Newspace parameters
| Level: | \( N \) | = | \( 168 = 2^{3} \cdot 3 \cdot 7 \) |
| Weight: | \( k \) | = | \( 2 \) |
| Character orbit: | \([\chi]\) | = | 168.j (of order \(2\) and degree \(1\)) |
Newform invariants
| Self dual: | No |
| Analytic conductor: | \(1.34148675396\) |
| Analytic rank: | \(0\) |
| Dimension: | \(4\) |
| Coefficient field: | \(\Q(i, \sqrt{5})\) |
| Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
| Coefficient ring index: | \( 2 \) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 3 x^{2} + 1\):
| \(\beta_{0}\) | \(=\) | \( 1 \) |
| \(\beta_{1}\) | \(=\) | \( \nu^{2} + \nu + 1 \) |
| \(\beta_{2}\) | \(=\) | \( \nu^{3} + 2 \nu \) |
| \(\beta_{3}\) | \(=\) | \( -\nu^{2} + \nu - 1 \) |
| \(1\) | \(=\) | \(\beta_0\) |
| \(\nu\) | \(=\) | \((\)\(\beta_{3} + \beta_{1}\)\()/2\) |
| \(\nu^{2}\) | \(=\) | \((\)\(-\beta_{3} + \beta_{1} - 2\)\()/2\) |
| \(\nu^{3}\) | \(=\) | \(-\beta_{3} + \beta_{2} - \beta_{1}\) |
Character Values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).
| \(n\) | \(73\) | \(85\) | \(113\) | \(127\) |
| \(\chi(n)\) | \(1\) | \(-1\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 155.1 |
|
−1.00000 | − | 1.00000i | −1.61803 | − | 0.618034i | 2.00000i | 3.23607 | 1.00000 | + | 2.23607i | 1.00000i | 2.00000 | − | 2.00000i | 2.23607 | + | 2.00000i | −3.23607 | − | 3.23607i | ||||||||||||||||||
| 155.2 | −1.00000 | − | 1.00000i | 0.618034 | + | 1.61803i | 2.00000i | −1.23607 | 1.00000 | − | 2.23607i | 1.00000i | 2.00000 | − | 2.00000i | −2.23607 | + | 2.00000i | 1.23607 | + | 1.23607i | |||||||||||||||||||
| 155.3 | −1.00000 | + | 1.00000i | −1.61803 | + | 0.618034i | − | 2.00000i | 3.23607 | 1.00000 | − | 2.23607i | − | 1.00000i | 2.00000 | + | 2.00000i | 2.23607 | − | 2.00000i | −3.23607 | + | 3.23607i | |||||||||||||||||
| 155.4 | −1.00000 | + | 1.00000i | 0.618034 | − | 1.61803i | − | 2.00000i | −1.23607 | 1.00000 | + | 2.23607i | − | 1.00000i | 2.00000 | + | 2.00000i | −2.23607 | − | 2.00000i | 1.23607 | − | 1.23607i | |||||||||||||||||
Inner twists
| Char. orbit | Parity | Mult. | Self Twist | Proved |
|---|---|---|---|---|
| 1.a | Even | 1 | trivial | yes |
| 24.f | Even | 1 | yes |
Hecke kernels
This newform can be constructed as the kernel of the linear operator \( T_{5}^{2} - 2 T_{5} - 4 \) acting on \(S_{2}^{\mathrm{new}}(168, [\chi])\).