\(214\) −1314.52 + 5046.17i −0.419900 + 1.61191i
\(215\) −7805.36 −2.47591
\(216\) −440.931 422.880i −0.138896 0.133210i
\(217\) 600.782 734.316i 0.187944 0.229717i
\(218\) −24.8974 6.48573i −0.00773516 0.00201500i
\(219\) 3090.35 0.953546
\(220\) −2912.22 1627.71i −0.892464 0.498820i
\(221\) 2269.37i 0.690742i
\(222\) −755.875 + 2901.65i −0.228518 + 0.877234i
\(223\) 1645.84 0.494231 0.247116 0.968986i \(-0.420517\pi\)
0.247116 + 0.968986i \(0.420517\pi\)
\(224\) −1271.77 + 3101.94i −0.379346 + 0.925255i
\(225\) −784.493 −0.232442
\(226\) 79.0397 303.418i 0.0232639 0.0893055i
\(227\) 1938.99i 0.566941i 0.958981 + 0.283470i \(0.0914858\pi\)
−0.958981 + 0.283470i \(0.908514\pi\)
\(228\) 1317.15 + 736.190i 0.382591 + 0.213839i
\(229\) −2397.26 −0.691770 −0.345885 0.938277i \(-0.612421\pi\)
−0.345885 + 0.938277i \(0.612421\pi\)
\(230\) −7988.03 2080.87i −2.29007 0.596559i
\(231\) −1231.18 1007.29i −0.350674 0.286904i
\(232\) 529.274 + 507.606i 0.149778 + 0.143647i
\(233\) 316.572 0.0890101 0.0445050 0.999009i \(-0.485829\pi\)
0.0445050 + 0.999009i \(0.485829\pi\)
\(234\) 534.529 2051.95i 0.149330 0.573249i
\(235\) −5995.18 −1.66418
\(236\) −404.051 + 722.907i −0.111447 + 0.199395i
\(237\) 819.866 0.224709
\(238\) 1152.94 841.068i 0.314009 0.229069i
\(239\) 4069.29i 1.10134i −0.834723 0.550670i \(-0.814372\pi\)
0.834723 0.550670i \(-0.185628\pi\)
\(240\) 2382.08 1465.25i 0.640679 0.394089i
\(241\) 2677.31i 0.715604i −0.933797 0.357802i \(-0.883526\pi\)
0.933797 0.357802i \(-0.116474\pi\)
\(242\) 364.554 1399.45i 0.0968365 0.371736i
\(243\) 243.000i 0.0641500i
\(244\) 2974.43 + 1662.48i 0.780402 + 0.436186i
\(245\) 989.503 + 4897.14i 0.258029 + 1.27701i
\(246\) −179.171 + 687.802i −0.0464371 + 0.178263i
\(247\) 5237.14i 1.34911i
\(248\) 802.354 836.604i 0.205442 0.214211i
\(249\) −1460.75 −0.371771
\(250\) −392.929 + 1508.38i −0.0994041 + 0.381592i
\(251\) 3625.92i 0.911816i −0.890027 0.455908i \(-0.849315\pi\)
0.890027 0.455908i \(-0.150685\pi\)
\(252\) 1240.59 488.924i 0.310118 0.122220i
\(253\) 5736.46i 1.42549i
\(254\) −732.773 190.886i −0.181017 0.0471546i
\(255\) −1190.49 −0.292359
\(256\) −1847.28 + 3655.79i −0.450997 + 0.892526i
\(257\) 5970.36i 1.44911i 0.689218 + 0.724554i \(0.257954\pi\)
−0.689218 + 0.724554i \(0.742046\pi\)
\(258\) −4400.12 1146.22i −1.06178 0.276592i
\(259\) −5065.31 4144.19i −1.21522 0.994238i
\(260\) 8472.89 + 4735.71i 2.02102 + 1.12960i
\(261\) 291.686i 0.0691760i
\(262\) −2800.82 729.608i −0.660439 0.172043i
\(263\) 3195.46i 0.749203i −0.927186 0.374602i \(-0.877779\pi\)
0.927186 0.374602i \(-0.122221\pi\)
\(264\) −1402.68 1345.25i −0.327003 0.313616i
\(265\) 3072.20i 0.712164i
\(266\) −2660.71 + 1940.98i −0.613302 + 0.447403i
\(267\) −803.935 −0.184270
\(268\) 5564.91 + 3110.37i 1.26840 + 0.708940i
\(269\) 7242.91 1.64167 0.820833 0.571169i \(-0.193510\pi\)
0.820833 + 0.571169i \(0.193510\pi\)
\(270\) −1076.44 280.411i −0.242630 0.0632046i
\(271\) 976.026 0.218780 0.109390 0.993999i \(-0.465110\pi\)
0.109390 + 0.993999i \(0.465110\pi\)
\(272\) 1485.14 913.526i 0.331065 0.203642i
\(273\) 3582.02 + 2930.64i 0.794116 + 0.649708i
\(274\) −389.134 + 1493.81i −0.0857972 + 0.329358i
\(275\) −2495.61 −0.547239
\(276\) −4197.52 2346.10i −0.915439 0.511661i
\(277\) 4544.70i 0.985793i −0.870088 0.492897i \(-0.835938\pi\)
0.870088 0.492897i \(-0.164062\pi\)
\(278\) −4562.63 1188.56i −0.984346 0.256420i
\(279\) −461.058 −0.0989348
\(280\) 734.249 + 6059.75i 0.156714 + 1.29336i
\(281\) −7384.67 −1.56773 −0.783866 0.620930i \(-0.786755\pi\)
−0.783866 + 0.620930i \(0.786755\pi\)
\(282\) −3379.67 880.397i −0.713674 0.185911i
\(283\) 5541.22i 1.16393i 0.813215 + 0.581963i \(0.197715\pi\)
−0.813215 + 0.581963i \(0.802285\pi\)
\(284\) −686.269 + 1227.84i −0.143389 + 0.256545i
\(285\) 2747.37 0.571018
\(286\) 1700.43 6527.60i 0.351568 1.34960i
\(287\) −1200.67 982.332i −0.246946 0.202039i
\(288\) 1558.03 476.195i 0.318776 0.0974307i
\(289\) 4170.77 0.848926
\(290\) 1292.11 + 336.592i 0.261639 + 0.0681565i
\(291\) 1809.41 0.364499
\(292\) −4020.66 + 7193.56i −0.805792 + 1.44168i
\(293\) −2110.67 −0.420842 −0.210421 0.977611i \(-0.567484\pi\)
−0.210421 + 0.977611i \(0.567484\pi\)
\(294\) −161.336 + 2905.98i −0.0320045 + 0.576463i
\(295\) 1507.87i 0.297598i
\(296\) −5770.89 5534.64i −1.13320 1.08681i
\(297\) 773.025i 0.151028i
\(298\) 1617.31 + 421.306i 0.314390 + 0.0818980i
\(299\) 16689.8i 3.22808i
\(300\) 1020.65 1826.10i 0.196425 0.351434i
\(301\) 6284.34 7681.14i 1.20340 1.47088i
\(302\) −6575.37 1712.87i −1.25288 0.326373i
\(303\) 2987.70i 0.566466i
\(304\) −3427.33 + 2108.19i −0.646615 + 0.397741i
\(305\) 6204.17 1.16475
\(306\) −671.118 174.825i −0.125377 0.0326604i
\(307\) 2979.91i 0.553982i −0.960873 0.276991i \(-0.910663\pi\)
0.960873 0.276991i \(-0.0893371\pi\)
\(308\) 3946.53 1555.35i 0.730112 0.287742i
\(309\) 3745.24i 0.689512i
\(310\) 532.039 2042.39i 0.0974767 0.374193i
\(311\) 3460.82 0.631013 0.315507 0.948923i \(-0.397826\pi\)
0.315507 + 0.948923i \(0.397826\pi\)
\(312\) 4080.98 + 3913.91i 0.740513 + 0.710198i
\(313\) 4253.67i 0.768152i −0.923301 0.384076i \(-0.874520\pi\)
0.923301 0.384076i \(-0.125480\pi\)
\(314\) −1271.27 + 4880.16i −0.228478 + 0.877082i
\(315\) 1537.39 1879.10i 0.274991 0.336113i
\(316\) −1066.68 + 1908.44i −0.189890 + 0.339742i
\(317\) 4361.84i 0.772824i −0.922326 0.386412i \(-0.873714\pi\)
0.922326 0.386412i \(-0.126286\pi\)
\(318\) −451.154 + 1731.89i −0.0795581 + 0.305407i
\(319\) 927.904i 0.162861i
\(320\) 311.553 + 7451.24i 0.0544260 + 1.30168i
\(321\) 5530.89i 0.961696i
\(322\) 8479.17 6185.53i 1.46747 1.07052i
\(323\) 1712.88 0.295068
\(324\) −565.643 316.152i −0.0969895 0.0542099i
\(325\) 7260.77 1.23925
\(326\) −384.320 + 1475.33i −0.0652930 + 0.250646i
\(327\) −27.2890 −0.00461494
\(328\) −1367.92 1311.92i −0.230277 0.220850i
\(329\) 4826.91 5899.77i 0.808863 0.988646i
\(330\) −3424.34 892.034i −0.571223 0.148803i
\(331\) −8344.33 −1.38564 −0.692818 0.721112i \(-0.743631\pi\)
−0.692818 + 0.721112i \(0.743631\pi\)
\(332\) 1900.49 3400.25i 0.314165 0.562088i
\(333\) 3180.37i 0.523374i
\(334\) −1125.24 + 4319.58i −0.184343 + 0.707655i
\(335\) 11607.5 1.89309
\(336\) −475.961 + 3523.89i −0.0772791 + 0.572155i
\(337\) 1305.35 0.210999 0.105500 0.994419i \(-0.466356\pi\)
0.105500 + 0.994419i \(0.466356\pi\)
\(338\) −3380.79 + 12978.2i −0.544056 + 2.08852i
\(339\) 332.563i 0.0532812i
\(340\) 1548.88 2771.17i 0.247058 0.442023i
\(341\) −1466.70 −0.232922
\(342\) 1548.78 + 403.453i 0.244878 + 0.0637903i
\(343\) −5615.88 2969.09i −0.884050 0.467392i
\(344\) 8392.84 8751.10i 1.31544 1.37159i
\(345\) −8755.34 −1.36630
\(346\) 1603.81 6156.71i 0.249195 0.956609i
\(347\) 8132.24 1.25810 0.629051 0.777364i \(-0.283444\pi\)
0.629051 + 0.777364i \(0.283444\pi\)
\(348\) 678.972 + 379.495i 0.104588 + 0.0584570i
\(349\) −2169.66 −0.332777 −0.166389 0.986060i \(-0.553211\pi\)
−0.166389 + 0.986060i \(0.553211\pi\)
\(350\) 2690.97 + 3688.80i 0.410967 + 0.563357i
\(351\) 2249.05i 0.342010i
\(352\) 4956.35 1514.86i 0.750495 0.229381i
\(353\) 11505.9i 1.73483i 0.497583 + 0.867416i \(0.334221\pi\)
−0.497583 + 0.867416i \(0.665779\pi\)
\(354\) −221.431 + 850.030i −0.0332456 + 0.127623i
\(355\) 2561.07i 0.382894i
\(356\) 1045.95 1871.36i 0.155717 0.278601i
\(357\) 958.504 1171.55i 0.142099 0.173683i
\(358\) 86.0285 330.246i 0.0127004 0.0487543i
\(359\) 200.908i 0.0295363i −0.999891 0.0147681i \(-0.995299\pi\)
0.999891 0.0147681i \(-0.00470101\pi\)
\(360\) 2053.21 2140.86i 0.300594 0.313425i
\(361\) 2906.10 0.423691
\(362\) 2482.11 9528.30i 0.360377 1.38342i
\(363\) 1533.88i 0.221784i
\(364\) −11482.1 + 4525.18i −1.65337 + 0.651603i
\(365\) 15004.6i 2.15172i
\(366\) 3497.48 + 911.087i 0.499498 + 0.130118i
\(367\) −2626.48 −0.373573 −0.186786 0.982401i \(-0.559807\pi\)
−0.186786 + 0.982401i \(0.559807\pi\)
\(368\) 10922.3 6718.41i 1.54718 0.951689i
\(369\) 753.870i 0.106355i
\(370\) −14088.4 3670.00i −1.97951 0.515660i
\(371\) −3023.30 2473.52i −0.423078 0.346142i
\(372\) 599.853 1073.23i 0.0836046 0.149581i
\(373\) 8413.48i 1.16792i −0.811783 0.583959i \(-0.801503\pi\)
0.811783 0.583959i \(-0.198497\pi\)
\(374\) −2134.94 556.148i −0.295174 0.0768924i
\(375\) 1653.27i 0.227665i
\(376\) 6446.41 6721.58i 0.884171 0.921913i
\(377\) 2699.66i 0.368806i
\(378\) 1142.62 833.540i 0.155477 0.113420i
\(379\) 2086.39 0.282772 0.141386 0.989955i \(-0.454844\pi\)
0.141386 + 0.989955i \(0.454844\pi\)
\(380\) −3574.43 + 6395.19i −0.482538 + 0.863332i
\(381\) −803.162 −0.107998
\(382\) −6960.80 1813.28i −0.932318 0.242867i
\(383\) 10741.0 1.43301 0.716503 0.697584i \(-0.245742\pi\)
0.716503 + 0.697584i \(0.245742\pi\)
\(384\) −918.589 + 4246.24i −0.122074 + 0.564297i
\(385\) 4890.71 5977.75i 0.647412 0.791310i
\(386\) −464.507 + 1783.15i −0.0612507 + 0.235129i
\(387\) −4822.78 −0.633478
\(388\) −2354.10 + 4211.84i −0.308019 + 0.551092i
\(389\) 4661.52i 0.607580i 0.952739 + 0.303790i \(0.0982521\pi\)
−0.952739 + 0.303790i \(0.901748\pi\)
\(390\) 9962.84 + 2595.30i 1.29356 + 0.336970i
\(391\) −5458.61 −0.706020
\(392\) −6554.48 4156.33i −0.844518 0.535527i
\(393\) −3069.86 −0.394030
\(394\) 13742.8 + 3579.97i 1.75724 + 0.457758i
\(395\) 3980.70i 0.507065i
\(396\) −1799.41 1005.73i −0.228342 0.127626i
\(397\) −10192.4 −1.28852 −0.644262 0.764805i \(-0.722835\pi\)
−0.644262 + 0.764805i \(0.722835\pi\)
\(398\) −2970.34 + 11402.5i −0.374094 + 1.43607i
\(399\) −2211.99 + 2703.65i −0.277539 + 0.339227i
\(400\) 2922.80 + 4751.65i 0.365350 + 0.593956i
\(401\) 4009.68 0.499336 0.249668 0.968332i \(-0.419679\pi\)
0.249668 + 0.968332i \(0.419679\pi\)
\(402\) 6543.50 + 1704.57i 0.811841 + 0.211483i
\(403\) 4267.26 0.527462
\(404\) 6954.62 + 3887.11i 0.856449 + 0.478691i
\(405\) −1179.84 −0.144757
\(406\) −1371.55 + 1000.54i −0.167658 + 0.122306i
\(407\) 10117.3i 1.23218i
\(408\) 1280.10 1334.74i 0.155329 0.161959i
\(409\) 13591.3i 1.64314i 0.570106 + 0.821571i \(0.306902\pi\)
−0.570106 + 0.821571i \(0.693098\pi\)
\(410\) −3339.49 869.931i −0.402257 0.104787i
\(411\) 1637.30i 0.196501i
\(412\) 8717.98 + 4872.69i 1.04249 + 0.582671i
\(413\) −1483.87 1214.03i −0.176795 0.144645i
\(414\) −4935.65 1285.73i −0.585928 0.152633i
\(415\) 7092.37i 0.838918i
\(416\) −14420.1 + 4407.36i −1.69953 + 0.519443i
\(417\) −5000.90 −0.587279
\(418\) 4926.92 + 1283.45i 0.576516 + 0.150181i
\(419\) 10132.3i 1.18137i 0.806902 + 0.590686i \(0.201143\pi\)
−0.806902 + 0.590686i \(0.798857\pi\)
\(420\) 2373.88 + 6023.45i 0.275794 + 0.699795i
\(421\) 6461.41i 0.748005i −0.927428 0.374002i \(-0.877985\pi\)
0.927428 0.374002i \(-0.122015\pi\)
\(422\) 2145.60 8236.50i 0.247502 0.950111i
\(423\) −3704.31 −0.425791
\(424\) −3444.44 3303.43i −0.394520 0.378369i
\(425\) 2374.73i 0.271039i
\(426\) −376.095 + 1443.75i −0.0427743 + 0.164202i
\(427\) −4995.17 + 6105.43i −0.566120 + 0.691949i
\(428\) −12874.5 7195.90i −1.45400 0.812679i
\(429\) 7154.63i 0.805195i
\(430\) 5565.27 21363.9i 0.624142 2.39595i
\(431\) 1736.19i 0.194035i −0.995283 0.0970177i \(-0.969070\pi\)
0.995283 0.0970177i \(-0.0309303\pi\)
\(432\) 1471.84 905.349i 0.163922 0.100830i
\(433\) 3225.51i 0.357986i 0.983850 + 0.178993i \(0.0572839\pi\)
−0.983850 + 0.178993i \(0.942716\pi\)
\(434\) 1581.52 + 2167.96i 0.174921 + 0.239782i
\(435\) 1416.23 0.156098
\(436\) 35.5040 63.5219i 0.00389984 0.00697740i
\(437\) 12597.2 1.37896
\(438\) −2203.44 + 8458.54i −0.240375 + 0.922751i
\(439\) 4552.79 0.494972 0.247486 0.968891i \(-0.420396\pi\)
0.247486 + 0.968891i \(0.420396\pi\)
\(440\) 6531.62 6810.43i 0.707688 0.737896i
\(441\) 611.395 + 3025.85i 0.0660183 + 0.326730i
\(442\) 6211.44 + 1618.07i 0.668435 + 0.174126i
\(443\) 1277.86 0.137050 0.0685250 0.997649i \(-0.478171\pi\)
0.0685250 + 0.997649i \(0.478171\pi\)
\(444\) −7403.11 4137.78i −0.791298 0.442276i
\(445\) 3903.35i 0.415812i
\(446\) −1173.49 + 4504.80i −0.124589 + 0.478270i
\(447\) 1772.66 0.187571
\(448\) −7583.49 5692.63i −0.799746 0.600338i
\(449\) 2308.64 0.242653 0.121327 0.992613i \(-0.461285\pi\)
0.121327 + 0.992613i \(0.461285\pi\)
\(450\) 559.348 2147.22i 0.0585953 0.224936i
\(451\) 2398.19i 0.250391i
\(452\) 774.123 + 432.677i 0.0805568 + 0.0450252i
\(453\) −7206.98 −0.747491
\(454\) −5307.19 1382.51i −0.548631 0.142918i
\(455\) −14229.1 + 17391.8i −1.46609 + 1.79196i
\(456\) −2954.15 + 3080.25i −0.303379 + 0.316329i
\(457\) 13074.1 1.33825 0.669126 0.743149i \(-0.266669\pi\)
0.669126 + 0.743149i \(0.266669\pi\)
\(458\) 1709.26 6561.50i 0.174385 0.669429i
\(459\) −735.583 −0.0748020
\(460\) 11391.0 20380.2i 1.15459 2.06573i
\(461\) −17759.2 −1.79421 −0.897105 0.441818i \(-0.854334\pi\)
−0.897105 + 0.441818i \(0.854334\pi\)
\(462\) 3634.88 2651.63i 0.366039 0.267024i
\(463\) 8732.94i 0.876575i 0.898835 + 0.438288i \(0.144415\pi\)
−0.898835 + 0.438288i \(0.855585\pi\)
\(464\) −1766.74 + 1086.74i −0.176764 + 0.108730i
\(465\) 2238.58i 0.223250i
\(466\) −225.718 + 866.485i −0.0224381 + 0.0861355i
\(467\) 15464.5i 1.53235i −0.642629 0.766177i \(-0.722156\pi\)
0.642629 0.766177i \(-0.277844\pi\)
\(468\) 5235.23 + 2926.10i 0.517091 + 0.289015i
\(469\) −9345.56 + 11422.8i −0.920123 + 1.12464i
\(470\) 4274.60 16409.3i 0.419516 1.61044i
\(471\) 5348.94i 0.523283i
\(472\) −1690.57 1621.36i −0.164862 0.158112i
\(473\) −15342.1 −1.49140
\(474\) −584.569 + 2244.04i −0.0566459 + 0.217452i
\(475\) 5480.30i 0.529376i
\(476\) 1480.02 + 3755.38i 0.142514 + 0.361613i
\(477\) 1898.25i 0.182212i
\(478\) 11138.0 + 2901.43i 1.06577 + 0.277632i
\(479\) −5255.37 −0.501303 −0.250651 0.968077i \(-0.580645\pi\)
−0.250651 + 0.968077i \(0.580645\pi\)
\(480\) 2312.07 + 7564.69i 0.219856 + 0.719332i
\(481\) 29435.5i 2.79032i
\(482\) 7328.01 + 1908.94i 0.692494 + 0.180393i
\(483\) 7049.20 8616.00i 0.664078 0.811681i
\(484\) 3570.48 + 1995.63i 0.335319 + 0.187418i
\(485\) 8785.22i 0.822507i
\(486\) −665.111 173.260i −0.0620783 0.0161713i
\(487\) 1738.65i 0.161777i −0.996723 0.0808887i \(-0.974224\pi\)
0.996723 0.0808887i \(-0.0257758\pi\)
\(488\) −6671.13 + 6955.89i −0.618828 + 0.645243i
\(489\) 1617.04i 0.149540i
\(490\) −14109.4 783.336i −1.30081 0.0722194i
\(491\) −11634.2 −1.06934 −0.534668 0.845062i \(-0.679563\pi\)
−0.534668 + 0.845062i \(0.679563\pi\)
\(492\) −1754.82 980.813i −0.160800 0.0898749i
\(493\) 882.961 0.0806624
\(494\) −14334.5 3734.11i −1.30555 0.340092i
\(495\) −3753.27 −0.340802
\(496\) 1717.77 + 2792.61i 0.155504 + 0.252807i
\(497\) −2520.31 2062.00i −0.227468 0.186103i
\(498\) 1041.52 3998.19i 0.0937182 0.359765i
\(499\) −1402.31 −0.125804 −0.0629020 0.998020i \(-0.520036\pi\)
−0.0629020 + 0.998020i \(0.520036\pi\)
\(500\) −3848.39 2150.96i −0.344210 0.192388i
\(501\) 4734.51i 0.422200i
\(502\) 9924.44 + 2585.30i 0.882369 + 0.229856i
\(503\) 4445.67 0.394081 0.197040 0.980395i \(-0.436867\pi\)
0.197040 + 0.980395i \(0.436867\pi\)
\(504\) 453.679 + 3744.21i 0.0400961 + 0.330913i
\(505\) 14506.2 1.27825
\(506\) −15701.2 4090.13i −1.37945 0.359344i
\(507\) 14224.8i 1.24605i
\(508\) 1044.94 1869.56i 0.0912635 0.163284i
\(509\) 15335.2 1.33540 0.667701 0.744430i \(-0.267279\pi\)
0.667701 + 0.744430i \(0.267279\pi\)
\(510\) 848.829 3258.48i 0.0736995 0.282918i
\(511\) −14765.8 12080.7i −1.27828 1.04583i
\(512\) −8689.07 7662.76i −0.750012 0.661424i
\(513\) 1697.55 0.146099
\(514\) −16341.4 4256.90i −1.40231 0.365299i
\(515\) 18184.3 1.55591
\(516\) 6274.62 11226.2i 0.535319 0.957766i
\(517\) −11784.0 −1.00244
\(518\) 14954.6 10909.3i 1.26847 0.925345i
\(519\) 6748.11i 0.570730i
\(520\) −19003.2 + 19814.4i −1.60259 + 1.67100i
\(521\) 21237.7i 1.78587i −0.450182 0.892937i \(-0.648641\pi\)
0.450182 0.892937i \(-0.351359\pi\)
\(522\) 798.370 + 207.974i 0.0669419 + 0.0174383i
\(523\) 4014.77i 0.335667i 0.985815 + 0.167833i \(0.0536770\pi\)
−0.985815 + 0.167833i \(0.946323\pi\)
\(524\) 3994.00 7145.86i 0.332974 0.595741i
\(525\) 3748.33 + 3066.71i 0.311601 + 0.254937i
\(526\) 8746.24 + 2278.38i 0.725008 + 0.188863i
\(527\) 1395.66i 0.115363i
\(528\) 4682.19 2880.07i 0.385921 0.237385i
\(529\) −27977.7 −2.29948
\(530\) −8408.85 2190.49i −0.689165 0.179526i
\(531\) 931.682i 0.0761423i
\(532\) −3415.52 8666.51i −0.278349 0.706280i
\(533\) 6977.35i 0.567021i
\(534\) 573.210 2200.44i 0.0464517 0.178319i
\(535\) −26854.2 −2.17011
\(536\) −12481.1 + 13013.9i −1.00579 + 1.04872i
\(537\) 361.968i 0.0290877i
\(538\) −5164.23 + 19824.4i −0.413840 + 1.58865i
\(539\) 1944.95 + 9625.74i 0.155427 + 0.769221i
\(540\) 1535.01 2746.37i 0.122327 0.218861i
\(541\) 21640.5i 1.71978i 0.510482 + 0.859888i \(0.329467\pi\)
−0.510482 + 0.859888i \(0.670533\pi\)
\(542\) −695.912 + 2671.46i −0.0551512 + 0.211714i
\(543\) 10443.6i 0.825371i
\(544\) 1441.48 + 4716.29i 0.113609 + 0.371708i
\(545\) 132.496i 0.0104138i
\(546\) −10575.4 + 7714.72i −0.828910 + 0.604688i
\(547\) 12978.0 1.01444 0.507222 0.861816i \(-0.330672\pi\)
0.507222 + 0.861816i \(0.330672\pi\)
\(548\) −3811.22 2130.18i −0.297093 0.166053i
\(549\) 3833.44 0.298009
\(550\) 1779.38 6830.68i 0.137951 0.529566i
\(551\) −2037.66 −0.157545
\(552\) 9414.32 9816.18i 0.725906 0.756892i
\(553\) −3917.35 3204.99i −0.301234 0.246456i
\(554\) 12439.2 + 3240.40i 0.953957 + 0.248504i
\(555\) −15441.7 −1.18101
\(556\) 6506.36 11640.8i 0.496279 0.887917i
\(557\) 7243.32i 0.551004i 0.961301 + 0.275502i \(0.0888441\pi\)
−0.961301 + 0.275502i \(0.911156\pi\)
\(558\) 328.737 1261.95i 0.0249400 0.0957397i
\(559\) 44636.7 3.37733
\(560\) −17109.6 2310.93i −1.29109 0.174384i
\(561\) −2340.02 −0.176106
\(562\) 5265.31 20212.5i 0.395202 1.51710i
\(563\) 6077.75i 0.454967i 0.973782 + 0.227484i \(0.0730498\pi\)
−0.973782 + 0.227484i \(0.926950\pi\)
\(564\) 4819.44 8622.70i 0.359814 0.643761i
\(565\) 1614.69 0.120231
\(566\) −15166.8 3950.92i −1.12634 0.293409i
\(567\) 949.925 1161.06i 0.0703582 0.0859965i
\(568\) −2871.38 2753.83i −0.212113 0.203430i
\(569\) 3114.53 0.229469 0.114734 0.993396i \(-0.463398\pi\)
0.114734 + 0.993396i \(0.463398\pi\)
\(570\) −1958.89 + 7519.78i −0.143945 + 0.552577i
\(571\) −5473.36 −0.401143 −0.200572 0.979679i \(-0.564280\pi\)
−0.200572 + 0.979679i \(0.564280\pi\)
\(572\) 16654.2 + 9308.43i 1.21739 + 0.680429i
\(573\) −7629.43 −0.556238
\(574\) 3544.81 2585.93i 0.257766 0.188039i
\(575\) 17464.7i 1.26666i
\(576\) 192.502 + 4603.98i 0.0139252 + 0.333042i
\(577\) 7756.21i 0.559610i −0.960057 0.279805i \(-0.909730\pi\)
0.960057 0.279805i \(-0.0902698\pi\)
\(578\) −2973.78 + 11415.8i −0.214002 + 0.821510i
\(579\) 1954.43i 0.140282i
\(580\) −1842.56 + 3296.62i −0.131911 + 0.236008i
\(581\) 6979.50 + 5710.29i 0.498379 + 0.407750i
\(582\) −1290.12 + 4952.49i −0.0918849 + 0.352728i
\(583\) 6038.66i 0.428981i
\(584\) −16822.6 16133.9i −1.19199 1.14320i
\(585\) 10919.8 0.771761
\(586\) 1504.92 5777.08i 0.106088 0.407251i
\(587\) 23258.3i 1.63539i 0.575653 + 0.817694i \(0.304748\pi\)
−0.575653 + 0.817694i \(0.695252\pi\)
\(588\) −7838.86 2513.57i −0.549778 0.176289i
\(589\) 3220.85i 0.225319i
\(590\) −4127.16 1075.12i −0.287987 0.0750201i
\(591\) 15062.9 1.04840
\(592\) 19263.4 11849.2i 1.33737 0.822632i
\(593\) 14831.4i 1.02707i 0.858068 + 0.513536i \(0.171665\pi\)
−0.858068 + 0.513536i \(0.828335\pi\)
\(594\) −2115.83 551.171i −0.146151 0.0380721i
\(595\) 5688.22 + 4653.83i 0.391923 + 0.320653i
\(596\) −2306.30 + 4126.31i −0.158506 + 0.283591i
\(597\) 12497.8i 0.856786i
\(598\) 45681.3 + 11899.9i 3.12382 + 0.813751i
\(599\) 17705.2i 1.20771i 0.797095 + 0.603854i \(0.206369\pi\)
−0.797095 + 0.603854i \(0.793631\pi\)
\(600\) 4270.46 + 4095.64i 0.290568 + 0.278673i
\(601\) 17547.1i 1.19095i 0.803374 + 0.595475i \(0.203036\pi\)
−0.803374 + 0.595475i \(0.796964\pi\)
\(602\) 16543.2 + 22677.5i 1.12001 + 1.53532i
\(603\) 7172.05 0.484359
\(604\) 9376.54 16776.0i 0.631666 1.13014i
\(605\) 7447.44 0.500465
\(606\) 8177.59 + 2130.25i 0.548172 + 0.142798i
\(607\) 9956.82 0.665791 0.332895 0.942964i \(-0.391974\pi\)
0.332895 + 0.942964i \(0.391974\pi\)
\(608\) −3326.60 10884.0i −0.221894 0.725997i
\(609\) −1140.25 + 1393.69i −0.0758705 + 0.0927340i
\(610\) −4423.61 + 16981.3i −0.293617 + 1.12714i
\(611\) 34284.7 2.27007
\(612\) 957.021 1712.25i 0.0632113 0.113094i
\(613\) 11669.9i 0.768908i −0.923144 0.384454i \(-0.874390\pi\)
0.923144 0.384454i \(-0.125610\pi\)
\(614\) 8156.26 + 2124.69i 0.536091 + 0.139651i
\(615\) −3660.27 −0.239994
\(616\) 1443.23 + 11911.0i 0.0943983 + 0.779068i
\(617\) −12179.6 −0.794703 −0.397351 0.917667i \(-0.630071\pi\)
−0.397351 + 0.917667i \(0.630071\pi\)
\(618\) 10251.0 + 2670.38i 0.667244 + 0.173816i
\(619\) 1022.02i 0.0663624i −0.999449 0.0331812i \(-0.989436\pi\)
0.999449 0.0331812i \(-0.0105638\pi\)
\(620\) 5210.84 + 2912.47i 0.337536 + 0.188657i
\(621\) −5409.76 −0.349575
\(622\) −2467.58 + 9472.56i −0.159069 + 0.610635i
\(623\) 3841.23 + 3142.71i 0.247023 + 0.202103i
\(624\) −13622.5 + 8379.34i −0.873934 + 0.537568i
\(625\) −18922.8 −1.21106
\(626\) 11642.7 + 3032.89i 0.743345 + 0.193640i
\(627\) 5400.19 0.343960
\(628\) −12451.0 6959.17i −0.791160 0.442199i
\(629\) −9627.29 −0.610278
\(630\) 4047.09 + 5547.78i 0.255937 + 0.350840i
\(631\) 12954.3i 0.817281i 0.912696 + 0.408640i \(0.133997\pi\)
−0.912696 + 0.408640i \(0.866003\pi\)
\(632\) −4463.02 4280.31i −0.280901 0.269401i
\(633\) 9027.68i 0.566853i
\(634\) 11938.7 + 3110.02i 0.747866 + 0.194818i
\(635\) 3899.59i 0.243702i
\(636\) −4418.65 2469.69i −0.275489 0.153978i
\(637\) −5658.69 28005.4i −0.351971 1.74193i
\(638\) 2539.75 + 661.601i 0.157601 + 0.0410549i
\(639\) 1582.44i 0.0979659i
\(640\) −20616.8 4460.03i −1.27336 0.275466i
\(641\) 14845.7 0.914774 0.457387 0.889268i \(-0.348785\pi\)
0.457387 + 0.889268i \(0.348785\pi\)
\(642\) −15138.5 3943.56i −0.930638 0.242430i
\(643\) 19561.8i 1.19976i −0.800092 0.599878i \(-0.795216\pi\)
0.800092 0.599878i \(-0.204784\pi\)
\(644\) 10884.6 + 27618.5i 0.666016 + 1.68994i
\(645\) 23416.1i 1.42947i
\(646\) −1221.29 + 4688.29i −0.0743824 + 0.285539i
\(647\) −11829.2 −0.718787 −0.359394 0.933186i \(-0.617016\pi\)
−0.359394 + 0.933186i \(0.617016\pi\)
\(648\) 1268.64 1322.79i 0.0769088 0.0801917i
\(649\) 2963.84i 0.179262i
\(650\) −5176.97 + 19873.3i −0.312396 + 1.19922i
\(651\) 2202.95 + 1802.35i 0.132627 + 0.108509i
\(652\) −3764.07 2103.83i −0.226092 0.126369i
\(653\) 26606.4i 1.59447i −0.603671 0.797234i \(-0.706296\pi\)
0.603671 0.797234i \(-0.293704\pi\)
\(654\) 19.4572 74.6922i 0.00116336 0.00446590i
\(655\) 14905.1i 0.889145i
\(656\) 4566.17 2808.71i 0.271767 0.167167i
\(657\) 9271.05i 0.550530i
\(658\) 12706.5 + 17418.2i 0.752815 + 1.03196i
\(659\) −12399.6 −0.732957 −0.366479 0.930426i \(-0.619437\pi\)
−0.366479 + 0.930426i \(0.619437\pi\)
\(660\) 4883.14 8736.67i 0.287994 0.515264i
\(661\) 9888.62 0.581880 0.290940 0.956741i \(-0.406032\pi\)
0.290940 + 0.956741i \(0.406032\pi\)
\(662\) 5949.55 22839.1i 0.349299 1.34089i
\(663\) 6808.10 0.398800
\(664\) 7951.72 + 7626.19i 0.464739 + 0.445713i
\(665\) −13127.0 10739.9i −0.765480 0.626279i
\(666\) −8704.95 2267.62i −0.506471 0.131935i
\(667\) 6493.63 0.376963
\(668\) −11020.7 6159.77i −0.638331 0.356779i
\(669\) 4937.52i 0.285345i
\(670\) −8276.21 + 31770.7i −0.477221 + 1.83195i
\(671\) 12194.8 0.701603
\(672\) −9305.82 3815.30i −0.534196 0.219015i
\(673\) −13089.8 −0.749741 −0.374870 0.927077i \(-0.622313\pi\)
−0.374870 + 0.927077i \(0.622313\pi\)
\(674\) −930.720 + 3572.85i −0.0531899 + 0.204185i
\(675\) 2353.48i 0.134201i
\(676\) −33111.8 18507.0i −1.88392 1.05297i
\(677\) 2437.50 0.138376 0.0691882 0.997604i \(-0.477959\pi\)
0.0691882 + 0.997604i \(0.477959\pi\)
\(678\) 910.253 + 237.119i 0.0515605 + 0.0134314i
\(679\) −8645.40 7073.25i −0.488630 0.399774i
\(680\) 6480.57 + 6215.26i 0.365468 + 0.350507i
\(681\) −5816.98 −0.327323
\(682\) 1045.77 4014.49i 0.0587163 0.225400i
\(683\) −11211.7 −0.628116 −0.314058 0.949404i \(-0.601689\pi\)
−0.314058 + 0.949404i \(0.601689\pi\)
\(684\) −2208.57 + 3951.46i −0.123460 + 0.220889i
\(685\) −7949.58 −0.443413
\(686\) 12130.8 13254.2i 0.675154 0.737677i
\(687\) 7191.78i 0.399394i
\(688\) 17968.3 + 29211.5i 0.995692 + 1.61872i
\(689\) 17569.0i 0.971446i
\(690\) 6242.61 23964.1i 0.344423 1.32217i
\(691\) 7382.53i 0.406432i 0.979134 + 0.203216i \(0.0651394\pi\)
−0.979134 + 0.203216i \(0.934861\pi\)
\(692\) 15707.9 + 8779.54i 0.862897 + 0.482295i
\(693\) 3021.87 3693.54i 0.165644 0.202462i
\(694\) −5798.33 + 22258.6i −0.317149 + 1.21747i
\(695\) 24280.9i 1.32522i
\(696\) −1522.82 + 1587.82i −0.0829344 + 0.0864745i
\(697\) −2282.03 −0.124015
\(698\) 1546.98 5938.54i 0.0838884 0.322030i
\(699\) 949.717i 0.0513900i
\(700\) −12015.2 + 4735.28i −0.648762 + 0.255681i
\(701\) 6460.26i 0.348075i −0.984739 0.174038i \(-0.944319\pi\)
0.984739 0.174038i \(-0.0556815\pi\)
\(702\) 6155.85 + 1603.59i 0.330965 + 0.0862159i
\(703\) 22217.4 1.19196
\(704\) 612.383 + 14646.0i 0.0327842 + 0.784082i
\(705\) 17985.5i 0.960815i
\(706\) −31492.5 8203.75i −1.67881 0.437326i
\(707\) −11679.4 + 14275.3i −0.621286 + 0.759377i
\(708\) −2168.72 1212.15i −0.115121 0.0643439i
\(709\) 20534.5i 1.08772i 0.839178 + 0.543858i \(0.183037\pi\)
−0.839178 + 0.543858i \(0.816963\pi\)
\(710\) −7009.86 1826.06i −0.370529 0.0965221i
\(711\) 2459.60i 0.129736i
\(712\) 4376.30 + 4197.14i 0.230349 + 0.220919i
\(713\) 10264.2i 0.539129i
\(714\) 2523.20 + 3458.82i 0.132253 + 0.181293i
\(715\) 34737.9 1.81696
\(716\) 842.571 + 470.934i 0.0439782 + 0.0245805i
\(717\) 12207.9 0.635859
\(718\) 549.902 + 143.249i 0.0285824 + 0.00744567i
\(719\) 14397.1 0.746760 0.373380 0.927679i \(-0.378199\pi\)
0.373380 + 0.927679i \(0.378199\pi\)
\(720\) 4395.75 + 7146.25i 0.227528 + 0.369896i
\(721\) −14640.7 + 17894.9i −0.756240 + 0.924328i
\(722\) −2072.06 + 7954.23i −0.106806 + 0.410008i
\(723\) 8031.92 0.413154
\(724\) 24310.0 + 13587.5i 1.24789 + 0.697478i
\(725\) 2825.01i 0.144715i
\(726\) 4198.35 + 1093.66i 0.214622 + 0.0559086i
\(727\) 7782.10 0.397004 0.198502 0.980100i \(-0.436392\pi\)
0.198502 + 0.980100i \(0.436392\pi\)
\(728\) −4198.96 34654.0i −0.213769 1.76423i
\(729\) −729.000 −0.0370370
\(730\) −41068.8 10698.4i −2.08223 0.542416i
\(731\) 14599.0i 0.738665i
\(732\) −4987.44 + 8923.28i −0.251832 + 0.450565i
\(733\) 21703.4 1.09363 0.546816 0.837253i \(-0.315840\pi\)
0.546816 + 0.837253i \(0.315840\pi\)
\(734\) 1872.69 7188.89i 0.0941722 0.361508i
\(735\) −14691.4 + 2968.51i −0.737281 + 0.148973i
\(736\) 10601.2 + 34685.4i 0.530933 + 1.73712i
\(737\) 22815.5 1.14033
\(738\) −2063.40 537.513i −0.102920 0.0268105i
\(739\) −19420.2 −0.966692 −0.483346 0.875430i \(-0.660579\pi\)
−0.483346 + 0.875430i \(0.660579\pi\)
\(740\) 20090.2 35944.4i 0.998014 1.78560i
\(741\) −15711.4 −0.778912
\(742\) 8925.86 6511.39i 0.441615 0.322157i
\(743\) 4381.43i 0.216338i 0.994133 + 0.108169i \(0.0344987\pi\)
−0.994133 + 0.108169i \(0.965501\pi\)
\(744\) 2509.81 + 2407.06i 0.123675 + 0.118612i
\(745\) 8606.82i 0.423261i
\(746\) 23028.4 + 5998.86i 1.13020 + 0.294415i
\(747\) 4382.24i 0.214642i
\(748\) 3044.45 5446.97i 0.148818 0.266258i
\(749\) 21621.1 26426.8i 1.05477 1.28920i
\(750\) −4525.13 1178.79i −0.220312 0.0573910i
\(751\) 8316.49i 0.404092i −0.979376 0.202046i \(-0.935241\pi\)
0.979376 0.202046i \(-0.0647591\pi\)
\(752\) 13801.2 + 22436.9i 0.669253 + 1.08802i
\(753\) 10877.8 0.526437
\(754\) −7389.20 1924.88i −0.356895 0.0929706i
\(755\) 34992.1i 1.68674i
\(756\) 1466.77 + 3721.77i 0.0705635 + 0.179047i
\(757\) 5780.62i 0.277543i 0.990324 + 0.138772i \(0.0443154\pi\)
−0.990324 + 0.138772i \(0.955685\pi\)
\(758\) −1487.61 + 5710.62i −0.0712827 + 0.273640i
\(759\) −17209.4 −0.823005
\(760\) −14955.6 14343.3i −0.713810 0.684588i
\(761\) 12785.0i 0.609008i −0.952511 0.304504i \(-0.901509\pi\)
0.952511 0.304504i \(-0.0984906\pi\)
\(762\) 572.659 2198.32i 0.0272247 0.104510i
\(763\) 130.388 + 106.677i 0.00618657 + 0.00506155i
\(764\) 9926.17 17759.4i 0.470048 0.840985i
\(765\) 3571.48i 0.168794i
\(766\) −7658.42 + 29399.1i −0.361240 + 1.38673i
\(767\) 8623.06i 0.405946i
\(768\) −10967.4 5541.85i −0.515300 0.260383i
\(769\) 14960.3i 0.701536i −0.936462 0.350768i \(-0.885921\pi\)
0.936462 0.350768i \(-0.114079\pi\)
\(770\) 12874.5 + 17648.4i 0.602551 + 0.825981i
\(771\) −17911.1 −0.836643
\(772\) −4549.43 2542.79i −0.212095 0.118545i
\(773\) 3423.96 0.159316 0.0796580 0.996822i \(-0.474617\pi\)
0.0796580 + 0.996822i \(0.474617\pi\)
\(774\) 3438.67 13200.4i 0.159691 0.613020i
\(775\) 4465.39 0.206970
\(776\) −9849.67 9446.44i −0.455648 0.436994i
\(777\) 12432.6 15195.9i 0.574024 0.701610i
\(778\) −12759.0 3323.69i −0.587958 0.153162i
\(779\) 5266.38 0.242218
\(780\) −14207.1 + 25418.7i −0.652175 + 1.16684i
\(781\) 5034.00i 0.230641i
\(782\) 3892.02 14940.7i 0.177978 0.683219i
\(783\) 875.059 0.0399388
\(784\) 16049.6 14976.7i 0.731123 0.682246i
\(785\) −25970.7 −1.18081
\(786\) 2188.82 8402.45i 0.0993292 0.381305i
\(787\) 18372.1i 0.832140i 0.909333 + 0.416070i \(0.136593\pi\)
−0.909333 + 0.416070i \(0.863407\pi\)
\(788\) −19597.4 + 35062.6i −0.885949 + 1.58509i
\(789\) 9586.38 0.432553
\(790\) −10895.5 2838.26i −0.490690 0.127824i
\(791\) −1300.04 + 1589.00i −0.0584376 + 0.0714263i
\(792\) 4035.76 4208.03i 0.181066 0.188795i
\(793\) −35479.9 −1.58881
\(794\) 7267.26 27897.5i 0.324818 1.24691i
\(795\) −9216.59 −0.411168
\(796\) −29091.8 16260.1i −1.29539 0.724026i
\(797\) −37654.9 −1.67353 −0.836766 0.547561i \(-0.815556\pi\)
−0.836766 + 0.547561i \(0.815556\pi\)
\(798\) −5822.94 7982.12i −0.258308 0.354090i
\(799\) 11213.3i 0.496492i
\(800\) −15089.6 + 4611.99i −0.666874 + 0.203823i
\(801\) 2411.80i 0.106388i
\(802\) −2858.92 + 10974.8i −0.125875 + 0.483210i
\(803\) 29492.8i 1.29611i
\(804\) −9331.10 + 16694.7i −0.409307 + 0.732311i
\(805\) 41833.3 + 34226.0i 1.83159 + 1.49852i
\(806\) −3042.58 + 11679.8i −0.132966 + 0.510428i
\(807\) 21728.7i 0.947816i
\(808\) −15598.0 + 16263.9i −0.679130 + 0.708119i
\(809\) 33392.4 1.45119 0.725596 0.688121i \(-0.241564\pi\)
0.725596 + 0.688121i \(0.241564\pi\)
\(810\) 841.232 3229.32i 0.0364912 0.140082i
\(811\) 19389.2i 0.839514i −0.907636 0.419757i \(-0.862115\pi\)
0.907636 0.419757i \(-0.137885\pi\)
\(812\) −1760.65 4467.45i −0.0760919 0.193075i
\(813\) 2928.08i 0.126313i
\(814\) −27691.9 7213.70i −1.19239 0.310614i
\(815\) −7851.23 −0.337444
\(816\) 2740.58 + 4455.41i 0.117573 + 0.191140i
\(817\) 33691.0i 1.44271i
\(818\) −37200.4 9690.65i −1.59008 0.414212i
\(819\) −8791.91 + 10746.1i −0.375109 + 0.458483i
\(820\) 4762.14 8520.19i 0.202806 0.362851i
\(821\) 14520.0i 0.617238i 0.951186 + 0.308619i \(0.0998669\pi\)
−0.951186 + 0.308619i \(0.900133\pi\)
\(822\) −4481.42 1167.40i −0.190155 0.0495351i
\(823\) 36026.1i 1.52587i 0.646474 + 0.762936i \(0.276243\pi\)
−0.646474 + 0.762936i \(0.723757\pi\)
\(824\) −19552.9 + 20387.6i −0.826649 + 0.861935i
\(825\) 7486.82i 0.315949i
\(826\) 4380.91 3195.86i 0.184542 0.134623i
\(827\) −10062.5 −0.423105 −0.211553 0.977367i \(-0.567852\pi\)
−0.211553 + 0.977367i \(0.567852\pi\)
\(828\) 7038.30 12592.6i 0.295408 0.528529i
\(829\) 28565.1 1.19675 0.598376 0.801216i \(-0.295813\pi\)
0.598376 + 0.801216i \(0.295813\pi\)
\(830\) 19412.4 + 5056.90i 0.811825 + 0.211479i
\(831\) 13634.1 0.569148
\(832\) −1781.68 42611.5i −0.0742412 1.77559i
\(833\) −9159.53 + 1850.75i −0.380983 + 0.0769804i
\(834\) 3565.67 13687.9i 0.148044 0.568312i
\(835\) −22987.5 −0.952712
\(836\) −7025.84 + 12570.3i −0.290663 + 0.520039i
\(837\) 1383.17i 0.0571200i
\(838\) −27732.9 7224.38i −1.14322 0.297807i
\(839\) 4665.37 0.191974 0.0959872 0.995383i \(-0.469399\pi\)
0.0959872 + 0.995383i \(0.469399\pi\)
\(840\) −18179.3 + 2202.75i −0.746719 + 0.0904786i
\(841\) 23338.6 0.956932
\(842\) 17685.4 + 4607.02i 0.723848 + 0.188561i
\(843\) 22154.0i 0.905130i
\(844\) 21014.2 + 11745.3i 0.857035 + 0.479018i
\(845\) −69065.9 −2.81176
\(846\) 2641.19 10139.0i 0.107336 0.412040i
\(847\) −5996.17 + 7328.91i −0.243248 + 0.297313i
\(848\) 11497.7 7072.35i 0.465603 0.286398i
\(849\) −16623.6 −0.671993
\(850\) 6499.84 + 1693.20i 0.262285 + 0.0683249i
\(851\) −70802.7 −2.85204
\(852\) −3683.51 2058.81i −0.148116 0.0827859i
\(853\) −10456.2 −0.419710 −0.209855 0.977733i \(-0.567299\pi\)
−0.209855 + 0.977733i \(0.567299\pi\)
\(854\) −13149.5 18025.4i −0.526892 0.722267i
\(855\) 8242.11i 0.329677i
\(856\) 28875.4 30107.9i 1.15297 1.20218i
\(857\) 33383.4i 1.33064i 0.746560 + 0.665318i \(0.231704\pi\)
−0.746560 + 0.665318i \(0.768296\pi\)
\(858\) 19582.8 + 5101.29i 0.779191 + 0.202978i
\(859\) 42587.8i 1.69159i −0.533508 0.845795i \(-0.679127\pi\)
0.533508 0.845795i \(-0.320873\pi\)
\(860\) 54506.8 + 30465.2i 2.16124 + 1.20797i
\(861\) 2947.00 3602.02i 0.116647 0.142574i
\(862\) 4752.09 + 1237.91i 0.187769 + 0.0489135i
\(863\) 43036.7i 1.69755i −0.528754 0.848775i \(-0.677341\pi\)
0.528754 0.848775i \(-0.322659\pi\)
\(864\) 1428.58 + 4674.08i 0.0562516 + 0.184046i
\(865\) 32764.1 1.28788
\(866\) −8828.48 2299.80i −0.346425 0.0902431i
\(867\) 12512.3i 0.490128i
\(868\) −7061.53 + 2782.99i −0.276133 + 0.108826i
\(869\) 7824.41i 0.305437i
\(870\) −1009.78 + 3876.33i −0.0393502 + 0.151057i
\(871\) −66380.0 −2.58232
\(872\) 148.550 + 142.469i 0.00576897 + 0.00553280i
\(873\) 5428.22i 0.210444i
\(874\) −8981.84 + 34479.4i −0.347615 + 1.33442i
\(875\) 6462.88 7899.36i 0.249697 0.305197i
\(876\) −21580.7 12062.0i −0.832355 0.465224i
\(877\) 33124.9i 1.27542i 0.770275 + 0.637712i \(0.220119\pi\)
−0.770275 + 0.637712i \(0.779881\pi\)
\(878\) −3246.16 + 12461.4i −0.124775 + 0.478987i
\(879\) 6332.02i 0.242973i
\(880\) 13983.6 + 22733.5i 0.535668 + 0.870846i
\(881\) 5619.22i 0.214888i 0.994211 + 0.107444i \(0.0342667\pi\)
−0.994211 + 0.107444i \(0.965733\pi\)
\(882\) −8717.93 484.008i −0.332821 0.0184778i
\(883\) 17687.6 0.674104 0.337052 0.941486i \(-0.390570\pi\)
0.337052 + 0.941486i \(0.390570\pi\)
\(884\) −8857.58 + 15847.5i −0.337005 + 0.602953i
\(885\) −4523.60 −0.171818
\(886\) −911.123 + 3497.62i −0.0345483 + 0.132624i
\(887\) −31280.9 −1.18411 −0.592057 0.805896i \(-0.701684\pi\)
−0.592057 + 0.805896i \(0.701684\pi\)
\(888\) 16603.9 17312.7i 0.627467 0.654251i
\(889\) 3837.53 + 3139.69i 0.144777 + 0.118450i
\(890\) 10683.8 + 2783.11i 0.402384 + 0.104820i
\(891\) −2319.07 −0.0871963
\(892\) −11493.3 6423.90i −0.431417 0.241130i
\(893\) 25877.5i 0.969718i
\(894\) −1263.92 + 4851.93i −0.0472838 + 0.181513i
\(895\) 1757.47 0.0656376
\(896\) 20988.3 16697.8i 0.782555 0.622582i
\(897\) 50069.3 1.86373
\(898\) −1646.07 + 6318.93i −0.0611694 + 0.234817i
\(899\) 1660.30i 0.0615952i
\(900\) 5478.31 + 3061.96i 0.202900 + 0.113406i
\(901\) −5746.18 −0.212467
\(902\) −6564.04 1709.92i −0.242305 0.0631199i
\(903\) 23043.4 + 18853.0i 0.849211 + 0.694783i
\(904\) −1736.23 + 1810.34i −0.0638783 + 0.0666050i
\(905\) 50706.7 1.86248
\(906\) 5138.61 19726.1i 0.188432 0.723351i
\(907\) 28165.6 1.03112 0.515558 0.856854i \(-0.327585\pi\)
0.515558 + 0.856854i \(0.327585\pi\)
\(908\) 7568.11 13540.5i 0.276604 0.494886i
\(909\) 8963.11 0.327049
\(910\) −37457.3 51346.8i −1.36450 1.87047i
\(911\) 18281.3i 0.664858i 0.943128 + 0.332429i \(0.107868\pi\)
−0.943128 + 0.332429i \(0.892132\pi\)
\(912\) −6324.58 10282.0i −0.229636 0.373323i
\(913\) 13940.7i 0.505332i
\(914\) −9321.91 + 35784.9i −0.337354 + 1.29503i
\(915\) 18612.5i 0.672470i
\(916\) 16740.6 + 9356.76i 0.603850 + 0.337507i
\(917\) 14667.9 + 12000.6i 0.528218 + 0.432163i
\(918\) 524.475 2013.35i 0.0188565 0.0723862i
\(919\) 13911.2i 0.499334i −0.968332 0.249667i \(-0.919679\pi\)
0.968332 0.249667i \(-0.0803212\pi\)
\(920\) 47660.6 + 45709.4i 1.70796 + 1.63804i
\(921\) 8939.72 0.319841
\(922\) 12662.4 48608.5i 0.452294 1.73627i
\(923\) 14646.0i 0.522297i
\(924\) 4666.06 + 11839.6i 0.166128 + 0.421530i
\(925\) 30802.2i 1.09489i
\(926\) −23902.8 6226.64i −0.848266 0.220972i
\(927\) 11235.7 0.398090
\(928\) −1714.81 5610.56i −0.0606587 0.198465i
\(929\) 17100.5i 0.603928i 0.953319 + 0.301964i \(0.0976422\pi\)
−0.953319 + 0.301964i \(0.902358\pi\)
\(930\) 6127.17 + 1596.12i 0.216041 + 0.0562782i
\(931\) 21138.0 4271.08i 0.744112 0.150353i
\(932\) −2210.70 1235.62i −0.0776974 0.0434270i
\(933\) 10382.5i 0.364316i
\(934\) 42327.5 + 11026.2i 1.48287 + 0.386284i
\(935\) 11361.5i 0.397391i
\(936\) −11741.7 + 12242.9i −0.410033 + 0.427535i
\(937\) 2136.03i 0.0744727i −0.999306 0.0372364i \(-0.988145\pi\)
0.999306 0.0372364i \(-0.0118554\pi\)
\(938\) −24601.6 33724.1i −0.856366 1.17391i
\(939\) 12761.0 0.443493
\(940\) 41865.8 + 23399.8i 1.45267 + 0.811935i
\(941\) −23551.2 −0.815883 −0.407941 0.913008i \(-0.633753\pi\)
−0.407941 + 0.913008i \(0.633753\pi\)
\(942\) −14640.5 3813.82i −0.506383 0.131912i
\(943\) −16782.9 −0.579563
\(944\) 5643.17 3471.18i 0.194565 0.119679i
\(945\) 5637.31 + 4612.18i 0.194055 + 0.158766i
\(946\) 10939.0 41992.6i 0.375959 1.44323i
\(947\) 12852.6 0.441028 0.220514 0.975384i \(-0.429227\pi\)
0.220514 + 0.975384i \(0.429227\pi\)
\(948\) −5725.33 3200.03i −0.196150 0.109633i
\(949\) 85807.0i 2.93510i
\(950\) −15000.0 3907.49i −0.512280 0.133448i
\(951\) 13085.5 0.446190
\(952\) −11334.1 + 1373.33i −0.385860 + 0.0467540i
\(953\) 1149.91 0.0390862 0.0195431 0.999809i \(-0.493779\pi\)
0.0195431 + 0.999809i \(0.493779\pi\)
\(954\) −5195.67 1353.46i −0.176327 0.0459329i
\(955\) 37043.2i 1.25517i
\(956\) −15882.9 + 28416.9i −0.537332 + 0.961367i
\(957\) 2783.71 0.0940278
\(958\) 3747.11 14384.4i 0.126371 0.485113i
\(959\) 6400.45 7823.06i 0.215518 0.263420i
\(960\) −22353.7 + 934.658i −0.751524 + 0.0314229i
\(961\) −27166.6 −0.911907
\(962\) 80567.5 + 20987.7i 2.70021 + 0.703400i
\(963\) −16592.7 −0.555235
\(964\) −10449.8 + 18696.3i −0.349135 + 0.624655i
\(965\) −9489.36 −0.316553
\(966\) 18556.6 + 25437.5i 0.618063 + 0.847245i
\(967\) 25298.5i 0.841309i 0.907221 + 0.420654i \(0.138199\pi\)
−0.907221 + 0.420654i \(0.861801\pi\)
\(968\) −8007.98 + 8349.80i −0.265895 + 0.277245i
\(969\) 5138.63i 0.170358i
\(970\) −24045.9 6263.91i −0.795945 0.207342i
\(971\) 47322.4i 1.56400i 0.623275 + 0.782002i \(0.285802\pi\)
−0.623275 + 0.782002i \(0.714198\pi\)
\(972\) 948.456 1696.93i 0.0312981 0.0559969i
\(973\) 23894.5 + 19549.3i 0.787278 + 0.644113i
\(974\) 4758.82 + 1239.67i 0.156553 + 0.0407818i
\(975\) 21782.3i 0.715479i
\(976\) −14282.3 23219.0i −0.468407 0.761499i
\(977\) −10030.5 −0.328458 −0.164229 0.986422i \(-0.552514\pi\)
−0.164229 + 0.986422i \(0.552514\pi\)
\(978\) −4425.98 1152.96i −0.144711 0.0376969i
\(979\) 7672.36i 0.250470i
\(980\) 12204.1 38060.1i 0.397803 1.24060i
\(981\) 81.8669i 0.00266443i
\(982\) 8295.24 31843.8i 0.269564 1.03480i
\(983\) −20421.9 −0.662624 −0.331312 0.943521i \(-0.607491\pi\)
−0.331312 + 0.943521i \(0.607491\pi\)
\(984\) 3935.76 4103.76i 0.127508 0.132950i
\(985\) 73134.9i 2.36576i
\(986\) −629.556 + 2416.74i −0.0203338 + 0.0780574i
\(987\) 17699.3 + 14480.7i 0.570795 + 0.466997i
\(988\) 20441.1 36572.3i 0.658218 1.17765i
\(989\) 107367.i 3.45203i
\(990\) 2676.10 10273.0i 0.0859112 0.329796i
\(991\) 43423.7i 1.39193i 0.718077 + 0.695964i \(0.245023\pi\)
−0.718077 + 0.695964i \(0.754977\pi\)
\(992\) −8868.40 + 2710.53i −0.283843 + 0.0867535i
\(993\) 25033.0i 0.799998i
\(994\) 7440.85 5428.08i 0.237434 0.173208i
\(995\) −60680.7 −1.93337
\(996\) 10200.8 + 5701.46i 0.324521 + 0.181383i
\(997\) −36227.1 −1.15078 −0.575388 0.817881i \(-0.695149\pi\)
−0.575388 + 0.817881i \(0.695149\pi\)
\(998\) 999.857 3838.25i 0.0317134 0.121741i
\(999\) −9541.12 −0.302170
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.p.a.139.24 yes 48
4.3 odd 2 672.4.p.a.559.43 48
7.6 odd 2 inner 168.4.p.a.139.23 yes 48
8.3 odd 2 inner 168.4.p.a.139.22 yes 48
8.5 even 2 672.4.p.a.559.11 48
28.27 even 2 672.4.p.a.559.12 48
56.13 odd 2 672.4.p.a.559.44 48
56.27 even 2 inner 168.4.p.a.139.21 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.p.a.139.21 48 56.27 even 2 inner
168.4.p.a.139.22 yes 48 8.3 odd 2 inner
168.4.p.a.139.23 yes 48 7.6 odd 2 inner
168.4.p.a.139.24 yes 48 1.1 even 1 trivial
672.4.p.a.559.11 48 8.5 even 2
672.4.p.a.559.12 48 28.27 even 2
672.4.p.a.559.43 48 4.3 odd 2
672.4.p.a.559.44 48 56.13 odd 2