Properties

Label 1674.2.h.b.397.4
Level $1674$
Weight $2$
Character 1674.397
Analytic conductor $13.367$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1674,2,Mod(253,1674)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1674.253"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1674, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1674 = 2 \cdot 3^{3} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1674.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.3669572984\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 558)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 397.4
Character \(\chi\) \(=\) 1674.397
Dual form 1674.2.h.b.253.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} -2.76129 q^{5} +0.562243 q^{7} -1.00000 q^{8} +(-1.38064 + 2.39134i) q^{10} +(-1.99593 - 3.45705i) q^{11} -1.47038 q^{13} +(0.281122 - 0.486917i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(1.03355 + 1.79016i) q^{17} +(1.45518 + 2.52045i) q^{19} +(1.38064 + 2.39134i) q^{20} -3.99186 q^{22} +(1.12187 + 1.94313i) q^{23} +2.62470 q^{25} +(-0.735188 + 1.27338i) q^{26} +(-0.281122 - 0.486917i) q^{28} +(-2.14333 + 3.71236i) q^{29} +(-5.47232 + 1.02653i) q^{31} +(0.500000 + 0.866025i) q^{32} +2.06710 q^{34} -1.55251 q^{35} +(1.82864 + 3.16730i) q^{37} +2.91037 q^{38} +2.76129 q^{40} +6.23850 q^{41} +11.7512 q^{43} +(-1.99593 + 3.45705i) q^{44} +2.24373 q^{46} +(-2.96852 + 5.14163i) q^{47} -6.68388 q^{49} +(1.31235 - 2.27306i) q^{50} +(0.735188 + 1.27338i) q^{52} +(-0.731740 + 1.26741i) q^{53} +(5.51133 + 9.54590i) q^{55} -0.562243 q^{56} +(2.14333 + 3.71236i) q^{58} +(-0.635617 + 1.10092i) q^{59} +(-6.92283 + 11.9907i) q^{61} +(-1.84716 + 5.25243i) q^{62} +1.00000 q^{64} +4.06013 q^{65} +5.68951 q^{67} +(1.03355 - 1.79016i) q^{68} +(-0.776257 + 1.34452i) q^{70} +(-2.14830 + 3.72096i) q^{71} +(-4.67244 + 8.09290i) q^{73} +3.65728 q^{74} +(1.45518 - 2.52045i) q^{76} +(-1.12220 - 1.94370i) q^{77} -1.03225 q^{79} +(1.38064 - 2.39134i) q^{80} +(3.11925 - 5.40270i) q^{82} +(-1.02216 - 1.77044i) q^{83} +(-2.85393 - 4.94316i) q^{85} +(5.87561 - 10.1769i) q^{86} +(1.99593 + 3.45705i) q^{88} +3.63785 q^{89} -0.826708 q^{91} +(1.12187 - 1.94313i) q^{92} +(2.96852 + 5.14163i) q^{94} +(-4.01818 - 6.95968i) q^{95} +(-7.94907 + 13.7682i) q^{97} +(-3.34194 + 5.78841i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{2} - 16 q^{4} - 2 q^{5} - 2 q^{7} - 32 q^{8} - q^{10} + 2 q^{11} + 20 q^{13} - q^{14} - 16 q^{16} + 4 q^{17} + 4 q^{19} + q^{20} + 4 q^{22} + q^{23} + 38 q^{25} + 10 q^{26} + q^{28} + 3 q^{29}+ \cdots + 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1674\mathbb{Z}\right)^\times\).

\(n\) \(1055\) \(1243\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −2.76129 −1.23488 −0.617442 0.786616i \(-0.711831\pi\)
−0.617442 + 0.786616i \(0.711831\pi\)
\(6\) 0 0
\(7\) 0.562243 0.212508 0.106254 0.994339i \(-0.466114\pi\)
0.106254 + 0.994339i \(0.466114\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.38064 + 2.39134i −0.436598 + 0.756209i
\(11\) −1.99593 3.45705i −0.601795 1.04234i −0.992549 0.121844i \(-0.961119\pi\)
0.390754 0.920495i \(-0.372214\pi\)
\(12\) 0 0
\(13\) −1.47038 −0.407809 −0.203904 0.978991i \(-0.565363\pi\)
−0.203904 + 0.978991i \(0.565363\pi\)
\(14\) 0.281122 0.486917i 0.0751329 0.130134i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.03355 + 1.79016i 0.250673 + 0.434179i 0.963711 0.266946i \(-0.0860147\pi\)
−0.713038 + 0.701125i \(0.752681\pi\)
\(18\) 0 0
\(19\) 1.45518 + 2.52045i 0.333842 + 0.578231i 0.983262 0.182199i \(-0.0583215\pi\)
−0.649420 + 0.760430i \(0.724988\pi\)
\(20\) 1.38064 + 2.39134i 0.308721 + 0.534721i
\(21\) 0 0
\(22\) −3.99186 −0.851067
\(23\) 1.12187 + 1.94313i 0.233925 + 0.405170i 0.958960 0.283542i \(-0.0915096\pi\)
−0.725035 + 0.688712i \(0.758176\pi\)
\(24\) 0 0
\(25\) 2.62470 0.524940
\(26\) −0.735188 + 1.27338i −0.144182 + 0.249731i
\(27\) 0 0
\(28\) −0.281122 0.486917i −0.0531270 0.0920186i
\(29\) −2.14333 + 3.71236i −0.398007 + 0.689368i −0.993480 0.114007i \(-0.963631\pi\)
0.595473 + 0.803375i \(0.296965\pi\)
\(30\) 0 0
\(31\) −5.47232 + 1.02653i −0.982857 + 0.184370i
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 2.06710 0.354505
\(35\) −1.55251 −0.262423
\(36\) 0 0
\(37\) 1.82864 + 3.16730i 0.300627 + 0.520701i 0.976278 0.216520i \(-0.0694708\pi\)
−0.675651 + 0.737221i \(0.736137\pi\)
\(38\) 2.91037 0.472124
\(39\) 0 0
\(40\) 2.76129 0.436598
\(41\) 6.23850 0.974289 0.487145 0.873321i \(-0.338038\pi\)
0.487145 + 0.873321i \(0.338038\pi\)
\(42\) 0 0
\(43\) 11.7512 1.79205 0.896023 0.444008i \(-0.146444\pi\)
0.896023 + 0.444008i \(0.146444\pi\)
\(44\) −1.99593 + 3.45705i −0.300897 + 0.521170i
\(45\) 0 0
\(46\) 2.24373 0.330820
\(47\) −2.96852 + 5.14163i −0.433003 + 0.749983i −0.997130 0.0757045i \(-0.975879\pi\)
0.564127 + 0.825688i \(0.309213\pi\)
\(48\) 0 0
\(49\) −6.68388 −0.954840
\(50\) 1.31235 2.27306i 0.185594 0.321459i
\(51\) 0 0
\(52\) 0.735188 + 1.27338i 0.101952 + 0.176586i
\(53\) −0.731740 + 1.26741i −0.100512 + 0.174092i −0.911896 0.410422i \(-0.865381\pi\)
0.811384 + 0.584514i \(0.198715\pi\)
\(54\) 0 0
\(55\) 5.51133 + 9.54590i 0.743147 + 1.28717i
\(56\) −0.562243 −0.0751329
\(57\) 0 0
\(58\) 2.14333 + 3.71236i 0.281433 + 0.487457i
\(59\) −0.635617 + 1.10092i −0.0827503 + 0.143328i −0.904430 0.426621i \(-0.859704\pi\)
0.821680 + 0.569949i \(0.193037\pi\)
\(60\) 0 0
\(61\) −6.92283 + 11.9907i −0.886378 + 1.53525i −0.0422512 + 0.999107i \(0.513453\pi\)
−0.844126 + 0.536144i \(0.819880\pi\)
\(62\) −1.84716 + 5.25243i −0.234589 + 0.667059i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 4.06013 0.503597
\(66\) 0 0
\(67\) 5.68951 0.695084 0.347542 0.937664i \(-0.387016\pi\)
0.347542 + 0.937664i \(0.387016\pi\)
\(68\) 1.03355 1.79016i 0.125337 0.217089i
\(69\) 0 0
\(70\) −0.776257 + 1.34452i −0.0927804 + 0.160700i
\(71\) −2.14830 + 3.72096i −0.254956 + 0.441596i −0.964884 0.262678i \(-0.915394\pi\)
0.709928 + 0.704275i \(0.248728\pi\)
\(72\) 0 0
\(73\) −4.67244 + 8.09290i −0.546868 + 0.947202i 0.451619 + 0.892211i \(0.350847\pi\)
−0.998487 + 0.0549916i \(0.982487\pi\)
\(74\) 3.65728 0.425151
\(75\) 0 0
\(76\) 1.45518 2.52045i 0.166921 0.289116i
\(77\) −1.12220 1.94370i −0.127886 0.221505i
\(78\) 0 0
\(79\) −1.03225 −0.116137 −0.0580686 0.998313i \(-0.518494\pi\)
−0.0580686 + 0.998313i \(0.518494\pi\)
\(80\) 1.38064 2.39134i 0.154361 0.267360i
\(81\) 0 0
\(82\) 3.11925 5.40270i 0.344463 0.596628i
\(83\) −1.02216 1.77044i −0.112197 0.194331i 0.804459 0.594009i \(-0.202455\pi\)
−0.916656 + 0.399677i \(0.869122\pi\)
\(84\) 0 0
\(85\) −2.85393 4.94316i −0.309552 0.536161i
\(86\) 5.87561 10.1769i 0.633584 1.09740i
\(87\) 0 0
\(88\) 1.99593 + 3.45705i 0.212767 + 0.368523i
\(89\) 3.63785 0.385611 0.192805 0.981237i \(-0.438241\pi\)
0.192805 + 0.981237i \(0.438241\pi\)
\(90\) 0 0
\(91\) −0.826708 −0.0866626
\(92\) 1.12187 1.94313i 0.116963 0.202585i
\(93\) 0 0
\(94\) 2.96852 + 5.14163i 0.306179 + 0.530318i
\(95\) −4.01818 6.95968i −0.412256 0.714049i
\(96\) 0 0
\(97\) −7.94907 + 13.7682i −0.807106 + 1.39795i 0.107754 + 0.994178i \(0.465634\pi\)
−0.914860 + 0.403771i \(0.867699\pi\)
\(98\) −3.34194 + 5.78841i −0.337587 + 0.584718i
\(99\) 0 0
\(100\) −1.31235 2.27306i −0.131235 0.227306i
\(101\) −1.05409 + 1.82574i −0.104886 + 0.181668i −0.913692 0.406408i \(-0.866781\pi\)
0.808806 + 0.588076i \(0.200114\pi\)
\(102\) 0 0
\(103\) −11.7855 −1.16126 −0.580630 0.814168i \(-0.697194\pi\)
−0.580630 + 0.814168i \(0.697194\pi\)
\(104\) 1.47038 0.144182
\(105\) 0 0
\(106\) 0.731740 + 1.26741i 0.0710728 + 0.123102i
\(107\) 3.06844 + 5.31470i 0.296638 + 0.513792i 0.975365 0.220599i \(-0.0708013\pi\)
−0.678727 + 0.734391i \(0.737468\pi\)
\(108\) 0 0
\(109\) 12.8643 1.23218 0.616088 0.787677i \(-0.288716\pi\)
0.616088 + 0.787677i \(0.288716\pi\)
\(110\) 11.0227 1.05097
\(111\) 0 0
\(112\) −0.281122 + 0.486917i −0.0265635 + 0.0460093i
\(113\) 13.7198 1.29065 0.645323 0.763910i \(-0.276723\pi\)
0.645323 + 0.763910i \(0.276723\pi\)
\(114\) 0 0
\(115\) −3.09779 5.36553i −0.288871 0.500338i
\(116\) 4.28667 0.398007
\(117\) 0 0
\(118\) 0.635617 + 1.10092i 0.0585133 + 0.101348i
\(119\) 0.581108 + 1.00651i 0.0532700 + 0.0922664i
\(120\) 0 0
\(121\) −2.46746 + 4.27376i −0.224314 + 0.388524i
\(122\) 6.92283 + 11.9907i 0.626764 + 1.08559i
\(123\) 0 0
\(124\) 3.62516 + 4.22590i 0.325549 + 0.379497i
\(125\) 6.55889 0.586645
\(126\) 0 0
\(127\) −3.57207 6.18701i −0.316970 0.549008i 0.662884 0.748722i \(-0.269332\pi\)
−0.979854 + 0.199714i \(0.935999\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 2.03006 3.51617i 0.178048 0.308389i
\(131\) 1.74226 3.01768i 0.152222 0.263656i −0.779822 0.626001i \(-0.784691\pi\)
0.932044 + 0.362345i \(0.118024\pi\)
\(132\) 0 0
\(133\) 0.818166 + 1.41711i 0.0709440 + 0.122879i
\(134\) 2.84476 4.92726i 0.245749 0.425651i
\(135\) 0 0
\(136\) −1.03355 1.79016i −0.0886264 0.153505i
\(137\) 0.834449 + 1.44531i 0.0712918 + 0.123481i 0.899468 0.436987i \(-0.143955\pi\)
−0.828176 + 0.560468i \(0.810621\pi\)
\(138\) 0 0
\(139\) −8.28078 14.3427i −0.702366 1.21653i −0.967634 0.252359i \(-0.918793\pi\)
0.265267 0.964175i \(-0.414540\pi\)
\(140\) 0.776257 + 1.34452i 0.0656057 + 0.113632i
\(141\) 0 0
\(142\) 2.14830 + 3.72096i 0.180281 + 0.312256i
\(143\) 2.93476 + 5.08316i 0.245417 + 0.425075i
\(144\) 0 0
\(145\) 5.91835 10.2509i 0.491493 0.851290i
\(146\) 4.67244 + 8.09290i 0.386694 + 0.669773i
\(147\) 0 0
\(148\) 1.82864 3.16730i 0.150313 0.260350i
\(149\) −6.37166 + 11.0360i −0.521987 + 0.904108i 0.477686 + 0.878531i \(0.341476\pi\)
−0.999673 + 0.0255774i \(0.991858\pi\)
\(150\) 0 0
\(151\) −2.16532 + 3.75045i −0.176212 + 0.305207i −0.940580 0.339573i \(-0.889718\pi\)
0.764368 + 0.644780i \(0.223051\pi\)
\(152\) −1.45518 2.52045i −0.118031 0.204436i
\(153\) 0 0
\(154\) −2.24439 −0.180858
\(155\) 15.1106 2.83455i 1.21371 0.227676i
\(156\) 0 0
\(157\) −11.0809 19.1927i −0.884353 1.53174i −0.846454 0.532463i \(-0.821267\pi\)
−0.0378993 0.999282i \(-0.512067\pi\)
\(158\) −0.516125 + 0.893955i −0.0410607 + 0.0711192i
\(159\) 0 0
\(160\) −1.38064 2.39134i −0.109149 0.189052i
\(161\) 0.630761 + 1.09251i 0.0497109 + 0.0861019i
\(162\) 0 0
\(163\) 1.82322 0.142806 0.0714029 0.997448i \(-0.477252\pi\)
0.0714029 + 0.997448i \(0.477252\pi\)
\(164\) −3.11925 5.40270i −0.243572 0.421880i
\(165\) 0 0
\(166\) −2.04433 −0.158671
\(167\) −3.20854 + 5.55736i −0.248285 + 0.430041i −0.963050 0.269323i \(-0.913200\pi\)
0.714765 + 0.699364i \(0.246533\pi\)
\(168\) 0 0
\(169\) −10.8380 −0.833692
\(170\) −5.70787 −0.437773
\(171\) 0 0
\(172\) −5.87561 10.1769i −0.448011 0.775978i
\(173\) −10.5109 18.2054i −0.799127 1.38413i −0.920185 0.391483i \(-0.871962\pi\)
0.121059 0.992645i \(-0.461371\pi\)
\(174\) 0 0
\(175\) 1.47572 0.111554
\(176\) 3.99186 0.300897
\(177\) 0 0
\(178\) 1.81892 3.15047i 0.136334 0.236137i
\(179\) −7.59632 13.1572i −0.567775 0.983416i −0.996786 0.0801160i \(-0.974471\pi\)
0.429010 0.903300i \(-0.358862\pi\)
\(180\) 0 0
\(181\) −1.37767 + 2.38619i −0.102401 + 0.177364i −0.912674 0.408689i \(-0.865986\pi\)
0.810272 + 0.586054i \(0.199319\pi\)
\(182\) −0.413354 + 0.715950i −0.0306398 + 0.0530698i
\(183\) 0 0
\(184\) −1.12187 1.94313i −0.0827050 0.143249i
\(185\) −5.04940 8.74582i −0.371239 0.643005i
\(186\) 0 0
\(187\) 4.12579 7.14608i 0.301708 0.522573i
\(188\) 5.93704 0.433003
\(189\) 0 0
\(190\) −8.03635 −0.583018
\(191\) 8.80426 + 15.2494i 0.637054 + 1.10341i 0.986076 + 0.166295i \(0.0531805\pi\)
−0.349022 + 0.937115i \(0.613486\pi\)
\(192\) 0 0
\(193\) −2.11290 + 3.65965i −0.152090 + 0.263428i −0.931996 0.362469i \(-0.881934\pi\)
0.779906 + 0.625897i \(0.215267\pi\)
\(194\) 7.94907 + 13.7682i 0.570710 + 0.988499i
\(195\) 0 0
\(196\) 3.34194 + 5.78841i 0.238710 + 0.413458i
\(197\) 11.0548 19.1475i 0.787624 1.36421i −0.139794 0.990181i \(-0.544644\pi\)
0.927419 0.374025i \(-0.122022\pi\)
\(198\) 0 0
\(199\) −4.22595 + 7.31956i −0.299570 + 0.518870i −0.976038 0.217602i \(-0.930176\pi\)
0.676468 + 0.736472i \(0.263510\pi\)
\(200\) −2.62470 −0.185594
\(201\) 0 0
\(202\) 1.05409 + 1.82574i 0.0741655 + 0.128458i
\(203\) −1.20507 + 2.08725i −0.0845796 + 0.146496i
\(204\) 0 0
\(205\) −17.2263 −1.20313
\(206\) −5.89275 + 10.2065i −0.410567 + 0.711123i
\(207\) 0 0
\(208\) 0.735188 1.27338i 0.0509761 0.0882932i
\(209\) 5.80888 10.0613i 0.401809 0.695953i
\(210\) 0 0
\(211\) −13.3678 + 23.1538i −0.920280 + 1.59397i −0.121297 + 0.992616i \(0.538705\pi\)
−0.798982 + 0.601355i \(0.794628\pi\)
\(212\) 1.46348 0.100512
\(213\) 0 0
\(214\) 6.13689 0.419509
\(215\) −32.4485 −2.21297
\(216\) 0 0
\(217\) −3.07677 + 0.577160i −0.208865 + 0.0391802i
\(218\) 6.43215 11.1408i 0.435640 0.754551i
\(219\) 0 0
\(220\) 5.51133 9.54590i 0.371574 0.643584i
\(221\) −1.51971 2.63221i −0.102227 0.177062i
\(222\) 0 0
\(223\) 21.2515 1.42310 0.711551 0.702634i \(-0.247993\pi\)
0.711551 + 0.702634i \(0.247993\pi\)
\(224\) 0.281122 + 0.486917i 0.0187832 + 0.0325335i
\(225\) 0 0
\(226\) 6.85988 11.8817i 0.456312 0.790356i
\(227\) −13.2692 22.9830i −0.880711 1.52544i −0.850552 0.525890i \(-0.823732\pi\)
−0.0301581 0.999545i \(-0.509601\pi\)
\(228\) 0 0
\(229\) 1.01441 1.75702i 0.0670344 0.116107i −0.830560 0.556929i \(-0.811980\pi\)
0.897595 + 0.440822i \(0.145313\pi\)
\(230\) −6.19558 −0.408525
\(231\) 0 0
\(232\) 2.14333 3.71236i 0.140717 0.243728i
\(233\) −12.9457 −0.848098 −0.424049 0.905639i \(-0.639392\pi\)
−0.424049 + 0.905639i \(0.639392\pi\)
\(234\) 0 0
\(235\) 8.19693 14.1975i 0.534709 0.926143i
\(236\) 1.27123 0.0827503
\(237\) 0 0
\(238\) 1.16222 0.0753352
\(239\) −13.8340 −0.894846 −0.447423 0.894323i \(-0.647658\pi\)
−0.447423 + 0.894323i \(0.647658\pi\)
\(240\) 0 0
\(241\) −27.8602 −1.79463 −0.897317 0.441386i \(-0.854487\pi\)
−0.897317 + 0.441386i \(0.854487\pi\)
\(242\) 2.46746 + 4.27376i 0.158614 + 0.274728i
\(243\) 0 0
\(244\) 13.8457 0.886378
\(245\) 18.4561 1.17912
\(246\) 0 0
\(247\) −2.13966 3.70601i −0.136144 0.235808i
\(248\) 5.47232 1.02653i 0.347492 0.0651848i
\(249\) 0 0
\(250\) 3.27944 5.68016i 0.207410 0.359245i
\(251\) −4.36267 7.55637i −0.275370 0.476954i 0.694859 0.719146i \(-0.255467\pi\)
−0.970228 + 0.242192i \(0.922134\pi\)
\(252\) 0 0
\(253\) 4.47833 7.75669i 0.281550 0.487659i
\(254\) −7.14415 −0.448264
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −6.48050 −0.404242 −0.202121 0.979361i \(-0.564783\pi\)
−0.202121 + 0.979361i \(0.564783\pi\)
\(258\) 0 0
\(259\) 1.02814 + 1.78079i 0.0638856 + 0.110653i
\(260\) −2.03006 3.51617i −0.125899 0.218064i
\(261\) 0 0
\(262\) −1.74226 3.01768i −0.107637 0.186433i
\(263\) −7.90071 + 13.6844i −0.487178 + 0.843818i −0.999891 0.0147424i \(-0.995307\pi\)
0.512713 + 0.858560i \(0.328641\pi\)
\(264\) 0 0
\(265\) 2.02054 3.49968i 0.124121 0.214984i
\(266\) 1.63633 0.100330
\(267\) 0 0
\(268\) −2.84476 4.92726i −0.173771 0.300980i
\(269\) 5.24517 9.08490i 0.319804 0.553916i −0.660643 0.750700i \(-0.729716\pi\)
0.980447 + 0.196784i \(0.0630497\pi\)
\(270\) 0 0
\(271\) 19.1276 1.16192 0.580959 0.813933i \(-0.302678\pi\)
0.580959 + 0.813933i \(0.302678\pi\)
\(272\) −2.06710 −0.125337
\(273\) 0 0
\(274\) 1.66890 0.100822
\(275\) −5.23871 9.07371i −0.315906 0.547165i
\(276\) 0 0
\(277\) −2.65245 + 4.59418i −0.159370 + 0.276038i −0.934642 0.355591i \(-0.884280\pi\)
0.775271 + 0.631628i \(0.217613\pi\)
\(278\) −16.5616 −0.993296
\(279\) 0 0
\(280\) 1.55251 0.0927804
\(281\) −11.3592 + 19.6748i −0.677635 + 1.17370i 0.298057 + 0.954548i \(0.403662\pi\)
−0.975691 + 0.219149i \(0.929672\pi\)
\(282\) 0 0
\(283\) 12.8023 + 22.1743i 0.761019 + 1.31812i 0.942326 + 0.334697i \(0.108634\pi\)
−0.181307 + 0.983427i \(0.558033\pi\)
\(284\) 4.29659 0.254956
\(285\) 0 0
\(286\) 5.86953 0.347072
\(287\) 3.50755 0.207044
\(288\) 0 0
\(289\) 6.36354 11.0220i 0.374326 0.648351i
\(290\) −5.91835 10.2509i −0.347538 0.601953i
\(291\) 0 0
\(292\) 9.34488 0.546868
\(293\) −3.17281 + 5.49547i −0.185358 + 0.321049i −0.943697 0.330811i \(-0.892678\pi\)
0.758339 + 0.651860i \(0.226011\pi\)
\(294\) 0 0
\(295\) 1.75512 3.03996i 0.102187 0.176993i
\(296\) −1.82864 3.16730i −0.106288 0.184096i
\(297\) 0 0
\(298\) 6.37166 + 11.0360i 0.369101 + 0.639301i
\(299\) −1.64956 2.85713i −0.0953967 0.165232i
\(300\) 0 0
\(301\) 6.60704 0.380824
\(302\) 2.16532 + 3.75045i 0.124600 + 0.215814i
\(303\) 0 0
\(304\) −2.91037 −0.166921
\(305\) 19.1159 33.1097i 1.09457 1.89586i
\(306\) 0 0
\(307\) 2.68363 + 4.64819i 0.153163 + 0.265286i 0.932389 0.361457i \(-0.117721\pi\)
−0.779226 + 0.626743i \(0.784387\pi\)
\(308\) −1.12220 + 1.94370i −0.0639431 + 0.110753i
\(309\) 0 0
\(310\) 5.10052 14.5035i 0.289690 0.823741i
\(311\) 14.3458 + 24.8477i 0.813476 + 1.40898i 0.910417 + 0.413691i \(0.135761\pi\)
−0.0969413 + 0.995290i \(0.530906\pi\)
\(312\) 0 0
\(313\) 7.02943 0.397327 0.198663 0.980068i \(-0.436340\pi\)
0.198663 + 0.980068i \(0.436340\pi\)
\(314\) −22.1618 −1.25066
\(315\) 0 0
\(316\) 0.516125 + 0.893955i 0.0290343 + 0.0502889i
\(317\) −5.85718 −0.328972 −0.164486 0.986379i \(-0.552597\pi\)
−0.164486 + 0.986379i \(0.552597\pi\)
\(318\) 0 0
\(319\) 17.1118 0.958074
\(320\) −2.76129 −0.154361
\(321\) 0 0
\(322\) 1.26152 0.0703019
\(323\) −3.00802 + 5.21004i −0.167370 + 0.289894i
\(324\) 0 0
\(325\) −3.85929 −0.214075
\(326\) 0.911611 1.57896i 0.0504895 0.0874503i
\(327\) 0 0
\(328\) −6.23850 −0.344463
\(329\) −1.66903 + 2.89084i −0.0920166 + 0.159377i
\(330\) 0 0
\(331\) 7.21212 + 12.4918i 0.396414 + 0.686609i 0.993281 0.115731i \(-0.0369212\pi\)
−0.596867 + 0.802341i \(0.703588\pi\)
\(332\) −1.02216 + 1.77044i −0.0560986 + 0.0971656i
\(333\) 0 0
\(334\) 3.20854 + 5.55736i 0.175564 + 0.304085i
\(335\) −15.7104 −0.858349
\(336\) 0 0
\(337\) 13.7311 + 23.7829i 0.747978 + 1.29554i 0.948790 + 0.315907i \(0.102309\pi\)
−0.200812 + 0.979630i \(0.564358\pi\)
\(338\) −5.41900 + 9.38598i −0.294755 + 0.510530i
\(339\) 0 0
\(340\) −2.85393 + 4.94316i −0.154776 + 0.268080i
\(341\) 14.4711 + 16.8692i 0.783655 + 0.913517i
\(342\) 0 0
\(343\) −7.69367 −0.415419
\(344\) −11.7512 −0.633584
\(345\) 0 0
\(346\) −21.0217 −1.13014
\(347\) −4.93173 + 8.54200i −0.264749 + 0.458559i −0.967498 0.252879i \(-0.918622\pi\)
0.702749 + 0.711438i \(0.251956\pi\)
\(348\) 0 0
\(349\) 5.34850 9.26388i 0.286299 0.495884i −0.686624 0.727012i \(-0.740908\pi\)
0.972923 + 0.231128i \(0.0742417\pi\)
\(350\) 0.737859 1.27801i 0.0394402 0.0683125i
\(351\) 0 0
\(352\) 1.99593 3.45705i 0.106383 0.184261i
\(353\) −29.0758 −1.54755 −0.773773 0.633463i \(-0.781633\pi\)
−0.773773 + 0.633463i \(0.781633\pi\)
\(354\) 0 0
\(355\) 5.93206 10.2746i 0.314841 0.545321i
\(356\) −1.81892 3.15047i −0.0964027 0.166974i
\(357\) 0 0
\(358\) −15.1926 −0.802955
\(359\) −1.79467 + 3.10846i −0.0947189 + 0.164058i −0.909491 0.415723i \(-0.863529\pi\)
0.814772 + 0.579781i \(0.196862\pi\)
\(360\) 0 0
\(361\) 5.26489 9.11905i 0.277099 0.479950i
\(362\) 1.37767 + 2.38619i 0.0724087 + 0.125416i
\(363\) 0 0
\(364\) 0.413354 + 0.715950i 0.0216656 + 0.0375260i
\(365\) 12.9019 22.3468i 0.675318 1.16969i
\(366\) 0 0
\(367\) 7.34444 + 12.7209i 0.383377 + 0.664028i 0.991543 0.129782i \(-0.0414277\pi\)
−0.608166 + 0.793810i \(0.708094\pi\)
\(368\) −2.24373 −0.116963
\(369\) 0 0
\(370\) −10.0988 −0.525012
\(371\) −0.411416 + 0.712593i −0.0213596 + 0.0369960i
\(372\) 0 0
\(373\) −19.2242 33.2973i −0.995392 1.72407i −0.580741 0.814088i \(-0.697237\pi\)
−0.414651 0.909981i \(-0.636096\pi\)
\(374\) −4.12579 7.14608i −0.213340 0.369515i
\(375\) 0 0
\(376\) 2.96852 5.14163i 0.153090 0.265159i
\(377\) 3.15150 5.45856i 0.162311 0.281130i
\(378\) 0 0
\(379\) −13.8582 24.0031i −0.711849 1.23296i −0.964162 0.265313i \(-0.914525\pi\)
0.252313 0.967646i \(-0.418809\pi\)
\(380\) −4.01818 + 6.95968i −0.206128 + 0.357024i
\(381\) 0 0
\(382\) 17.6085 0.900930
\(383\) −22.0607 −1.12725 −0.563624 0.826032i \(-0.690593\pi\)
−0.563624 + 0.826032i \(0.690593\pi\)
\(384\) 0 0
\(385\) 3.09871 + 5.36712i 0.157925 + 0.273534i
\(386\) 2.11290 + 3.65965i 0.107544 + 0.186272i
\(387\) 0 0
\(388\) 15.8981 0.807106
\(389\) 2.74980 0.139421 0.0697103 0.997567i \(-0.477793\pi\)
0.0697103 + 0.997567i \(0.477793\pi\)
\(390\) 0 0
\(391\) −2.31901 + 4.01665i −0.117278 + 0.203131i
\(392\) 6.68388 0.337587
\(393\) 0 0
\(394\) −11.0548 19.1475i −0.556934 0.964639i
\(395\) 2.85034 0.143416
\(396\) 0 0
\(397\) −0.820424 1.42102i −0.0411759 0.0713187i 0.844703 0.535235i \(-0.179777\pi\)
−0.885879 + 0.463917i \(0.846444\pi\)
\(398\) 4.22595 + 7.31956i 0.211828 + 0.366896i
\(399\) 0 0
\(400\) −1.31235 + 2.27306i −0.0656175 + 0.113653i
\(401\) 4.89561 + 8.47944i 0.244475 + 0.423443i 0.961984 0.273106i \(-0.0880510\pi\)
−0.717509 + 0.696549i \(0.754718\pi\)
\(402\) 0 0
\(403\) 8.04636 1.50939i 0.400818 0.0751879i
\(404\) 2.10818 0.104886
\(405\) 0 0
\(406\) 1.20507 + 2.08725i 0.0598068 + 0.103588i
\(407\) 7.29967 12.6434i 0.361831 0.626710i
\(408\) 0 0
\(409\) −8.38880 + 14.5298i −0.414799 + 0.718454i −0.995407 0.0957295i \(-0.969482\pi\)
0.580608 + 0.814183i \(0.302815\pi\)
\(410\) −8.61313 + 14.9184i −0.425372 + 0.736767i
\(411\) 0 0
\(412\) 5.89275 + 10.2065i 0.290315 + 0.502840i
\(413\) −0.357371 + 0.618985i −0.0175851 + 0.0304583i
\(414\) 0 0
\(415\) 2.82249 + 4.88869i 0.138551 + 0.239977i
\(416\) −0.735188 1.27338i −0.0360455 0.0624327i
\(417\) 0 0
\(418\) −5.80888 10.0613i −0.284122 0.492113i
\(419\) −11.7683 20.3833i −0.574919 0.995789i −0.996050 0.0887895i \(-0.971700\pi\)
0.421131 0.907000i \(-0.361633\pi\)
\(420\) 0 0
\(421\) −17.7261 30.7024i −0.863915 1.49634i −0.868121 0.496353i \(-0.834672\pi\)
0.00420582 0.999991i \(-0.498661\pi\)
\(422\) 13.3678 + 23.1538i 0.650736 + 1.12711i
\(423\) 0 0
\(424\) 0.731740 1.26741i 0.0355364 0.0615509i
\(425\) 2.71276 + 4.69864i 0.131588 + 0.227918i
\(426\) 0 0
\(427\) −3.89231 + 6.74168i −0.188362 + 0.326253i
\(428\) 3.06844 5.31470i 0.148319 0.256896i
\(429\) 0 0
\(430\) −16.2242 + 28.1012i −0.782403 + 1.35516i
\(431\) 10.4796 + 18.1512i 0.504785 + 0.874314i 0.999985 + 0.00553455i \(0.00176171\pi\)
−0.495199 + 0.868779i \(0.664905\pi\)
\(432\) 0 0
\(433\) −6.09639 −0.292974 −0.146487 0.989213i \(-0.546797\pi\)
−0.146487 + 0.989213i \(0.546797\pi\)
\(434\) −1.03855 + 2.95314i −0.0498520 + 0.141755i
\(435\) 0 0
\(436\) −6.43215 11.1408i −0.308044 0.533548i
\(437\) −3.26504 + 5.65521i −0.156188 + 0.270526i
\(438\) 0 0
\(439\) 13.8876 + 24.0540i 0.662817 + 1.14803i 0.979872 + 0.199626i \(0.0639727\pi\)
−0.317055 + 0.948407i \(0.602694\pi\)
\(440\) −5.51133 9.54590i −0.262742 0.455083i
\(441\) 0 0
\(442\) −3.03942 −0.144570
\(443\) 1.51177 + 2.61845i 0.0718262 + 0.124407i 0.899702 0.436505i \(-0.143784\pi\)
−0.827876 + 0.560912i \(0.810451\pi\)
\(444\) 0 0
\(445\) −10.0451 −0.476185
\(446\) 10.6257 18.4043i 0.503143 0.871469i
\(447\) 0 0
\(448\) 0.562243 0.0265635
\(449\) 26.6291 1.25671 0.628353 0.777928i \(-0.283729\pi\)
0.628353 + 0.777928i \(0.283729\pi\)
\(450\) 0 0
\(451\) −12.4516 21.5668i −0.586322 1.01554i
\(452\) −6.85988 11.8817i −0.322662 0.558866i
\(453\) 0 0
\(454\) −26.5385 −1.24551
\(455\) 2.28278 0.107018
\(456\) 0 0
\(457\) 6.35410 11.0056i 0.297232 0.514822i −0.678269 0.734813i \(-0.737270\pi\)
0.975502 + 0.219992i \(0.0706030\pi\)
\(458\) −1.01441 1.75702i −0.0474005 0.0821000i
\(459\) 0 0
\(460\) −3.09779 + 5.36553i −0.144435 + 0.250169i
\(461\) −10.5442 + 18.2631i −0.491093 + 0.850597i −0.999947 0.0102549i \(-0.996736\pi\)
0.508855 + 0.860852i \(0.330069\pi\)
\(462\) 0 0
\(463\) −8.33955 14.4445i −0.387572 0.671294i 0.604551 0.796567i \(-0.293353\pi\)
−0.992122 + 0.125273i \(0.960019\pi\)
\(464\) −2.14333 3.71236i −0.0995017 0.172342i
\(465\) 0 0
\(466\) −6.47283 + 11.2113i −0.299848 + 0.519352i
\(467\) 34.4397 1.59368 0.796840 0.604191i \(-0.206504\pi\)
0.796840 + 0.604191i \(0.206504\pi\)
\(468\) 0 0
\(469\) 3.19889 0.147711
\(470\) −8.19693 14.1975i −0.378096 0.654882i
\(471\) 0 0
\(472\) 0.635617 1.10092i 0.0292566 0.0506740i
\(473\) −23.4546 40.6246i −1.07844 1.86792i
\(474\) 0 0
\(475\) 3.81942 + 6.61542i 0.175247 + 0.303536i
\(476\) 0.581108 1.00651i 0.0266350 0.0461332i
\(477\) 0 0
\(478\) −6.91699 + 11.9806i −0.316376 + 0.547979i
\(479\) −25.2674 −1.15450 −0.577250 0.816568i \(-0.695874\pi\)
−0.577250 + 0.816568i \(0.695874\pi\)
\(480\) 0 0
\(481\) −2.68879 4.65712i −0.122598 0.212346i
\(482\) −13.9301 + 24.1277i −0.634499 + 1.09898i
\(483\) 0 0
\(484\) 4.93492 0.224314
\(485\) 21.9497 38.0179i 0.996683 1.72630i
\(486\) 0 0
\(487\) −13.9395 + 24.1440i −0.631660 + 1.09407i 0.355552 + 0.934657i \(0.384293\pi\)
−0.987212 + 0.159411i \(0.949040\pi\)
\(488\) 6.92283 11.9907i 0.313382 0.542793i
\(489\) 0 0
\(490\) 9.22805 15.9835i 0.416881 0.722059i
\(491\) −2.00756 −0.0905999 −0.0452999 0.998973i \(-0.514424\pi\)
−0.0452999 + 0.998973i \(0.514424\pi\)
\(492\) 0 0
\(493\) −8.86099 −0.399079
\(494\) −4.27933 −0.192536
\(495\) 0 0
\(496\) 1.84716 5.25243i 0.0829397 0.235841i
\(497\) −1.20786 + 2.09208i −0.0541801 + 0.0938427i
\(498\) 0 0
\(499\) 10.2613 17.7731i 0.459360 0.795635i −0.539567 0.841943i \(-0.681412\pi\)
0.998927 + 0.0463077i \(0.0147455\pi\)
\(500\) −3.27944 5.68016i −0.146661 0.254025i
\(501\) 0 0
\(502\) −8.72535 −0.389431
\(503\) 16.3446 + 28.3097i 0.728771 + 1.26227i 0.957403 + 0.288755i \(0.0932413\pi\)
−0.228632 + 0.973513i \(0.573425\pi\)
\(504\) 0 0
\(505\) 2.91064 5.04138i 0.129522 0.224339i
\(506\) −4.47833 7.75669i −0.199086 0.344827i
\(507\) 0 0
\(508\) −3.57207 + 6.18701i −0.158485 + 0.274504i
\(509\) −30.8353 −1.36675 −0.683376 0.730067i \(-0.739489\pi\)
−0.683376 + 0.730067i \(0.739489\pi\)
\(510\) 0 0
\(511\) −2.62705 + 4.55018i −0.116214 + 0.201288i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −3.24025 + 5.61228i −0.142921 + 0.247547i
\(515\) 32.5431 1.43402
\(516\) 0 0
\(517\) 23.6998 1.04232
\(518\) 2.05628 0.0903478
\(519\) 0 0
\(520\) −4.06013 −0.178048
\(521\) −4.71147 8.16051i −0.206413 0.357519i 0.744169 0.667992i \(-0.232846\pi\)
−0.950582 + 0.310473i \(0.899513\pi\)
\(522\) 0 0
\(523\) 40.0302 1.75040 0.875200 0.483761i \(-0.160730\pi\)
0.875200 + 0.483761i \(0.160730\pi\)
\(524\) −3.48452 −0.152222
\(525\) 0 0
\(526\) 7.90071 + 13.6844i 0.344487 + 0.596669i
\(527\) −7.49358 8.73537i −0.326426 0.380519i
\(528\) 0 0
\(529\) 8.98284 15.5587i 0.390558 0.676466i
\(530\) −2.02054 3.49968i −0.0877668 0.152016i
\(531\) 0 0
\(532\) 0.818166 1.41711i 0.0354720 0.0614393i
\(533\) −9.17293 −0.397324
\(534\) 0 0
\(535\) −8.47285 14.6754i −0.366313 0.634473i
\(536\) −5.68951 −0.245749
\(537\) 0 0
\(538\) −5.24517 9.08490i −0.226135 0.391678i
\(539\) 13.3405 + 23.1065i 0.574618 + 0.995268i
\(540\) 0 0
\(541\) −7.70912 13.3526i −0.331441 0.574073i 0.651354 0.758774i \(-0.274201\pi\)
−0.982795 + 0.184702i \(0.940868\pi\)
\(542\) 9.56379 16.5650i 0.410800 0.711527i
\(543\) 0 0
\(544\) −1.03355 + 1.79016i −0.0443132 + 0.0767527i
\(545\) −35.5220 −1.52160
\(546\) 0 0
\(547\) 2.70323 + 4.68213i 0.115582 + 0.200194i 0.918012 0.396552i \(-0.129793\pi\)
−0.802430 + 0.596746i \(0.796460\pi\)
\(548\) 0.834449 1.44531i 0.0356459 0.0617405i
\(549\) 0 0
\(550\) −10.4774 −0.446759
\(551\) −12.4758 −0.531486
\(552\) 0 0
\(553\) −0.580375 −0.0246801
\(554\) 2.65245 + 4.59418i 0.112692 + 0.195188i
\(555\) 0 0
\(556\) −8.28078 + 14.3427i −0.351183 + 0.608267i
\(557\) −27.1620 −1.15089 −0.575445 0.817840i \(-0.695171\pi\)
−0.575445 + 0.817840i \(0.695171\pi\)
\(558\) 0 0
\(559\) −17.2787 −0.730812
\(560\) 0.776257 1.34452i 0.0328028 0.0568162i
\(561\) 0 0
\(562\) 11.3592 + 19.6748i 0.479160 + 0.829929i
\(563\) −4.90086 −0.206546 −0.103273 0.994653i \(-0.532932\pi\)
−0.103273 + 0.994653i \(0.532932\pi\)
\(564\) 0 0
\(565\) −37.8842 −1.59380
\(566\) 25.6046 1.07624
\(567\) 0 0
\(568\) 2.14830 3.72096i 0.0901405 0.156128i
\(569\) 13.4283 + 23.2585i 0.562943 + 0.975045i 0.997238 + 0.0742745i \(0.0236641\pi\)
−0.434295 + 0.900771i \(0.643003\pi\)
\(570\) 0 0
\(571\) 38.8743 1.62684 0.813419 0.581679i \(-0.197604\pi\)
0.813419 + 0.581679i \(0.197604\pi\)
\(572\) 2.93476 5.08316i 0.122709 0.212538i
\(573\) 0 0
\(574\) 1.75378 3.03763i 0.0732012 0.126788i
\(575\) 2.94456 + 5.10013i 0.122797 + 0.212690i
\(576\) 0 0
\(577\) 3.68743 + 6.38682i 0.153510 + 0.265887i 0.932515 0.361130i \(-0.117609\pi\)
−0.779006 + 0.627017i \(0.784276\pi\)
\(578\) −6.36354 11.0220i −0.264688 0.458454i
\(579\) 0 0
\(580\) −11.8367 −0.491493
\(581\) −0.574705 0.995418i −0.0238428 0.0412969i
\(582\) 0 0
\(583\) 5.84200 0.241951
\(584\) 4.67244 8.09290i 0.193347 0.334887i
\(585\) 0 0
\(586\) 3.17281 + 5.49547i 0.131068 + 0.227016i
\(587\) −17.2870 + 29.9420i −0.713511 + 1.23584i 0.250019 + 0.968241i \(0.419563\pi\)
−0.963531 + 0.267597i \(0.913770\pi\)
\(588\) 0 0
\(589\) −10.5505 12.2989i −0.434727 0.506768i
\(590\) −1.75512 3.03996i −0.0722571 0.125153i
\(591\) 0 0
\(592\) −3.65728 −0.150313
\(593\) −20.4038 −0.837884 −0.418942 0.908013i \(-0.637599\pi\)
−0.418942 + 0.908013i \(0.637599\pi\)
\(594\) 0 0
\(595\) −1.60460 2.77926i −0.0657823 0.113938i
\(596\) 12.7433 0.521987
\(597\) 0 0
\(598\) −3.29913 −0.134911
\(599\) 37.5708 1.53510 0.767551 0.640988i \(-0.221475\pi\)
0.767551 + 0.640988i \(0.221475\pi\)
\(600\) 0 0
\(601\) 15.7765 0.643538 0.321769 0.946818i \(-0.395723\pi\)
0.321769 + 0.946818i \(0.395723\pi\)
\(602\) 3.30352 5.72187i 0.134642 0.233206i
\(603\) 0 0
\(604\) 4.33065 0.176212
\(605\) 6.81336 11.8011i 0.277002 0.479782i
\(606\) 0 0
\(607\) 6.46718 0.262495 0.131247 0.991350i \(-0.458102\pi\)
0.131247 + 0.991350i \(0.458102\pi\)
\(608\) −1.45518 + 2.52045i −0.0590155 + 0.102218i
\(609\) 0 0
\(610\) −19.1159 33.1097i −0.773981 1.34057i
\(611\) 4.36484 7.56012i 0.176582 0.305850i
\(612\) 0 0
\(613\) −9.79127 16.9590i −0.395466 0.684967i 0.597695 0.801724i \(-0.296083\pi\)
−0.993160 + 0.116757i \(0.962750\pi\)
\(614\) 5.36726 0.216605
\(615\) 0 0
\(616\) 1.12220 + 1.94370i 0.0452146 + 0.0783140i
\(617\) 5.33858 9.24669i 0.214923 0.372258i −0.738326 0.674444i \(-0.764383\pi\)
0.953249 + 0.302187i \(0.0977166\pi\)
\(618\) 0 0
\(619\) 4.27984 7.41290i 0.172021 0.297950i −0.767105 0.641521i \(-0.778304\pi\)
0.939126 + 0.343572i \(0.111637\pi\)
\(620\) −10.0101 11.6689i −0.402015 0.468635i
\(621\) 0 0
\(622\) 28.6916 1.15043
\(623\) 2.04535 0.0819454
\(624\) 0 0
\(625\) −31.2345 −1.24938
\(626\) 3.51471 6.08766i 0.140476 0.243312i
\(627\) 0 0
\(628\) −11.0809 + 19.1927i −0.442176 + 0.765872i
\(629\) −3.77999 + 6.54714i −0.150718 + 0.261052i
\(630\) 0 0
\(631\) −8.95079 + 15.5032i −0.356325 + 0.617174i −0.987344 0.158594i \(-0.949304\pi\)
0.631018 + 0.775768i \(0.282637\pi\)
\(632\) 1.03225 0.0410607
\(633\) 0 0
\(634\) −2.92859 + 5.07247i −0.116309 + 0.201454i
\(635\) 9.86351 + 17.0841i 0.391422 + 0.677962i
\(636\) 0 0
\(637\) 9.82781 0.389392
\(638\) 8.55588 14.8192i 0.338730 0.586698i
\(639\) 0 0
\(640\) −1.38064 + 2.39134i −0.0545747 + 0.0945262i
\(641\) −0.635524 1.10076i −0.0251017 0.0434774i 0.853202 0.521581i \(-0.174658\pi\)
−0.878303 + 0.478104i \(0.841324\pi\)
\(642\) 0 0
\(643\) 21.4808 + 37.2058i 0.847119 + 1.46725i 0.883769 + 0.467924i \(0.154998\pi\)
−0.0366500 + 0.999328i \(0.511669\pi\)
\(644\) 0.630761 1.09251i 0.0248555 0.0430509i
\(645\) 0 0
\(646\) 3.00802 + 5.21004i 0.118349 + 0.204986i
\(647\) −31.9389 −1.25565 −0.627824 0.778355i \(-0.716054\pi\)
−0.627824 + 0.778355i \(0.716054\pi\)
\(648\) 0 0
\(649\) 5.07458 0.199195
\(650\) −1.92965 + 3.34224i −0.0756869 + 0.131094i
\(651\) 0 0
\(652\) −0.911611 1.57896i −0.0357014 0.0618367i
\(653\) −1.74521 3.02279i −0.0682953 0.118291i 0.829856 0.557978i \(-0.188423\pi\)
−0.898151 + 0.439687i \(0.855089\pi\)
\(654\) 0 0
\(655\) −4.81087 + 8.33268i −0.187976 + 0.325585i
\(656\) −3.11925 + 5.40270i −0.121786 + 0.210940i
\(657\) 0 0
\(658\) 1.66903 + 2.89084i 0.0650656 + 0.112697i
\(659\) 5.41504 9.37912i 0.210940 0.365359i −0.741069 0.671429i \(-0.765681\pi\)
0.952009 + 0.306070i \(0.0990142\pi\)
\(660\) 0 0
\(661\) −29.3966 −1.14340 −0.571698 0.820464i \(-0.693715\pi\)
−0.571698 + 0.820464i \(0.693715\pi\)
\(662\) 14.4242 0.560614
\(663\) 0 0
\(664\) 1.02216 + 1.77044i 0.0396677 + 0.0687065i
\(665\) −2.25919 3.91303i −0.0876077 0.151741i
\(666\) 0 0
\(667\) −9.61813 −0.372415
\(668\) 6.41709 0.248285
\(669\) 0 0
\(670\) −7.85518 + 13.6056i −0.303472 + 0.525629i
\(671\) 55.2699 2.13367
\(672\) 0 0
\(673\) −6.92184 11.9890i −0.266817 0.462141i 0.701221 0.712944i \(-0.252639\pi\)
−0.968038 + 0.250803i \(0.919305\pi\)
\(674\) 27.4621 1.05780
\(675\) 0 0
\(676\) 5.41900 + 9.38598i 0.208423 + 0.360999i
\(677\) 24.2956 + 42.0812i 0.933755 + 1.61731i 0.776838 + 0.629700i \(0.216822\pi\)
0.156917 + 0.987612i \(0.449844\pi\)
\(678\) 0 0
\(679\) −4.46931 + 7.74107i −0.171516 + 0.297075i
\(680\) 2.85393 + 4.94316i 0.109443 + 0.189561i
\(681\) 0 0
\(682\) 21.8447 4.09776i 0.836477 0.156912i
\(683\) −12.4018 −0.474540 −0.237270 0.971444i \(-0.576253\pi\)
−0.237270 + 0.971444i \(0.576253\pi\)
\(684\) 0 0
\(685\) −2.30415 3.99091i −0.0880371 0.152485i
\(686\) −3.84683 + 6.66291i −0.146873 + 0.254391i
\(687\) 0 0
\(688\) −5.87561 + 10.1769i −0.224006 + 0.387989i
\(689\) 1.07593 1.86357i 0.0409897 0.0709963i
\(690\) 0 0
\(691\) 9.63875 + 16.6948i 0.366675 + 0.635101i 0.989044 0.147624i \(-0.0471626\pi\)
−0.622368 + 0.782725i \(0.713829\pi\)
\(692\) −10.5109 + 18.2054i −0.399563 + 0.692064i
\(693\) 0 0
\(694\) 4.93173 + 8.54200i 0.187206 + 0.324250i
\(695\) 22.8656 + 39.6044i 0.867341 + 1.50228i
\(696\) 0 0
\(697\) 6.44781 + 11.1679i 0.244228 + 0.423016i
\(698\) −5.34850 9.26388i −0.202444 0.350643i
\(699\) 0 0
\(700\) −0.737859 1.27801i −0.0278885 0.0483042i
\(701\) 21.8284 + 37.8079i 0.824447 + 1.42798i 0.902341 + 0.431023i \(0.141847\pi\)
−0.0778936 + 0.996962i \(0.524819\pi\)
\(702\) 0 0
\(703\) −5.32202 + 9.21800i −0.200724 + 0.347664i
\(704\) −1.99593 3.45705i −0.0752244 0.130292i
\(705\) 0 0
\(706\) −14.5379 + 25.1803i −0.547140 + 0.947675i
\(707\) −0.592655 + 1.02651i −0.0222891 + 0.0386058i
\(708\) 0 0
\(709\) 0.117091 0.202808i 0.00439746 0.00761662i −0.863818 0.503803i \(-0.831934\pi\)
0.868216 + 0.496187i \(0.165267\pi\)
\(710\) −5.93206 10.2746i −0.222626 0.385600i
\(711\) 0 0
\(712\) −3.63785 −0.136334
\(713\) −8.13388 9.48178i −0.304616 0.355095i
\(714\) 0 0
\(715\) −8.10372 14.0361i −0.303062 0.524919i
\(716\) −7.59632 + 13.1572i −0.283888 + 0.491708i
\(717\) 0 0
\(718\) 1.79467 + 3.10846i 0.0669764 + 0.116007i
\(719\) 22.2177 + 38.4822i 0.828580 + 1.43514i 0.899152 + 0.437636i \(0.144184\pi\)
−0.0705720 + 0.997507i \(0.522482\pi\)
\(720\) 0 0
\(721\) −6.62631 −0.246777
\(722\) −5.26489 9.11905i −0.195939 0.339376i
\(723\) 0 0
\(724\) 2.75534 0.102401
\(725\) −5.62560 + 9.74383i −0.208930 + 0.361877i
\(726\) 0 0
\(727\) 10.1231 0.375446 0.187723 0.982222i \(-0.439889\pi\)
0.187723 + 0.982222i \(0.439889\pi\)
\(728\) 0.826708 0.0306398
\(729\) 0 0
\(730\) −12.9019 22.3468i −0.477522 0.827093i
\(731\) 12.1455 + 21.0366i 0.449218 + 0.778068i
\(732\) 0 0
\(733\) 33.7652 1.24715 0.623574 0.781765i \(-0.285680\pi\)
0.623574 + 0.781765i \(0.285680\pi\)
\(734\) 14.6889 0.542177
\(735\) 0 0
\(736\) −1.12187 + 1.94313i −0.0413525 + 0.0716247i
\(737\) −11.3559 19.6689i −0.418298 0.724514i
\(738\) 0 0
\(739\) 12.3038 21.3109i 0.452604 0.783934i −0.545943 0.837823i \(-0.683828\pi\)
0.998547 + 0.0538888i \(0.0171616\pi\)
\(740\) −5.04940 + 8.74582i −0.185620 + 0.321503i
\(741\) 0 0
\(742\) 0.411416 + 0.712593i 0.0151035 + 0.0261601i
\(743\) −7.66651 13.2788i −0.281257 0.487152i 0.690438 0.723392i \(-0.257418\pi\)
−0.971695 + 0.236240i \(0.924085\pi\)
\(744\) 0 0
\(745\) 17.5940 30.4737i 0.644594 1.11647i
\(746\) −38.4484 −1.40770
\(747\) 0 0
\(748\) −8.25158 −0.301708
\(749\) 1.72521 + 2.98815i 0.0630379 + 0.109185i
\(750\) 0 0
\(751\) 17.9658 31.1176i 0.655580 1.13550i −0.326168 0.945312i \(-0.605758\pi\)
0.981748 0.190186i \(-0.0609091\pi\)
\(752\) −2.96852 5.14163i −0.108251 0.187496i
\(753\) 0 0
\(754\) −3.15150 5.45856i −0.114771 0.198789i
\(755\) 5.97908 10.3561i 0.217601 0.376896i
\(756\) 0 0
\(757\) −6.91512 + 11.9773i −0.251334 + 0.435324i −0.963893 0.266288i \(-0.914203\pi\)
0.712559 + 0.701612i \(0.247536\pi\)
\(758\) −27.7164 −1.00671
\(759\) 0 0
\(760\) 4.01818 + 6.95968i 0.145755 + 0.252454i
\(761\) 10.9011 18.8813i 0.395165 0.684447i −0.597957 0.801528i \(-0.704021\pi\)
0.993122 + 0.117082i \(0.0373539\pi\)
\(762\) 0 0
\(763\) 7.23287 0.261847
\(764\) 8.80426 15.2494i 0.318527 0.551705i
\(765\) 0 0
\(766\) −11.0303 + 19.1051i −0.398542 + 0.690295i
\(767\) 0.934595 1.61877i 0.0337463 0.0584503i
\(768\) 0 0
\(769\) 5.67187 9.82397i 0.204533 0.354261i −0.745451 0.666560i \(-0.767766\pi\)
0.949984 + 0.312299i \(0.101099\pi\)
\(770\) 6.19741 0.223339
\(771\) 0 0
\(772\) 4.22580 0.152090
\(773\) −45.7918 −1.64702 −0.823509 0.567303i \(-0.807987\pi\)
−0.823509 + 0.567303i \(0.807987\pi\)
\(774\) 0 0
\(775\) −14.3632 + 2.69433i −0.515941 + 0.0967834i
\(776\) 7.94907 13.7682i 0.285355 0.494249i
\(777\) 0 0
\(778\) 1.37490 2.38140i 0.0492926 0.0853773i
\(779\) 9.07815 + 15.7238i 0.325259 + 0.563364i
\(780\) 0 0
\(781\) 17.1514 0.613725
\(782\) 2.31901 + 4.01665i 0.0829277 + 0.143635i
\(783\) 0 0
\(784\) 3.34194 5.78841i 0.119355 0.206729i
\(785\) 30.5976 + 52.9965i 1.09207 + 1.89153i
\(786\) 0 0
\(787\) −3.79268 + 6.56912i −0.135194 + 0.234164i −0.925672 0.378328i \(-0.876499\pi\)
0.790477 + 0.612491i \(0.209833\pi\)
\(788\) −22.1097 −0.787624
\(789\) 0 0
\(790\) 1.42517 2.46846i 0.0507052 0.0878240i
\(791\) 7.71384 0.274273
\(792\) 0 0
\(793\) 10.1792 17.6308i 0.361472 0.626089i
\(794\) −1.64085 −0.0582315
\(795\) 0 0
\(796\) 8.45190 0.299570
\(797\) 29.6077 1.04876 0.524380 0.851484i \(-0.324297\pi\)
0.524380 + 0.851484i \(0.324297\pi\)
\(798\) 0 0
\(799\) −12.2725 −0.434169
\(800\) 1.31235 + 2.27306i 0.0463986 + 0.0803647i
\(801\) 0 0
\(802\) 9.79122 0.345740
\(803\) 37.3034 1.31641
\(804\) 0 0
\(805\) −1.74171 3.01673i −0.0613873 0.106326i
\(806\) 2.71601 7.72304i 0.0956674 0.272033i
\(807\) 0 0
\(808\) 1.05409 1.82574i 0.0370827 0.0642292i
\(809\) −21.6194 37.4460i −0.760099 1.31653i −0.942799 0.333361i \(-0.891817\pi\)
0.182700 0.983169i \(-0.441516\pi\)
\(810\) 0 0
\(811\) −22.3906 + 38.7817i −0.786241 + 1.36181i 0.142015 + 0.989865i \(0.454642\pi\)
−0.928255 + 0.371944i \(0.878691\pi\)
\(812\) 2.41015 0.0845796
\(813\) 0 0
\(814\) −7.29967 12.6434i −0.255853 0.443151i
\(815\) −5.03444 −0.176349
\(816\) 0 0
\(817\) 17.1002 + 29.6184i 0.598260 + 1.03622i
\(818\) 8.38880 + 14.5298i 0.293308 + 0.508024i
\(819\) 0 0
\(820\) 8.61313 + 14.9184i 0.300784 + 0.520973i
\(821\) −0.261194 + 0.452402i −0.00911574 + 0.0157889i −0.870547 0.492085i \(-0.836235\pi\)
0.861432 + 0.507874i \(0.169568\pi\)
\(822\) 0 0
\(823\) −2.56797 + 4.44785i −0.0895138 + 0.155042i −0.907306 0.420472i \(-0.861865\pi\)
0.817792 + 0.575514i \(0.195198\pi\)
\(824\) 11.7855 0.410567
\(825\) 0 0
\(826\) 0.357371 + 0.618985i 0.0124345 + 0.0215372i
\(827\) 18.1801 31.4889i 0.632185 1.09498i −0.354919 0.934897i \(-0.615492\pi\)
0.987104 0.160079i \(-0.0511749\pi\)
\(828\) 0 0
\(829\) 36.4298 1.26526 0.632630 0.774454i \(-0.281975\pi\)
0.632630 + 0.774454i \(0.281975\pi\)
\(830\) 5.64498 0.195940
\(831\) 0 0
\(832\) −1.47038 −0.0509761
\(833\) −6.90814 11.9653i −0.239353 0.414571i
\(834\) 0 0
\(835\) 8.85971 15.3455i 0.306603 0.531052i
\(836\) −11.6178 −0.401809
\(837\) 0 0
\(838\) −23.5366 −0.813058
\(839\) −2.42087 + 4.19306i −0.0835776 + 0.144761i −0.904784 0.425870i \(-0.859968\pi\)
0.821207 + 0.570631i \(0.193301\pi\)
\(840\) 0 0
\(841\) 5.31225 + 9.20108i 0.183181 + 0.317279i
\(842\) −35.4521 −1.22176
\(843\) 0 0
\(844\) 26.7357 0.920280
\(845\) 29.9268 1.02951
\(846\) 0 0
\(847\) −1.38731 + 2.40289i −0.0476686 + 0.0825644i
\(848\) −0.731740 1.26741i −0.0251280 0.0435231i
\(849\) 0 0
\(850\) 5.42553 0.186094
\(851\) −4.10298 + 7.10657i −0.140648 + 0.243610i
\(852\) 0 0
\(853\) −4.69259 + 8.12781i −0.160671 + 0.278291i −0.935110 0.354359i \(-0.884699\pi\)
0.774438 + 0.632649i \(0.218033\pi\)
\(854\) 3.89231 + 6.74168i 0.133192 + 0.230696i
\(855\) 0 0
\(856\) −3.06844 5.31470i −0.104877 0.181653i
\(857\) −19.6802 34.0871i −0.672263 1.16439i −0.977261 0.212041i \(-0.931989\pi\)
0.304998 0.952353i \(-0.401344\pi\)
\(858\) 0 0
\(859\) 4.49343 0.153314 0.0766570 0.997058i \(-0.475575\pi\)
0.0766570 + 0.997058i \(0.475575\pi\)
\(860\) 16.2242 + 28.1012i 0.553242 + 0.958244i
\(861\) 0 0
\(862\) 20.9592 0.713874
\(863\) −11.5510 + 20.0070i −0.393202 + 0.681045i −0.992870 0.119203i \(-0.961966\pi\)
0.599668 + 0.800249i \(0.295299\pi\)
\(864\) 0 0
\(865\) 29.0235 + 50.2702i 0.986829 + 1.70924i
\(866\) −3.04820 + 5.27963i −0.103582 + 0.179409i
\(867\) 0 0
\(868\) 2.03822 + 2.37598i 0.0691817 + 0.0806461i
\(869\) 2.06030 + 3.56854i 0.0698908 + 0.121054i
\(870\) 0 0
\(871\) −8.36572 −0.283461
\(872\) −12.8643 −0.435640
\(873\) 0 0
\(874\) 3.26504 + 5.65521i 0.110442 + 0.191290i
\(875\) 3.68769 0.124667
\(876\) 0 0
\(877\) 47.5085 1.60425 0.802124 0.597158i \(-0.203703\pi\)
0.802124 + 0.597158i \(0.203703\pi\)
\(878\) 27.7751 0.937365
\(879\) 0 0
\(880\) −11.0227 −0.371574
\(881\) 27.7949 48.1423i 0.936435 1.62195i 0.164381 0.986397i \(-0.447437\pi\)
0.772054 0.635557i \(-0.219229\pi\)
\(882\) 0 0
\(883\) 1.92102 0.0646475 0.0323238 0.999477i \(-0.489709\pi\)
0.0323238 + 0.999477i \(0.489709\pi\)
\(884\) −1.51971 + 2.63221i −0.0511134 + 0.0885309i
\(885\) 0 0
\(886\) 3.02353 0.101578
\(887\) −12.0972 + 20.9529i −0.406183 + 0.703530i −0.994458 0.105131i \(-0.966474\pi\)
0.588275 + 0.808661i \(0.299807\pi\)
\(888\) 0 0
\(889\) −2.00837 3.47860i −0.0673587 0.116669i
\(890\) −5.02257 + 8.69934i −0.168357 + 0.291603i
\(891\) 0 0
\(892\) −10.6257 18.4043i −0.355776 0.616222i
\(893\) −17.2790 −0.578218
\(894\) 0 0
\(895\) 20.9756 + 36.3308i 0.701137 + 1.21440i
\(896\) 0.281122 0.486917i 0.00939161 0.0162667i
\(897\) 0 0
\(898\) 13.3146 23.0615i 0.444313 0.769572i
\(899\) 7.91814 22.5154i 0.264085 0.750931i
\(900\) 0 0
\(901\) −3.02516 −0.100783
\(902\) −24.9032 −0.829185
\(903\) 0 0
\(904\) −13.7198 −0.456312
\(905\) 3.80414 6.58896i 0.126454 0.219024i
\(906\) 0 0
\(907\) 9.28510 16.0823i 0.308307 0.534003i −0.669685 0.742645i \(-0.733571\pi\)
0.977992 + 0.208642i \(0.0669043\pi\)
\(908\) −13.2692 + 22.9830i −0.440355 + 0.762718i
\(909\) 0 0
\(910\) 1.14139 1.97694i 0.0378367 0.0655350i
\(911\) 41.6570 1.38016 0.690079 0.723734i \(-0.257576\pi\)
0.690079 + 0.723734i \(0.257576\pi\)
\(912\) 0 0
\(913\) −4.08033 + 7.06735i −0.135039 + 0.233895i
\(914\) −6.35410 11.0056i −0.210175 0.364034i
\(915\) 0 0
\(916\) −2.02883 −0.0670344
\(917\) 0.979572 1.69667i 0.0323483 0.0560290i
\(918\) 0 0
\(919\) −17.9232 + 31.0439i −0.591231 + 1.02404i 0.402836 + 0.915272i \(0.368025\pi\)
−0.994067 + 0.108770i \(0.965309\pi\)
\(920\) 3.09779 + 5.36553i 0.102131 + 0.176896i
\(921\) 0 0
\(922\) 10.5442 + 18.2631i 0.347255 + 0.601463i
\(923\) 3.15880 5.47120i 0.103973 0.180087i
\(924\) 0 0
\(925\) 4.79963 + 8.31321i 0.157811 + 0.273337i
\(926\) −16.6791 −0.548109
\(927\) 0 0
\(928\) −4.28667 −0.140717
\(929\) 14.7317 25.5161i 0.483333 0.837157i −0.516484 0.856297i \(-0.672759\pi\)
0.999817 + 0.0191398i \(0.00609277\pi\)
\(930\) 0 0
\(931\) −9.72627 16.8464i −0.318766 0.552118i
\(932\) 6.47283 + 11.2113i 0.212024 + 0.367237i
\(933\) 0 0
\(934\) 17.2199 29.8257i 0.563451 0.975925i
\(935\) −11.3925 + 19.7324i −0.372574 + 0.645318i
\(936\) 0 0
\(937\) 6.46800 + 11.2029i 0.211300 + 0.365983i 0.952122 0.305719i \(-0.0988968\pi\)
−0.740821 + 0.671702i \(0.765563\pi\)
\(938\) 1.59944 2.77032i 0.0522237 0.0904541i
\(939\) 0 0
\(940\) −16.3939 −0.534709
\(941\) 53.1639 1.73309 0.866546 0.499097i \(-0.166335\pi\)
0.866546 + 0.499097i \(0.166335\pi\)
\(942\) 0 0
\(943\) 6.99875 + 12.1222i 0.227911 + 0.394753i
\(944\) −0.635617 1.10092i −0.0206876 0.0358319i
\(945\) 0 0
\(946\) −46.9092 −1.52515
\(947\) 44.6194 1.44994 0.724968 0.688782i \(-0.241854\pi\)
0.724968 + 0.688782i \(0.241854\pi\)
\(948\) 0 0
\(949\) 6.87024 11.8996i 0.223017 0.386277i
\(950\) 7.63883 0.247836
\(951\) 0 0
\(952\) −0.581108 1.00651i −0.0188338 0.0326211i
\(953\) −28.5363 −0.924382 −0.462191 0.886780i \(-0.652937\pi\)
−0.462191 + 0.886780i \(0.652937\pi\)
\(954\) 0 0
\(955\) −24.3111 42.1080i −0.786688 1.36258i
\(956\) 6.91699 + 11.9806i 0.223711 + 0.387479i
\(957\) 0 0
\(958\) −12.6337 + 21.8823i −0.408177 + 0.706984i
\(959\) 0.469163 + 0.812615i 0.0151501 + 0.0262407i
\(960\) 0 0
\(961\) 28.8925 11.2350i 0.932015 0.362419i
\(962\) −5.37758 −0.173380
\(963\) 0 0
\(964\) 13.9301 + 24.1277i 0.448659 + 0.777100i
\(965\) 5.83433 10.1054i 0.187814 0.325303i
\(966\) 0 0
\(967\) 6.33198 10.9673i 0.203623 0.352685i −0.746070 0.665867i \(-0.768062\pi\)
0.949693 + 0.313182i \(0.101395\pi\)
\(968\) 2.46746 4.27376i 0.0793071 0.137364i
\(969\) 0 0
\(970\) −21.9497 38.0179i −0.704761 1.22068i
\(971\) −18.7126 + 32.4111i −0.600515 + 1.04012i 0.392228 + 0.919868i \(0.371705\pi\)
−0.992743 + 0.120255i \(0.961629\pi\)
\(972\) 0 0
\(973\) −4.65581 8.06410i −0.149258 0.258523i
\(974\) 13.9395 + 24.1440i 0.446651 + 0.773623i
\(975\) 0 0
\(976\) −6.92283 11.9907i −0.221594 0.383813i
\(977\) −20.4535 35.4264i −0.654364 1.13339i −0.982053 0.188606i \(-0.939603\pi\)
0.327689 0.944786i \(-0.393730\pi\)
\(978\) 0 0
\(979\) −7.26088 12.5762i −0.232059 0.401937i
\(980\) −9.22805 15.9835i −0.294779 0.510573i
\(981\) 0 0
\(982\) −1.00378 + 1.73860i −0.0320319 + 0.0554809i
\(983\) 9.77898 + 16.9377i 0.311901 + 0.540228i 0.978774 0.204943i \(-0.0657010\pi\)
−0.666873 + 0.745171i \(0.732368\pi\)
\(984\) 0 0
\(985\) −30.5256 + 52.8718i −0.972625 + 1.68464i
\(986\) −4.43049 + 7.67384i −0.141096 + 0.244385i
\(987\) 0 0
\(988\) −2.13966 + 3.70601i −0.0680718 + 0.117904i
\(989\) 13.1833 + 22.8341i 0.419204 + 0.726083i
\(990\) 0 0
\(991\) 17.9448 0.570035 0.285018 0.958522i \(-0.408001\pi\)
0.285018 + 0.958522i \(0.408001\pi\)
\(992\) −3.62516 4.22590i −0.115099 0.134172i
\(993\) 0 0
\(994\) 1.20786 + 2.09208i 0.0383111 + 0.0663568i
\(995\) 11.6691 20.2114i 0.369934 0.640744i
\(996\) 0 0
\(997\) −6.82137 11.8150i −0.216035 0.374183i 0.737557 0.675284i \(-0.235979\pi\)
−0.953592 + 0.301101i \(0.902646\pi\)
\(998\) −10.2613 17.7731i −0.324817 0.562599i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1674.2.h.b.397.4 32
3.2 odd 2 558.2.h.a.25.14 yes 32
9.4 even 3 1674.2.g.b.955.13 32
9.5 odd 6 558.2.g.a.211.3 32
31.5 even 3 1674.2.g.b.1369.13 32
93.5 odd 6 558.2.g.a.439.3 yes 32
279.5 odd 6 558.2.h.a.67.14 yes 32
279.67 even 3 inner 1674.2.h.b.253.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
558.2.g.a.211.3 32 9.5 odd 6
558.2.g.a.439.3 yes 32 93.5 odd 6
558.2.h.a.25.14 yes 32 3.2 odd 2
558.2.h.a.67.14 yes 32 279.5 odd 6
1674.2.g.b.955.13 32 9.4 even 3
1674.2.g.b.1369.13 32 31.5 even 3
1674.2.h.b.253.4 32 279.67 even 3 inner
1674.2.h.b.397.4 32 1.1 even 1 trivial