Properties

Label 1674.2.g.b.1369.13
Level $1674$
Weight $2$
Character 1674.1369
Analytic conductor $13.367$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1674,2,Mod(955,1674)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1674.955"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1674, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1674 = 2 \cdot 3^{3} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1674.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.3669572984\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 558)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1369.13
Character \(\chi\) \(=\) 1674.1369
Dual form 1674.2.g.b.955.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(1.38064 - 2.39134i) q^{5} +(-0.281122 - 0.486917i) q^{7} -1.00000 q^{8} +(-1.38064 - 2.39134i) q^{10} +3.99186 q^{11} +(0.735188 - 1.27338i) q^{13} -0.562243 q^{14} +(-0.500000 + 0.866025i) q^{16} +(1.03355 - 1.79016i) q^{17} +(1.45518 - 2.52045i) q^{19} -2.76129 q^{20} +(1.99593 - 3.45705i) q^{22} +(1.12187 + 1.94313i) q^{23} +(-1.31235 - 2.27306i) q^{25} +(-0.735188 - 1.27338i) q^{26} +(-0.281122 + 0.486917i) q^{28} +(-2.14333 + 3.71236i) q^{29} +(3.62516 - 4.22590i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-1.03355 - 1.79016i) q^{34} -1.55251 q^{35} +(1.82864 - 3.16730i) q^{37} +(-1.45518 - 2.52045i) q^{38} +(-1.38064 + 2.39134i) q^{40} +(-3.11925 + 5.40270i) q^{41} +(-5.87561 - 10.1769i) q^{43} +(-1.99593 - 3.45705i) q^{44} +2.24373 q^{46} +(-2.96852 + 5.14163i) q^{47} +(3.34194 - 5.78841i) q^{49} -2.62470 q^{50} -1.47038 q^{52} +(-0.731740 - 1.26741i) q^{53} +(5.51133 - 9.54590i) q^{55} +(0.281122 + 0.486917i) q^{56} +(2.14333 + 3.71236i) q^{58} +1.27123 q^{59} +(-6.92283 + 11.9907i) q^{61} +(-1.84716 - 5.25243i) q^{62} +1.00000 q^{64} +(-2.03006 - 3.51617i) q^{65} +(-2.84476 + 4.92726i) q^{67} -2.06710 q^{68} +(-0.776257 + 1.34452i) q^{70} +(-2.14830 - 3.72096i) q^{71} +(-4.67244 - 8.09290i) q^{73} +(-1.82864 - 3.16730i) q^{74} -2.91037 q^{76} +(-1.12220 - 1.94370i) q^{77} +(0.516125 + 0.893955i) q^{79} +(1.38064 + 2.39134i) q^{80} +(3.11925 + 5.40270i) q^{82} +2.04433 q^{83} +(-2.85393 - 4.94316i) q^{85} -11.7512 q^{86} -3.99186 q^{88} +3.63785 q^{89} -0.826708 q^{91} +(1.12187 - 1.94313i) q^{92} +(2.96852 + 5.14163i) q^{94} +(-4.01818 - 6.95968i) q^{95} +(-7.94907 + 13.7682i) q^{97} +(-3.34194 - 5.78841i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{2} - 16 q^{4} + q^{5} + q^{7} - 32 q^{8} - q^{10} - 4 q^{11} - 10 q^{13} + 2 q^{14} - 16 q^{16} + 4 q^{17} + 4 q^{19} - 2 q^{20} - 2 q^{22} + q^{23} - 19 q^{25} + 10 q^{26} + q^{28} + 3 q^{29}+ \cdots + 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1674\mathbb{Z}\right)^\times\).

\(n\) \(1055\) \(1243\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.38064 2.39134i 0.617442 1.06944i −0.372509 0.928029i \(-0.621502\pi\)
0.989951 0.141413i \(-0.0451644\pi\)
\(6\) 0 0
\(7\) −0.281122 0.486917i −0.106254 0.184037i 0.807996 0.589188i \(-0.200552\pi\)
−0.914250 + 0.405151i \(0.867219\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.38064 2.39134i −0.436598 0.756209i
\(11\) 3.99186 1.20359 0.601795 0.798651i \(-0.294452\pi\)
0.601795 + 0.798651i \(0.294452\pi\)
\(12\) 0 0
\(13\) 0.735188 1.27338i 0.203904 0.353173i −0.745879 0.666082i \(-0.767970\pi\)
0.949783 + 0.312909i \(0.101304\pi\)
\(14\) −0.562243 −0.150266
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.03355 1.79016i 0.250673 0.434179i −0.713038 0.701125i \(-0.752681\pi\)
0.963711 + 0.266946i \(0.0860147\pi\)
\(18\) 0 0
\(19\) 1.45518 2.52045i 0.333842 0.578231i −0.649420 0.760430i \(-0.724988\pi\)
0.983262 + 0.182199i \(0.0583215\pi\)
\(20\) −2.76129 −0.617442
\(21\) 0 0
\(22\) 1.99593 3.45705i 0.425533 0.737045i
\(23\) 1.12187 + 1.94313i 0.233925 + 0.405170i 0.958960 0.283542i \(-0.0915096\pi\)
−0.725035 + 0.688712i \(0.758176\pi\)
\(24\) 0 0
\(25\) −1.31235 2.27306i −0.262470 0.454611i
\(26\) −0.735188 1.27338i −0.144182 0.249731i
\(27\) 0 0
\(28\) −0.281122 + 0.486917i −0.0531270 + 0.0920186i
\(29\) −2.14333 + 3.71236i −0.398007 + 0.689368i −0.993480 0.114007i \(-0.963631\pi\)
0.595473 + 0.803375i \(0.296965\pi\)
\(30\) 0 0
\(31\) 3.62516 4.22590i 0.651098 0.758994i
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −1.03355 1.79016i −0.177253 0.307011i
\(35\) −1.55251 −0.262423
\(36\) 0 0
\(37\) 1.82864 3.16730i 0.300627 0.520701i −0.675651 0.737221i \(-0.736137\pi\)
0.976278 + 0.216520i \(0.0694708\pi\)
\(38\) −1.45518 2.52045i −0.236062 0.408871i
\(39\) 0 0
\(40\) −1.38064 + 2.39134i −0.218299 + 0.378105i
\(41\) −3.11925 + 5.40270i −0.487145 + 0.843759i −0.999891 0.0147809i \(-0.995295\pi\)
0.512746 + 0.858540i \(0.328628\pi\)
\(42\) 0 0
\(43\) −5.87561 10.1769i −0.896023 1.55196i −0.832534 0.553974i \(-0.813111\pi\)
−0.0634887 0.997983i \(-0.520223\pi\)
\(44\) −1.99593 3.45705i −0.300897 0.521170i
\(45\) 0 0
\(46\) 2.24373 0.330820
\(47\) −2.96852 + 5.14163i −0.433003 + 0.749983i −0.997130 0.0757045i \(-0.975879\pi\)
0.564127 + 0.825688i \(0.309213\pi\)
\(48\) 0 0
\(49\) 3.34194 5.78841i 0.477420 0.826916i
\(50\) −2.62470 −0.371188
\(51\) 0 0
\(52\) −1.47038 −0.203904
\(53\) −0.731740 1.26741i −0.100512 0.174092i 0.811384 0.584514i \(-0.198715\pi\)
−0.911896 + 0.410422i \(0.865381\pi\)
\(54\) 0 0
\(55\) 5.51133 9.54590i 0.743147 1.28717i
\(56\) 0.281122 + 0.486917i 0.0375664 + 0.0650670i
\(57\) 0 0
\(58\) 2.14333 + 3.71236i 0.281433 + 0.487457i
\(59\) 1.27123 0.165501 0.0827503 0.996570i \(-0.473630\pi\)
0.0827503 + 0.996570i \(0.473630\pi\)
\(60\) 0 0
\(61\) −6.92283 + 11.9907i −0.886378 + 1.53525i −0.0422512 + 0.999107i \(0.513453\pi\)
−0.844126 + 0.536144i \(0.819880\pi\)
\(62\) −1.84716 5.25243i −0.234589 0.667059i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.03006 3.51617i −0.251798 0.436127i
\(66\) 0 0
\(67\) −2.84476 + 4.92726i −0.347542 + 0.601961i −0.985812 0.167852i \(-0.946317\pi\)
0.638270 + 0.769813i \(0.279650\pi\)
\(68\) −2.06710 −0.250673
\(69\) 0 0
\(70\) −0.776257 + 1.34452i −0.0927804 + 0.160700i
\(71\) −2.14830 3.72096i −0.254956 0.441596i 0.709928 0.704275i \(-0.248728\pi\)
−0.964884 + 0.262678i \(0.915394\pi\)
\(72\) 0 0
\(73\) −4.67244 8.09290i −0.546868 0.947202i −0.998487 0.0549916i \(-0.982487\pi\)
0.451619 0.892211i \(-0.350847\pi\)
\(74\) −1.82864 3.16730i −0.212575 0.368191i
\(75\) 0 0
\(76\) −2.91037 −0.333842
\(77\) −1.12220 1.94370i −0.127886 0.221505i
\(78\) 0 0
\(79\) 0.516125 + 0.893955i 0.0580686 + 0.100578i 0.893598 0.448867i \(-0.148172\pi\)
−0.835530 + 0.549445i \(0.814839\pi\)
\(80\) 1.38064 + 2.39134i 0.154361 + 0.267360i
\(81\) 0 0
\(82\) 3.11925 + 5.40270i 0.344463 + 0.596628i
\(83\) 2.04433 0.224394 0.112197 0.993686i \(-0.464211\pi\)
0.112197 + 0.993686i \(0.464211\pi\)
\(84\) 0 0
\(85\) −2.85393 4.94316i −0.309552 0.536161i
\(86\) −11.7512 −1.26717
\(87\) 0 0
\(88\) −3.99186 −0.425533
\(89\) 3.63785 0.385611 0.192805 0.981237i \(-0.438241\pi\)
0.192805 + 0.981237i \(0.438241\pi\)
\(90\) 0 0
\(91\) −0.826708 −0.0866626
\(92\) 1.12187 1.94313i 0.116963 0.202585i
\(93\) 0 0
\(94\) 2.96852 + 5.14163i 0.306179 + 0.530318i
\(95\) −4.01818 6.95968i −0.412256 0.714049i
\(96\) 0 0
\(97\) −7.94907 + 13.7682i −0.807106 + 1.39795i 0.107754 + 0.994178i \(0.465634\pi\)
−0.914860 + 0.403771i \(0.867699\pi\)
\(98\) −3.34194 5.78841i −0.337587 0.584718i
\(99\) 0 0
\(100\) −1.31235 + 2.27306i −0.131235 + 0.227306i
\(101\) −1.05409 + 1.82574i −0.104886 + 0.181668i −0.913692 0.406408i \(-0.866781\pi\)
0.808806 + 0.588076i \(0.200114\pi\)
\(102\) 0 0
\(103\) 5.89275 10.2065i 0.580630 1.00568i −0.414775 0.909924i \(-0.636140\pi\)
0.995405 0.0957562i \(-0.0305269\pi\)
\(104\) −0.735188 + 1.27338i −0.0720911 + 0.124865i
\(105\) 0 0
\(106\) −1.46348 −0.142146
\(107\) 3.06844 5.31470i 0.296638 0.513792i −0.678727 0.734391i \(-0.737468\pi\)
0.975365 + 0.220599i \(0.0708013\pi\)
\(108\) 0 0
\(109\) 12.8643 1.23218 0.616088 0.787677i \(-0.288716\pi\)
0.616088 + 0.787677i \(0.288716\pi\)
\(110\) −5.51133 9.54590i −0.525484 0.910166i
\(111\) 0 0
\(112\) 0.562243 0.0531270
\(113\) −6.85988 + 11.8817i −0.645323 + 1.11773i 0.338903 + 0.940821i \(0.389944\pi\)
−0.984227 + 0.176912i \(0.943389\pi\)
\(114\) 0 0
\(115\) 6.19558 0.577741
\(116\) 4.28667 0.398007
\(117\) 0 0
\(118\) 0.635617 1.10092i 0.0585133 0.101348i
\(119\) −1.16222 −0.106540
\(120\) 0 0
\(121\) 4.93492 0.448629
\(122\) 6.92283 + 11.9907i 0.626764 + 1.08559i
\(123\) 0 0
\(124\) −5.47232 1.02653i −0.491428 0.0921852i
\(125\) 6.55889 0.586645
\(126\) 0 0
\(127\) −3.57207 + 6.18701i −0.316970 + 0.549008i −0.979854 0.199714i \(-0.935999\pi\)
0.662884 + 0.748722i \(0.269332\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −4.06013 −0.356097
\(131\) −3.48452 −0.304444 −0.152222 0.988346i \(-0.548643\pi\)
−0.152222 + 0.988346i \(0.548643\pi\)
\(132\) 0 0
\(133\) −1.63633 −0.141888
\(134\) 2.84476 + 4.92726i 0.245749 + 0.425651i
\(135\) 0 0
\(136\) −1.03355 + 1.79016i −0.0886264 + 0.153505i
\(137\) −1.66890 −0.142584 −0.0712918 0.997456i \(-0.522712\pi\)
−0.0712918 + 0.997456i \(0.522712\pi\)
\(138\) 0 0
\(139\) −8.28078 14.3427i −0.702366 1.21653i −0.967634 0.252359i \(-0.918793\pi\)
0.265267 0.964175i \(-0.414540\pi\)
\(140\) 0.776257 + 1.34452i 0.0656057 + 0.113632i
\(141\) 0 0
\(142\) −4.29659 −0.360562
\(143\) 2.93476 5.08316i 0.245417 0.425075i
\(144\) 0 0
\(145\) 5.91835 + 10.2509i 0.491493 + 0.851290i
\(146\) −9.34488 −0.773387
\(147\) 0 0
\(148\) −3.65728 −0.300627
\(149\) 12.7433 1.04397 0.521987 0.852953i \(-0.325191\pi\)
0.521987 + 0.852953i \(0.325191\pi\)
\(150\) 0 0
\(151\) −2.16532 + 3.75045i −0.176212 + 0.305207i −0.940580 0.339573i \(-0.889718\pi\)
0.764368 + 0.644780i \(0.223051\pi\)
\(152\) −1.45518 + 2.52045i −0.118031 + 0.204436i
\(153\) 0 0
\(154\) −2.24439 −0.180858
\(155\) −5.10052 14.5035i −0.409684 1.16495i
\(156\) 0 0
\(157\) −11.0809 19.1927i −0.884353 1.53174i −0.846454 0.532463i \(-0.821267\pi\)
−0.0378993 0.999282i \(-0.512067\pi\)
\(158\) 1.03225 0.0821214
\(159\) 0 0
\(160\) 2.76129 0.218299
\(161\) 0.630761 1.09251i 0.0497109 0.0861019i
\(162\) 0 0
\(163\) 1.82322 0.142806 0.0714029 0.997448i \(-0.477252\pi\)
0.0714029 + 0.997448i \(0.477252\pi\)
\(164\) 6.23850 0.487145
\(165\) 0 0
\(166\) 1.02216 1.77044i 0.0793354 0.137413i
\(167\) 6.41709 0.496569 0.248285 0.968687i \(-0.420133\pi\)
0.248285 + 0.968687i \(0.420133\pi\)
\(168\) 0 0
\(169\) 5.41900 + 9.38598i 0.416846 + 0.721999i
\(170\) −5.70787 −0.437773
\(171\) 0 0
\(172\) −5.87561 + 10.1769i −0.448011 + 0.775978i
\(173\) 21.0217 1.59825 0.799127 0.601163i \(-0.205296\pi\)
0.799127 + 0.601163i \(0.205296\pi\)
\(174\) 0 0
\(175\) −0.737859 + 1.27801i −0.0557769 + 0.0966084i
\(176\) −1.99593 + 3.45705i −0.150449 + 0.260585i
\(177\) 0 0
\(178\) 1.81892 3.15047i 0.136334 0.236137i
\(179\) −7.59632 + 13.1572i −0.567775 + 0.983416i 0.429010 + 0.903300i \(0.358862\pi\)
−0.996786 + 0.0801160i \(0.974471\pi\)
\(180\) 0 0
\(181\) −1.37767 2.38619i −0.102401 0.177364i 0.810272 0.586054i \(-0.199319\pi\)
−0.912674 + 0.408689i \(0.865986\pi\)
\(182\) −0.413354 + 0.715950i −0.0306398 + 0.0530698i
\(183\) 0 0
\(184\) −1.12187 1.94313i −0.0827050 0.143249i
\(185\) −5.04940 8.74582i −0.371239 0.643005i
\(186\) 0 0
\(187\) 4.12579 7.14608i 0.301708 0.522573i
\(188\) 5.93704 0.433003
\(189\) 0 0
\(190\) −8.03635 −0.583018
\(191\) −17.6085 −1.27411 −0.637054 0.770819i \(-0.719847\pi\)
−0.637054 + 0.770819i \(0.719847\pi\)
\(192\) 0 0
\(193\) 4.22580 0.304180 0.152090 0.988367i \(-0.451400\pi\)
0.152090 + 0.988367i \(0.451400\pi\)
\(194\) 7.94907 + 13.7682i 0.570710 + 0.988499i
\(195\) 0 0
\(196\) −6.68388 −0.477420
\(197\) 11.0548 + 19.1475i 0.787624 + 1.36421i 0.927419 + 0.374025i \(0.122022\pi\)
−0.139794 + 0.990181i \(0.544644\pi\)
\(198\) 0 0
\(199\) −4.22595 7.31956i −0.299570 0.518870i 0.676468 0.736472i \(-0.263510\pi\)
−0.976038 + 0.217602i \(0.930176\pi\)
\(200\) 1.31235 + 2.27306i 0.0927971 + 0.160729i
\(201\) 0 0
\(202\) 1.05409 + 1.82574i 0.0741655 + 0.128458i
\(203\) 2.41015 0.169159
\(204\) 0 0
\(205\) 8.61313 + 14.9184i 0.601567 + 1.04195i
\(206\) −5.89275 10.2065i −0.410567 0.711123i
\(207\) 0 0
\(208\) 0.735188 + 1.27338i 0.0509761 + 0.0882932i
\(209\) 5.80888 10.0613i 0.401809 0.695953i
\(210\) 0 0
\(211\) 26.7357 1.84056 0.920280 0.391261i \(-0.127961\pi\)
0.920280 + 0.391261i \(0.127961\pi\)
\(212\) −0.731740 + 1.26741i −0.0502561 + 0.0870461i
\(213\) 0 0
\(214\) −3.06844 5.31470i −0.209755 0.363306i
\(215\) −32.4485 −2.21297
\(216\) 0 0
\(217\) −3.07677 0.577160i −0.208865 0.0391802i
\(218\) 6.43215 11.1408i 0.435640 0.754551i
\(219\) 0 0
\(220\) −11.0227 −0.743147
\(221\) −1.51971 2.63221i −0.102227 0.177062i
\(222\) 0 0
\(223\) −10.6257 18.4043i −0.711551 1.23244i −0.964275 0.264904i \(-0.914660\pi\)
0.252723 0.967539i \(-0.418674\pi\)
\(224\) 0.281122 0.486917i 0.0187832 0.0325335i
\(225\) 0 0
\(226\) 6.85988 + 11.8817i 0.456312 + 0.790356i
\(227\) 26.5385 1.76142 0.880711 0.473655i \(-0.157066\pi\)
0.880711 + 0.473655i \(0.157066\pi\)
\(228\) 0 0
\(229\) −2.02883 −0.134069 −0.0670344 0.997751i \(-0.521354\pi\)
−0.0670344 + 0.997751i \(0.521354\pi\)
\(230\) 3.09779 5.36553i 0.204262 0.353793i
\(231\) 0 0
\(232\) 2.14333 3.71236i 0.140717 0.243728i
\(233\) −12.9457 −0.848098 −0.424049 0.905639i \(-0.639392\pi\)
−0.424049 + 0.905639i \(0.639392\pi\)
\(234\) 0 0
\(235\) 8.19693 + 14.1975i 0.534709 + 0.926143i
\(236\) −0.635617 1.10092i −0.0413751 0.0716638i
\(237\) 0 0
\(238\) −0.581108 + 1.00651i −0.0376676 + 0.0652422i
\(239\) 6.91699 11.9806i 0.447423 0.774959i −0.550795 0.834641i \(-0.685675\pi\)
0.998217 + 0.0596818i \(0.0190086\pi\)
\(240\) 0 0
\(241\) 13.9301 + 24.1277i 0.897317 + 1.55420i 0.830910 + 0.556407i \(0.187820\pi\)
0.0664072 + 0.997793i \(0.478846\pi\)
\(242\) 2.46746 4.27376i 0.158614 0.274728i
\(243\) 0 0
\(244\) 13.8457 0.886378
\(245\) −9.22805 15.9835i −0.589559 1.02115i
\(246\) 0 0
\(247\) −2.13966 3.70601i −0.136144 0.235808i
\(248\) −3.62516 + 4.22590i −0.230198 + 0.268345i
\(249\) 0 0
\(250\) 3.27944 5.68016i 0.207410 0.359245i
\(251\) −4.36267 + 7.55637i −0.275370 + 0.476954i −0.970228 0.242192i \(-0.922134\pi\)
0.694859 + 0.719146i \(0.255467\pi\)
\(252\) 0 0
\(253\) 4.47833 + 7.75669i 0.281550 + 0.487659i
\(254\) 3.57207 + 6.18701i 0.224132 + 0.388208i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 3.24025 5.61228i 0.202121 0.350084i −0.747090 0.664722i \(-0.768550\pi\)
0.949212 + 0.314638i \(0.101883\pi\)
\(258\) 0 0
\(259\) −2.05628 −0.127771
\(260\) −2.03006 + 3.51617i −0.125899 + 0.218064i
\(261\) 0 0
\(262\) −1.74226 + 3.01768i −0.107637 + 0.186433i
\(263\) −7.90071 + 13.6844i −0.487178 + 0.843818i −0.999891 0.0147424i \(-0.995307\pi\)
0.512713 + 0.858560i \(0.328641\pi\)
\(264\) 0 0
\(265\) −4.04109 −0.248242
\(266\) −0.818166 + 1.41711i −0.0501650 + 0.0868883i
\(267\) 0 0
\(268\) 5.68951 0.347542
\(269\) 5.24517 + 9.08490i 0.319804 + 0.553916i 0.980447 0.196784i \(-0.0630497\pi\)
−0.660643 + 0.750700i \(0.729716\pi\)
\(270\) 0 0
\(271\) 19.1276 1.16192 0.580959 0.813933i \(-0.302678\pi\)
0.580959 + 0.813933i \(0.302678\pi\)
\(272\) 1.03355 + 1.79016i 0.0626683 + 0.108545i
\(273\) 0 0
\(274\) −0.834449 + 1.44531i −0.0504109 + 0.0873143i
\(275\) −5.23871 9.07371i −0.315906 0.547165i
\(276\) 0 0
\(277\) −2.65245 + 4.59418i −0.159370 + 0.276038i −0.934642 0.355591i \(-0.884280\pi\)
0.775271 + 0.631628i \(0.217613\pi\)
\(278\) −16.5616 −0.993296
\(279\) 0 0
\(280\) 1.55251 0.0927804
\(281\) −11.3592 + 19.6748i −0.677635 + 1.17370i 0.298057 + 0.954548i \(0.403662\pi\)
−0.975691 + 0.219149i \(0.929672\pi\)
\(282\) 0 0
\(283\) 12.8023 + 22.1743i 0.761019 + 1.31812i 0.942326 + 0.334697i \(0.108634\pi\)
−0.181307 + 0.983427i \(0.558033\pi\)
\(284\) −2.14830 + 3.72096i −0.127478 + 0.220798i
\(285\) 0 0
\(286\) −2.93476 5.08316i −0.173536 0.300573i
\(287\) 3.50755 0.207044
\(288\) 0 0
\(289\) 6.36354 + 11.0220i 0.374326 + 0.648351i
\(290\) 11.8367 0.695076
\(291\) 0 0
\(292\) −4.67244 + 8.09290i −0.273434 + 0.473601i
\(293\) 6.34563 0.370715 0.185358 0.982671i \(-0.440656\pi\)
0.185358 + 0.982671i \(0.440656\pi\)
\(294\) 0 0
\(295\) 1.75512 3.03996i 0.102187 0.176993i
\(296\) −1.82864 + 3.16730i −0.106288 + 0.184096i
\(297\) 0 0
\(298\) 6.37166 11.0360i 0.369101 0.639301i
\(299\) 3.29913 0.190793
\(300\) 0 0
\(301\) −3.30352 + 5.72187i −0.190412 + 0.329803i
\(302\) 2.16532 + 3.75045i 0.124600 + 0.215814i
\(303\) 0 0
\(304\) 1.45518 + 2.52045i 0.0834605 + 0.144558i
\(305\) 19.1159 + 33.1097i 1.09457 + 1.89586i
\(306\) 0 0
\(307\) 2.68363 4.64819i 0.153163 0.265286i −0.779226 0.626743i \(-0.784387\pi\)
0.932389 + 0.361457i \(0.117721\pi\)
\(308\) −1.12220 + 1.94370i −0.0639431 + 0.110753i
\(309\) 0 0
\(310\) −15.1106 2.83455i −0.858226 0.160991i
\(311\) 14.3458 + 24.8477i 0.813476 + 1.40898i 0.910417 + 0.413691i \(0.135761\pi\)
−0.0969413 + 0.995290i \(0.530906\pi\)
\(312\) 0 0
\(313\) −3.51471 6.08766i −0.198663 0.344095i 0.749432 0.662081i \(-0.230327\pi\)
−0.948095 + 0.317986i \(0.896993\pi\)
\(314\) −22.1618 −1.25066
\(315\) 0 0
\(316\) 0.516125 0.893955i 0.0290343 0.0502889i
\(317\) 2.92859 + 5.07247i 0.164486 + 0.284898i 0.936473 0.350741i \(-0.114070\pi\)
−0.771987 + 0.635639i \(0.780737\pi\)
\(318\) 0 0
\(319\) −8.55588 + 14.8192i −0.479037 + 0.829717i
\(320\) 1.38064 2.39134i 0.0771803 0.133680i
\(321\) 0 0
\(322\) −0.630761 1.09251i −0.0351509 0.0608832i
\(323\) −3.00802 5.21004i −0.167370 0.289894i
\(324\) 0 0
\(325\) −3.85929 −0.214075
\(326\) 0.911611 1.57896i 0.0504895 0.0874503i
\(327\) 0 0
\(328\) 3.11925 5.40270i 0.172232 0.298314i
\(329\) 3.33806 0.184033
\(330\) 0 0
\(331\) −14.4242 −0.792828 −0.396414 0.918072i \(-0.629745\pi\)
−0.396414 + 0.918072i \(0.629745\pi\)
\(332\) −1.02216 1.77044i −0.0560986 0.0971656i
\(333\) 0 0
\(334\) 3.20854 5.55736i 0.175564 0.304085i
\(335\) 7.85518 + 13.6056i 0.429175 + 0.743352i
\(336\) 0 0
\(337\) 13.7311 + 23.7829i 0.747978 + 1.29554i 0.948790 + 0.315907i \(0.102309\pi\)
−0.200812 + 0.979630i \(0.564358\pi\)
\(338\) 10.8380 0.589509
\(339\) 0 0
\(340\) −2.85393 + 4.94316i −0.154776 + 0.268080i
\(341\) 14.4711 16.8692i 0.783655 0.913517i
\(342\) 0 0
\(343\) −7.69367 −0.415419
\(344\) 5.87561 + 10.1769i 0.316792 + 0.548700i
\(345\) 0 0
\(346\) 10.5109 18.2054i 0.565068 0.978726i
\(347\) 9.86345 0.529498 0.264749 0.964317i \(-0.414711\pi\)
0.264749 + 0.964317i \(0.414711\pi\)
\(348\) 0 0
\(349\) 5.34850 9.26388i 0.286299 0.495884i −0.686624 0.727012i \(-0.740908\pi\)
0.972923 + 0.231128i \(0.0742417\pi\)
\(350\) 0.737859 + 1.27801i 0.0394402 + 0.0683125i
\(351\) 0 0
\(352\) 1.99593 + 3.45705i 0.106383 + 0.184261i
\(353\) 14.5379 + 25.1803i 0.773773 + 1.34021i 0.935481 + 0.353376i \(0.114966\pi\)
−0.161708 + 0.986839i \(0.551700\pi\)
\(354\) 0 0
\(355\) −11.8641 −0.629682
\(356\) −1.81892 3.15047i −0.0964027 0.166974i
\(357\) 0 0
\(358\) 7.59632 + 13.1572i 0.401478 + 0.695380i
\(359\) −1.79467 3.10846i −0.0947189 0.164058i 0.814772 0.579781i \(-0.196862\pi\)
−0.909491 + 0.415723i \(0.863529\pi\)
\(360\) 0 0
\(361\) 5.26489 + 9.11905i 0.277099 + 0.479950i
\(362\) −2.75534 −0.144817
\(363\) 0 0
\(364\) 0.413354 + 0.715950i 0.0216656 + 0.0375260i
\(365\) −25.8039 −1.35064
\(366\) 0 0
\(367\) −14.6889 −0.766754 −0.383377 0.923592i \(-0.625239\pi\)
−0.383377 + 0.923592i \(0.625239\pi\)
\(368\) −2.24373 −0.116963
\(369\) 0 0
\(370\) −10.0988 −0.525012
\(371\) −0.411416 + 0.712593i −0.0213596 + 0.0369960i
\(372\) 0 0
\(373\) −19.2242 33.2973i −0.995392 1.72407i −0.580741 0.814088i \(-0.697237\pi\)
−0.414651 0.909981i \(-0.636096\pi\)
\(374\) −4.12579 7.14608i −0.213340 0.369515i
\(375\) 0 0
\(376\) 2.96852 5.14163i 0.153090 0.265159i
\(377\) 3.15150 + 5.45856i 0.162311 + 0.281130i
\(378\) 0 0
\(379\) −13.8582 + 24.0031i −0.711849 + 1.23296i 0.252313 + 0.967646i \(0.418809\pi\)
−0.964162 + 0.265313i \(0.914525\pi\)
\(380\) −4.01818 + 6.95968i −0.206128 + 0.357024i
\(381\) 0 0
\(382\) −8.80426 + 15.2494i −0.450465 + 0.780229i
\(383\) 11.0303 19.1051i 0.563624 0.976225i −0.433552 0.901128i \(-0.642740\pi\)
0.997176 0.0750969i \(-0.0239266\pi\)
\(384\) 0 0
\(385\) −6.19741 −0.315849
\(386\) 2.11290 3.65965i 0.107544 0.186272i
\(387\) 0 0
\(388\) 15.8981 0.807106
\(389\) −1.37490 2.38140i −0.0697103 0.120742i 0.829063 0.559154i \(-0.188874\pi\)
−0.898774 + 0.438413i \(0.855541\pi\)
\(390\) 0 0
\(391\) 4.63803 0.234555
\(392\) −3.34194 + 5.78841i −0.168794 + 0.292359i
\(393\) 0 0
\(394\) 22.1097 1.11387
\(395\) 2.85034 0.143416
\(396\) 0 0
\(397\) −0.820424 + 1.42102i −0.0411759 + 0.0713187i −0.885879 0.463917i \(-0.846444\pi\)
0.844703 + 0.535235i \(0.179777\pi\)
\(398\) −8.45190 −0.423656
\(399\) 0 0
\(400\) 2.62470 0.131235
\(401\) 4.89561 + 8.47944i 0.244475 + 0.423443i 0.961984 0.273106i \(-0.0880510\pi\)
−0.717509 + 0.696549i \(0.754718\pi\)
\(402\) 0 0
\(403\) −2.71601 7.72304i −0.135294 0.384712i
\(404\) 2.10818 0.104886
\(405\) 0 0
\(406\) 1.20507 2.08725i 0.0598068 0.103588i
\(407\) 7.29967 12.6434i 0.361831 0.626710i
\(408\) 0 0
\(409\) 16.7776 0.829599 0.414799 0.909913i \(-0.363852\pi\)
0.414799 + 0.909913i \(0.363852\pi\)
\(410\) 17.2263 0.850745
\(411\) 0 0
\(412\) −11.7855 −0.580630
\(413\) −0.357371 0.618985i −0.0175851 0.0304583i
\(414\) 0 0
\(415\) 2.82249 4.88869i 0.138551 0.239977i
\(416\) 1.47038 0.0720911
\(417\) 0 0
\(418\) −5.80888 10.0613i −0.284122 0.492113i
\(419\) −11.7683 20.3833i −0.574919 0.995789i −0.996050 0.0887895i \(-0.971700\pi\)
0.421131 0.907000i \(-0.361633\pi\)
\(420\) 0 0
\(421\) 35.4521 1.72783 0.863915 0.503638i \(-0.168005\pi\)
0.863915 + 0.503638i \(0.168005\pi\)
\(422\) 13.3678 23.1538i 0.650736 1.12711i
\(423\) 0 0
\(424\) 0.731740 + 1.26741i 0.0355364 + 0.0615509i
\(425\) −5.42553 −0.263177
\(426\) 0 0
\(427\) 7.78463 0.376724
\(428\) −6.13689 −0.296638
\(429\) 0 0
\(430\) −16.2242 + 28.1012i −0.782403 + 1.35516i
\(431\) 10.4796 18.1512i 0.504785 0.874314i −0.495199 0.868779i \(-0.664905\pi\)
0.999985 0.00553455i \(-0.00176171\pi\)
\(432\) 0 0
\(433\) −6.09639 −0.292974 −0.146487 0.989213i \(-0.546797\pi\)
−0.146487 + 0.989213i \(0.546797\pi\)
\(434\) −2.03822 + 2.37598i −0.0978377 + 0.114051i
\(435\) 0 0
\(436\) −6.43215 11.1408i −0.308044 0.533548i
\(437\) 6.53008 0.312376
\(438\) 0 0
\(439\) −27.7751 −1.32563 −0.662817 0.748781i \(-0.730639\pi\)
−0.662817 + 0.748781i \(0.730639\pi\)
\(440\) −5.51133 + 9.54590i −0.262742 + 0.455083i
\(441\) 0 0
\(442\) −3.03942 −0.144570
\(443\) −3.02353 −0.143652 −0.0718262 0.997417i \(-0.522883\pi\)
−0.0718262 + 0.997417i \(0.522883\pi\)
\(444\) 0 0
\(445\) 5.02257 8.69934i 0.238092 0.412388i
\(446\) −21.2515 −1.00629
\(447\) 0 0
\(448\) −0.281122 0.486917i −0.0132817 0.0230047i
\(449\) 26.6291 1.25671 0.628353 0.777928i \(-0.283729\pi\)
0.628353 + 0.777928i \(0.283729\pi\)
\(450\) 0 0
\(451\) −12.4516 + 21.5668i −0.586322 + 1.01554i
\(452\) 13.7198 0.645323
\(453\) 0 0
\(454\) 13.2692 22.9830i 0.622756 1.07865i
\(455\) −1.14139 + 1.97694i −0.0535091 + 0.0926805i
\(456\) 0 0
\(457\) 6.35410 11.0056i 0.297232 0.514822i −0.678269 0.734813i \(-0.737270\pi\)
0.975502 + 0.219992i \(0.0706030\pi\)
\(458\) −1.01441 + 1.75702i −0.0474005 + 0.0821000i
\(459\) 0 0
\(460\) −3.09779 5.36553i −0.144435 0.250169i
\(461\) −10.5442 + 18.2631i −0.491093 + 0.850597i −0.999947 0.0102549i \(-0.996736\pi\)
0.508855 + 0.860852i \(0.330069\pi\)
\(462\) 0 0
\(463\) −8.33955 14.4445i −0.387572 0.671294i 0.604551 0.796567i \(-0.293353\pi\)
−0.992122 + 0.125273i \(0.960019\pi\)
\(464\) −2.14333 3.71236i −0.0995017 0.172342i
\(465\) 0 0
\(466\) −6.47283 + 11.2113i −0.299848 + 0.519352i
\(467\) 34.4397 1.59368 0.796840 0.604191i \(-0.206504\pi\)
0.796840 + 0.604191i \(0.206504\pi\)
\(468\) 0 0
\(469\) 3.19889 0.147711
\(470\) 16.3939 0.756193
\(471\) 0 0
\(472\) −1.27123 −0.0585133
\(473\) −23.4546 40.6246i −1.07844 1.86792i
\(474\) 0 0
\(475\) −7.63883 −0.350494
\(476\) 0.581108 + 1.00651i 0.0266350 + 0.0461332i
\(477\) 0 0
\(478\) −6.91699 11.9806i −0.316376 0.547979i
\(479\) 12.6337 + 21.8823i 0.577250 + 0.999826i 0.995793 + 0.0916290i \(0.0292074\pi\)
−0.418544 + 0.908197i \(0.637459\pi\)
\(480\) 0 0
\(481\) −2.68879 4.65712i −0.122598 0.212346i
\(482\) 27.8602 1.26900
\(483\) 0 0
\(484\) −2.46746 4.27376i −0.112157 0.194262i
\(485\) 21.9497 + 38.0179i 0.996683 + 1.72630i
\(486\) 0 0
\(487\) −13.9395 24.1440i −0.631660 1.09407i −0.987212 0.159411i \(-0.949040\pi\)
0.355552 0.934657i \(-0.384293\pi\)
\(488\) 6.92283 11.9907i 0.313382 0.542793i
\(489\) 0 0
\(490\) −18.4561 −0.833762
\(491\) 1.00378 1.73860i 0.0452999 0.0784618i −0.842486 0.538718i \(-0.818909\pi\)
0.887786 + 0.460256i \(0.152242\pi\)
\(492\) 0 0
\(493\) 4.43049 + 7.67384i 0.199539 + 0.345612i
\(494\) −4.27933 −0.192536
\(495\) 0 0
\(496\) 1.84716 + 5.25243i 0.0829397 + 0.235841i
\(497\) −1.20786 + 2.09208i −0.0541801 + 0.0938427i
\(498\) 0 0
\(499\) −20.5227 −0.918720 −0.459360 0.888250i \(-0.651921\pi\)
−0.459360 + 0.888250i \(0.651921\pi\)
\(500\) −3.27944 5.68016i −0.146661 0.254025i
\(501\) 0 0
\(502\) 4.36267 + 7.55637i 0.194716 + 0.337257i
\(503\) 16.3446 28.3097i 0.728771 1.26227i −0.228632 0.973513i \(-0.573425\pi\)
0.957403 0.288755i \(-0.0932413\pi\)
\(504\) 0 0
\(505\) 2.91064 + 5.04138i 0.129522 + 0.224339i
\(506\) 8.95665 0.398172
\(507\) 0 0
\(508\) 7.14415 0.316970
\(509\) 15.4177 26.7042i 0.683376 1.18364i −0.290568 0.956854i \(-0.593844\pi\)
0.973944 0.226788i \(-0.0728223\pi\)
\(510\) 0 0
\(511\) −2.62705 + 4.55018i −0.116214 + 0.201288i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −3.24025 5.61228i −0.142921 0.247547i
\(515\) −16.2716 28.1832i −0.717011 1.24190i
\(516\) 0 0
\(517\) −11.8499 + 20.5246i −0.521158 + 0.902673i
\(518\) −1.02814 + 1.78079i −0.0451739 + 0.0782435i
\(519\) 0 0
\(520\) 2.03006 + 3.51617i 0.0890241 + 0.154194i
\(521\) −4.71147 + 8.16051i −0.206413 + 0.357519i −0.950582 0.310473i \(-0.899513\pi\)
0.744169 + 0.667992i \(0.232846\pi\)
\(522\) 0 0
\(523\) 40.0302 1.75040 0.875200 0.483761i \(-0.160730\pi\)
0.875200 + 0.483761i \(0.160730\pi\)
\(524\) 1.74226 + 3.01768i 0.0761109 + 0.131828i
\(525\) 0 0
\(526\) 7.90071 + 13.6844i 0.344487 + 0.596669i
\(527\) −3.81826 10.8573i −0.166326 0.472952i
\(528\) 0 0
\(529\) 8.98284 15.5587i 0.390558 0.676466i
\(530\) −2.02054 + 3.49968i −0.0877668 + 0.152016i
\(531\) 0 0
\(532\) 0.818166 + 1.41711i 0.0354720 + 0.0614393i
\(533\) 4.58646 + 7.94399i 0.198662 + 0.344092i
\(534\) 0 0
\(535\) −8.47285 14.6754i −0.366313 0.634473i
\(536\) 2.84476 4.92726i 0.122875 0.212825i
\(537\) 0 0
\(538\) 10.4903 0.452271
\(539\) 13.3405 23.1065i 0.574618 0.995268i
\(540\) 0 0
\(541\) −7.70912 + 13.3526i −0.331441 + 0.574073i −0.982795 0.184702i \(-0.940868\pi\)
0.651354 + 0.758774i \(0.274201\pi\)
\(542\) 9.56379 16.5650i 0.410800 0.711527i
\(543\) 0 0
\(544\) 2.06710 0.0886264
\(545\) 17.7610 30.7630i 0.760798 1.31774i
\(546\) 0 0
\(547\) −5.40646 −0.231164 −0.115582 0.993298i \(-0.536873\pi\)
−0.115582 + 0.993298i \(0.536873\pi\)
\(548\) 0.834449 + 1.44531i 0.0356459 + 0.0617405i
\(549\) 0 0
\(550\) −10.4774 −0.446759
\(551\) 6.23788 + 10.8043i 0.265743 + 0.460280i
\(552\) 0 0
\(553\) 0.290188 0.502620i 0.0123400 0.0213736i
\(554\) 2.65245 + 4.59418i 0.112692 + 0.195188i
\(555\) 0 0
\(556\) −8.28078 + 14.3427i −0.351183 + 0.608267i
\(557\) −27.1620 −1.15089 −0.575445 0.817840i \(-0.695171\pi\)
−0.575445 + 0.817840i \(0.695171\pi\)
\(558\) 0 0
\(559\) −17.2787 −0.730812
\(560\) 0.776257 1.34452i 0.0328028 0.0568162i
\(561\) 0 0
\(562\) 11.3592 + 19.6748i 0.479160 + 0.829929i
\(563\) 2.45043 4.24427i 0.103273 0.178874i −0.809758 0.586764i \(-0.800402\pi\)
0.913031 + 0.407889i \(0.133735\pi\)
\(564\) 0 0
\(565\) 18.9421 + 32.8087i 0.796900 + 1.38027i
\(566\) 25.6046 1.07624
\(567\) 0 0
\(568\) 2.14830 + 3.72096i 0.0901405 + 0.156128i
\(569\) −26.8565 −1.12589 −0.562943 0.826496i \(-0.690331\pi\)
−0.562943 + 0.826496i \(0.690331\pi\)
\(570\) 0 0
\(571\) −19.4371 + 33.6661i −0.813419 + 1.40888i 0.0970391 + 0.995281i \(0.469063\pi\)
−0.910458 + 0.413602i \(0.864271\pi\)
\(572\) −5.86953 −0.245417
\(573\) 0 0
\(574\) 1.75378 3.03763i 0.0732012 0.126788i
\(575\) 2.94456 5.10013i 0.122797 0.212690i
\(576\) 0 0
\(577\) 3.68743 6.38682i 0.153510 0.265887i −0.779006 0.627017i \(-0.784276\pi\)
0.932515 + 0.361130i \(0.117609\pi\)
\(578\) 12.7271 0.529377
\(579\) 0 0
\(580\) 5.91835 10.2509i 0.245746 0.425645i
\(581\) −0.574705 0.995418i −0.0238428 0.0412969i
\(582\) 0 0
\(583\) −2.92100 5.05932i −0.120975 0.209536i
\(584\) 4.67244 + 8.09290i 0.193347 + 0.334887i
\(585\) 0 0
\(586\) 3.17281 5.49547i 0.131068 0.227016i
\(587\) −17.2870 + 29.9420i −0.713511 + 1.23584i 0.250019 + 0.968241i \(0.419563\pi\)
−0.963531 + 0.267597i \(0.913770\pi\)
\(588\) 0 0
\(589\) −5.37590 15.2865i −0.221510 0.629869i
\(590\) −1.75512 3.03996i −0.0722571 0.125153i
\(591\) 0 0
\(592\) 1.82864 + 3.16730i 0.0751567 + 0.130175i
\(593\) −20.4038 −0.837884 −0.418942 0.908013i \(-0.637599\pi\)
−0.418942 + 0.908013i \(0.637599\pi\)
\(594\) 0 0
\(595\) −1.60460 + 2.77926i −0.0657823 + 0.113938i
\(596\) −6.37166 11.0360i −0.260994 0.452054i
\(597\) 0 0
\(598\) 1.64956 2.85713i 0.0674557 0.116837i
\(599\) −18.7854 + 32.5373i −0.767551 + 1.32944i 0.171337 + 0.985213i \(0.445191\pi\)
−0.938887 + 0.344224i \(0.888142\pi\)
\(600\) 0 0
\(601\) −7.88826 13.6629i −0.321769 0.557320i 0.659084 0.752069i \(-0.270944\pi\)
−0.980853 + 0.194749i \(0.937611\pi\)
\(602\) 3.30352 + 5.72187i 0.134642 + 0.233206i
\(603\) 0 0
\(604\) 4.33065 0.176212
\(605\) 6.81336 11.8011i 0.277002 0.479782i
\(606\) 0 0
\(607\) −3.23359 + 5.60074i −0.131247 + 0.227327i −0.924158 0.382011i \(-0.875232\pi\)
0.792910 + 0.609338i \(0.208565\pi\)
\(608\) 2.91037 0.118031
\(609\) 0 0
\(610\) 38.2318 1.54796
\(611\) 4.36484 + 7.56012i 0.176582 + 0.305850i
\(612\) 0 0
\(613\) −9.79127 + 16.9590i −0.395466 + 0.684967i −0.993160 0.116757i \(-0.962750\pi\)
0.597695 + 0.801724i \(0.296083\pi\)
\(614\) −2.68363 4.64819i −0.108303 0.187586i
\(615\) 0 0
\(616\) 1.12220 + 1.94370i 0.0452146 + 0.0783140i
\(617\) −10.6772 −0.429846 −0.214923 0.976631i \(-0.568950\pi\)
−0.214923 + 0.976631i \(0.568950\pi\)
\(618\) 0 0
\(619\) 4.27984 7.41290i 0.172021 0.297950i −0.767105 0.641521i \(-0.778304\pi\)
0.939126 + 0.343572i \(0.111637\pi\)
\(620\) −10.0101 + 11.6689i −0.402015 + 0.468635i
\(621\) 0 0
\(622\) 28.6916 1.15043
\(623\) −1.02268 1.77133i −0.0409727 0.0709668i
\(624\) 0 0
\(625\) 15.6172 27.0498i 0.624689 1.08199i
\(626\) −7.02943 −0.280953
\(627\) 0 0
\(628\) −11.0809 + 19.1927i −0.442176 + 0.765872i
\(629\) −3.77999 6.54714i −0.150718 0.261052i
\(630\) 0 0
\(631\) −8.95079 15.5032i −0.356325 0.617174i 0.631018 0.775768i \(-0.282637\pi\)
−0.987344 + 0.158594i \(0.949304\pi\)
\(632\) −0.516125 0.893955i −0.0205303 0.0355596i
\(633\) 0 0
\(634\) 5.85718 0.232619
\(635\) 9.86351 + 17.0841i 0.391422 + 0.677962i
\(636\) 0 0
\(637\) −4.91391 8.51114i −0.194696 0.337224i
\(638\) 8.55588 + 14.8192i 0.338730 + 0.586698i
\(639\) 0 0
\(640\) −1.38064 2.39134i −0.0545747 0.0945262i
\(641\) 1.27105 0.0502034 0.0251017 0.999685i \(-0.492009\pi\)
0.0251017 + 0.999685i \(0.492009\pi\)
\(642\) 0 0
\(643\) 21.4808 + 37.2058i 0.847119 + 1.46725i 0.883769 + 0.467924i \(0.154998\pi\)
−0.0366500 + 0.999328i \(0.511669\pi\)
\(644\) −1.26152 −0.0497109
\(645\) 0 0
\(646\) −6.01603 −0.236698
\(647\) −31.9389 −1.25565 −0.627824 0.778355i \(-0.716054\pi\)
−0.627824 + 0.778355i \(0.716054\pi\)
\(648\) 0 0
\(649\) 5.07458 0.199195
\(650\) −1.92965 + 3.34224i −0.0756869 + 0.131094i
\(651\) 0 0
\(652\) −0.911611 1.57896i −0.0357014 0.0618367i
\(653\) −1.74521 3.02279i −0.0682953 0.118291i 0.829856 0.557978i \(-0.188423\pi\)
−0.898151 + 0.439687i \(0.855089\pi\)
\(654\) 0 0
\(655\) −4.81087 + 8.33268i −0.187976 + 0.325585i
\(656\) −3.11925 5.40270i −0.121786 0.210940i
\(657\) 0 0
\(658\) 1.66903 2.89084i 0.0650656 0.112697i
\(659\) 5.41504 9.37912i 0.210940 0.365359i −0.741069 0.671429i \(-0.765681\pi\)
0.952009 + 0.306070i \(0.0990142\pi\)
\(660\) 0 0
\(661\) 14.6983 25.4582i 0.571698 0.990209i −0.424694 0.905337i \(-0.639618\pi\)
0.996392 0.0848723i \(-0.0270482\pi\)
\(662\) −7.21212 + 12.4918i −0.280307 + 0.485506i
\(663\) 0 0
\(664\) −2.04433 −0.0793354
\(665\) −2.25919 + 3.91303i −0.0876077 + 0.151741i
\(666\) 0 0
\(667\) −9.61813 −0.372415
\(668\) −3.20854 5.55736i −0.124142 0.215021i
\(669\) 0 0
\(670\) 15.7104 0.606944
\(671\) −27.6349 + 47.8651i −1.06684 + 1.84781i
\(672\) 0 0
\(673\) 13.8437 0.533634 0.266817 0.963747i \(-0.414028\pi\)
0.266817 + 0.963747i \(0.414028\pi\)
\(674\) 27.4621 1.05780
\(675\) 0 0
\(676\) 5.41900 9.38598i 0.208423 0.360999i
\(677\) −48.5912 −1.86751 −0.933755 0.357912i \(-0.883489\pi\)
−0.933755 + 0.357912i \(0.883489\pi\)
\(678\) 0 0
\(679\) 8.93862 0.343033
\(680\) 2.85393 + 4.94316i 0.109443 + 0.189561i
\(681\) 0 0
\(682\) −7.37358 20.9669i −0.282349 0.802866i
\(683\) −12.4018 −0.474540 −0.237270 0.971444i \(-0.576253\pi\)
−0.237270 + 0.971444i \(0.576253\pi\)
\(684\) 0 0
\(685\) −2.30415 + 3.99091i −0.0880371 + 0.152485i
\(686\) −3.84683 + 6.66291i −0.146873 + 0.254391i
\(687\) 0 0
\(688\) 11.7512 0.448011
\(689\) −2.15186 −0.0819795
\(690\) 0 0
\(691\) −19.2775 −0.733351 −0.366675 0.930349i \(-0.619504\pi\)
−0.366675 + 0.930349i \(0.619504\pi\)
\(692\) −10.5109 18.2054i −0.399563 0.692064i
\(693\) 0 0
\(694\) 4.93173 8.54200i 0.187206 0.324250i
\(695\) −45.7312 −1.73468
\(696\) 0 0
\(697\) 6.44781 + 11.1679i 0.244228 + 0.423016i
\(698\) −5.34850 9.26388i −0.202444 0.350643i
\(699\) 0 0
\(700\) 1.47572 0.0557769
\(701\) 21.8284 37.8079i 0.824447 1.42798i −0.0778936 0.996962i \(-0.524819\pi\)
0.902341 0.431023i \(-0.141847\pi\)
\(702\) 0 0
\(703\) −5.32202 9.21800i −0.200724 0.347664i
\(704\) 3.99186 0.150449
\(705\) 0 0
\(706\) 29.0758 1.09428
\(707\) 1.18531 0.0445781
\(708\) 0 0
\(709\) 0.117091 0.202808i 0.00439746 0.00761662i −0.863818 0.503803i \(-0.831934\pi\)
0.868216 + 0.496187i \(0.165267\pi\)
\(710\) −5.93206 + 10.2746i −0.222626 + 0.385600i
\(711\) 0 0
\(712\) −3.63785 −0.136334
\(713\) 12.2784 + 2.30326i 0.459830 + 0.0862578i
\(714\) 0 0
\(715\) −8.10372 14.0361i −0.303062 0.524919i
\(716\) 15.1926 0.567775
\(717\) 0 0
\(718\) −3.58934 −0.133953
\(719\) 22.2177 38.4822i 0.828580 1.43514i −0.0705720 0.997507i \(-0.522482\pi\)
0.899152 0.437636i \(-0.144184\pi\)
\(720\) 0 0
\(721\) −6.62631 −0.246777
\(722\) 10.5298 0.391877
\(723\) 0 0
\(724\) −1.37767 + 2.38619i −0.0512007 + 0.0886822i
\(725\) 11.2512 0.417859
\(726\) 0 0
\(727\) −5.06156 8.76688i −0.187723 0.325145i 0.756768 0.653684i \(-0.226777\pi\)
−0.944491 + 0.328538i \(0.893444\pi\)
\(728\) 0.826708 0.0306398
\(729\) 0 0
\(730\) −12.9019 + 22.3468i −0.477522 + 0.827093i
\(731\) −24.2910 −0.898436
\(732\) 0 0
\(733\) −16.8826 + 29.2415i −0.623574 + 1.08006i 0.365241 + 0.930913i \(0.380986\pi\)
−0.988815 + 0.149148i \(0.952347\pi\)
\(734\) −7.34444 + 12.7209i −0.271088 + 0.469539i
\(735\) 0 0
\(736\) −1.12187 + 1.94313i −0.0413525 + 0.0716247i
\(737\) −11.3559 + 19.6689i −0.418298 + 0.724514i
\(738\) 0 0
\(739\) 12.3038 + 21.3109i 0.452604 + 0.783934i 0.998547 0.0538888i \(-0.0171616\pi\)
−0.545943 + 0.837823i \(0.683828\pi\)
\(740\) −5.04940 + 8.74582i −0.185620 + 0.321503i
\(741\) 0 0
\(742\) 0.411416 + 0.712593i 0.0151035 + 0.0261601i
\(743\) −7.66651 13.2788i −0.281257 0.487152i 0.690438 0.723392i \(-0.257418\pi\)
−0.971695 + 0.236240i \(0.924085\pi\)
\(744\) 0 0
\(745\) 17.5940 30.4737i 0.644594 1.11647i
\(746\) −38.4484 −1.40770
\(747\) 0 0
\(748\) −8.25158 −0.301708
\(749\) −3.45042 −0.126076
\(750\) 0 0
\(751\) −35.9315 −1.31116 −0.655580 0.755126i \(-0.727576\pi\)
−0.655580 + 0.755126i \(0.727576\pi\)
\(752\) −2.96852 5.14163i −0.108251 0.187496i
\(753\) 0 0
\(754\) 6.30301 0.229542
\(755\) 5.97908 + 10.3561i 0.217601 + 0.376896i
\(756\) 0 0
\(757\) −6.91512 11.9773i −0.251334 0.435324i 0.712559 0.701612i \(-0.247536\pi\)
−0.963893 + 0.266288i \(0.914203\pi\)
\(758\) 13.8582 + 24.0031i 0.503353 + 0.871833i
\(759\) 0 0
\(760\) 4.01818 + 6.95968i 0.145755 + 0.252454i
\(761\) −21.8022 −0.790331 −0.395165 0.918610i \(-0.629313\pi\)
−0.395165 + 0.918610i \(0.629313\pi\)
\(762\) 0 0
\(763\) −3.61643 6.26385i −0.130924 0.226766i
\(764\) 8.80426 + 15.2494i 0.318527 + 0.551705i
\(765\) 0 0
\(766\) −11.0303 19.1051i −0.398542 0.690295i
\(767\) 0.934595 1.61877i 0.0337463 0.0584503i
\(768\) 0 0
\(769\) −11.3437 −0.409066 −0.204533 0.978860i \(-0.565568\pi\)
−0.204533 + 0.978860i \(0.565568\pi\)
\(770\) −3.09871 + 5.36712i −0.111670 + 0.193417i
\(771\) 0 0
\(772\) −2.11290 3.65965i −0.0760450 0.131714i
\(773\) −45.7918 −1.64702 −0.823509 0.567303i \(-0.807987\pi\)
−0.823509 + 0.567303i \(0.807987\pi\)
\(774\) 0 0
\(775\) −14.3632 2.69433i −0.515941 0.0967834i
\(776\) 7.94907 13.7682i 0.285355 0.494249i
\(777\) 0 0
\(778\) −2.74980 −0.0985852
\(779\) 9.07815 + 15.7238i 0.325259 + 0.563364i
\(780\) 0 0
\(781\) −8.57569 14.8535i −0.306862 0.531501i
\(782\) 2.31901 4.01665i 0.0829277 0.143635i
\(783\) 0 0
\(784\) 3.34194 + 5.78841i 0.119355 + 0.206729i
\(785\) −61.1951 −2.18415
\(786\) 0 0
\(787\) 7.58536 0.270389 0.135194 0.990819i \(-0.456834\pi\)
0.135194 + 0.990819i \(0.456834\pi\)
\(788\) 11.0548 19.1475i 0.393812 0.682103i
\(789\) 0 0
\(790\) 1.42517 2.46846i 0.0507052 0.0878240i
\(791\) 7.71384 0.274273
\(792\) 0 0
\(793\) 10.1792 + 17.6308i 0.361472 + 0.626089i
\(794\) 0.820424 + 1.42102i 0.0291158 + 0.0504300i
\(795\) 0 0
\(796\) −4.22595 + 7.31956i −0.149785 + 0.259435i
\(797\) −14.8039 + 25.6410i −0.524380 + 0.908253i 0.475217 + 0.879869i \(0.342369\pi\)
−0.999597 + 0.0283841i \(0.990964\pi\)
\(798\) 0 0
\(799\) 6.13624 + 10.6283i 0.217085 + 0.376002i
\(800\) 1.31235 2.27306i 0.0463986 0.0803647i
\(801\) 0 0
\(802\) 9.79122 0.345740
\(803\) −18.6517 32.3057i −0.658204 1.14004i
\(804\) 0 0
\(805\) −1.74171 3.01673i −0.0613873 0.106326i
\(806\) −8.04636 1.50939i −0.283421 0.0531658i
\(807\) 0 0
\(808\) 1.05409 1.82574i 0.0370827 0.0642292i
\(809\) −21.6194 + 37.4460i −0.760099 + 1.31653i 0.182700 + 0.983169i \(0.441516\pi\)
−0.942799 + 0.333361i \(0.891817\pi\)
\(810\) 0 0
\(811\) −22.3906 38.7817i −0.786241 1.36181i −0.928255 0.371944i \(-0.878691\pi\)
0.142015 0.989865i \(-0.454642\pi\)
\(812\) −1.20507 2.08725i −0.0422898 0.0732481i
\(813\) 0 0
\(814\) −7.29967 12.6434i −0.255853 0.443151i
\(815\) 2.51722 4.35995i 0.0881743 0.152722i
\(816\) 0 0
\(817\) −34.2004 −1.19652
\(818\) 8.38880 14.5298i 0.293308 0.508024i
\(819\) 0 0
\(820\) 8.61313 14.9184i 0.300784 0.520973i
\(821\) −0.261194 + 0.452402i −0.00911574 + 0.0157889i −0.870547 0.492085i \(-0.836235\pi\)
0.861432 + 0.507874i \(0.169568\pi\)
\(822\) 0 0
\(823\) 5.13594 0.179028 0.0895138 0.995986i \(-0.471469\pi\)
0.0895138 + 0.995986i \(0.471469\pi\)
\(824\) −5.89275 + 10.2065i −0.205284 + 0.355562i
\(825\) 0 0
\(826\) −0.714742 −0.0248691
\(827\) 18.1801 + 31.4889i 0.632185 + 1.09498i 0.987104 + 0.160079i \(0.0511749\pi\)
−0.354919 + 0.934897i \(0.615492\pi\)
\(828\) 0 0
\(829\) 36.4298 1.26526 0.632630 0.774454i \(-0.281975\pi\)
0.632630 + 0.774454i \(0.281975\pi\)
\(830\) −2.82249 4.88869i −0.0979700 0.169689i
\(831\) 0 0
\(832\) 0.735188 1.27338i 0.0254880 0.0441466i
\(833\) −6.90814 11.9653i −0.239353 0.414571i
\(834\) 0 0
\(835\) 8.85971 15.3455i 0.306603 0.531052i
\(836\) −11.6178 −0.401809
\(837\) 0 0
\(838\) −23.5366 −0.813058
\(839\) −2.42087 + 4.19306i −0.0835776 + 0.144761i −0.904784 0.425870i \(-0.859968\pi\)
0.821207 + 0.570631i \(0.193301\pi\)
\(840\) 0 0
\(841\) 5.31225 + 9.20108i 0.183181 + 0.317279i
\(842\) 17.7261 30.7024i 0.610880 1.05808i
\(843\) 0 0
\(844\) −13.3678 23.1538i −0.460140 0.796985i
\(845\) 29.9268 1.02951
\(846\) 0 0
\(847\) −1.38731 2.40289i −0.0476686 0.0825644i
\(848\) 1.46348 0.0502561
\(849\) 0 0
\(850\) −2.71276 + 4.69864i −0.0930470 + 0.161162i
\(851\) 8.20596 0.281297
\(852\) 0 0
\(853\) −4.69259 + 8.12781i −0.160671 + 0.278291i −0.935110 0.354359i \(-0.884699\pi\)
0.774438 + 0.632649i \(0.218033\pi\)
\(854\) 3.89231 6.74168i 0.133192 0.230696i
\(855\) 0 0
\(856\) −3.06844 + 5.31470i −0.104877 + 0.181653i
\(857\) 39.3604 1.34453 0.672263 0.740312i \(-0.265322\pi\)
0.672263 + 0.740312i \(0.265322\pi\)
\(858\) 0 0
\(859\) −2.24672 + 3.89143i −0.0766570 + 0.132774i −0.901806 0.432142i \(-0.857758\pi\)
0.825149 + 0.564916i \(0.191091\pi\)
\(860\) 16.2242 + 28.1012i 0.553242 + 0.958244i
\(861\) 0 0
\(862\) −10.4796 18.1512i −0.356937 0.618233i
\(863\) −11.5510 20.0070i −0.393202 0.681045i 0.599668 0.800249i \(-0.295299\pi\)
−0.992870 + 0.119203i \(0.961966\pi\)
\(864\) 0 0
\(865\) 29.0235 50.2702i 0.986829 1.70924i
\(866\) −3.04820 + 5.27963i −0.103582 + 0.179409i
\(867\) 0 0
\(868\) 1.03855 + 2.95314i 0.0352507 + 0.100236i
\(869\) 2.06030 + 3.56854i 0.0698908 + 0.121054i
\(870\) 0 0
\(871\) 4.18286 + 7.24492i 0.141731 + 0.245485i
\(872\) −12.8643 −0.435640
\(873\) 0 0
\(874\) 3.26504 5.65521i 0.110442 0.191290i
\(875\) −1.84384 3.19363i −0.0623333 0.107964i
\(876\) 0 0
\(877\) −23.7542 + 41.1436i −0.802124 + 1.38932i 0.116092 + 0.993238i \(0.462963\pi\)
−0.918216 + 0.396081i \(0.870370\pi\)
\(878\) −13.8876 + 24.0540i −0.468683 + 0.811782i
\(879\) 0 0
\(880\) 5.51133 + 9.54590i 0.185787 + 0.321792i
\(881\) 27.7949 + 48.1423i 0.936435 + 1.62195i 0.772054 + 0.635557i \(0.219229\pi\)
0.164381 + 0.986397i \(0.447437\pi\)
\(882\) 0 0
\(883\) 1.92102 0.0646475 0.0323238 0.999477i \(-0.489709\pi\)
0.0323238 + 0.999477i \(0.489709\pi\)
\(884\) −1.51971 + 2.63221i −0.0511134 + 0.0885309i
\(885\) 0 0
\(886\) −1.51177 + 2.61845i −0.0507888 + 0.0879687i
\(887\) 24.1943 0.812366 0.406183 0.913792i \(-0.366860\pi\)
0.406183 + 0.913792i \(0.366860\pi\)
\(888\) 0 0
\(889\) 4.01675 0.134717
\(890\) −5.02257 8.69934i −0.168357 0.291603i
\(891\) 0 0
\(892\) −10.6257 + 18.4043i −0.355776 + 0.616222i
\(893\) 8.63948 + 14.9640i 0.289109 + 0.500752i
\(894\) 0 0
\(895\) 20.9756 + 36.3308i 0.701137 + 1.21440i
\(896\) −0.562243 −0.0187832
\(897\) 0 0
\(898\) 13.3146 23.0615i 0.444313 0.769572i
\(899\) 7.91814 + 22.5154i 0.264085 + 0.750931i
\(900\) 0 0
\(901\) −3.02516 −0.100783
\(902\) 12.4516 + 21.5668i 0.414593 + 0.718095i
\(903\) 0 0
\(904\) 6.85988 11.8817i 0.228156 0.395178i
\(905\) −7.60828 −0.252908
\(906\) 0 0
\(907\) 9.28510 16.0823i 0.308307 0.534003i −0.669685 0.742645i \(-0.733571\pi\)
0.977992 + 0.208642i \(0.0669043\pi\)
\(908\) −13.2692 22.9830i −0.440355 0.762718i
\(909\) 0 0
\(910\) 1.14139 + 1.97694i 0.0378367 + 0.0655350i
\(911\) −20.8285 36.0760i −0.690079 1.19525i −0.971811 0.235759i \(-0.924242\pi\)
0.281732 0.959493i \(-0.409091\pi\)
\(912\) 0 0
\(913\) 8.16067 0.270079
\(914\) −6.35410 11.0056i −0.210175 0.364034i
\(915\) 0 0
\(916\) 1.01441 + 1.75702i 0.0335172 + 0.0580535i
\(917\) 0.979572 + 1.69667i 0.0323483 + 0.0560290i
\(918\) 0 0
\(919\) −17.9232 31.0439i −0.591231 1.02404i −0.994067 0.108770i \(-0.965309\pi\)
0.402836 0.915272i \(-0.368025\pi\)
\(920\) −6.19558 −0.204262
\(921\) 0 0
\(922\) 10.5442 + 18.2631i 0.347255 + 0.601463i
\(923\) −6.31760 −0.207946
\(924\) 0 0
\(925\) −9.59927 −0.315622
\(926\) −16.6791 −0.548109
\(927\) 0 0
\(928\) −4.28667 −0.140717
\(929\) 14.7317 25.5161i 0.483333 0.837157i −0.516484 0.856297i \(-0.672759\pi\)
0.999817 + 0.0191398i \(0.00609277\pi\)
\(930\) 0 0
\(931\) −9.72627 16.8464i −0.318766 0.552118i
\(932\) 6.47283 + 11.2113i 0.212024 + 0.367237i
\(933\) 0 0
\(934\) 17.2199 29.8257i 0.563451 0.975925i
\(935\) −11.3925 19.7324i −0.372574 0.645318i
\(936\) 0 0
\(937\) 6.46800 11.2029i 0.211300 0.365983i −0.740821 0.671702i \(-0.765563\pi\)
0.952122 + 0.305719i \(0.0988968\pi\)
\(938\) 1.59944 2.77032i 0.0522237 0.0904541i
\(939\) 0 0
\(940\) 8.19693 14.1975i 0.267354 0.463071i
\(941\) −26.5819 + 46.0413i −0.866546 + 1.50090i −0.00104283 + 0.999999i \(0.500332\pi\)
−0.865504 + 0.500903i \(0.833001\pi\)
\(942\) 0 0
\(943\) −13.9975 −0.455822
\(944\) −0.635617 + 1.10092i −0.0206876 + 0.0358319i
\(945\) 0 0
\(946\) −46.9092 −1.52515
\(947\) −22.3097 38.6415i −0.724968 1.25568i −0.958987 0.283450i \(-0.908521\pi\)
0.234019 0.972232i \(-0.424812\pi\)
\(948\) 0 0
\(949\) −13.7405 −0.446035
\(950\) −3.81942 + 6.61542i −0.123918 + 0.214633i
\(951\) 0 0
\(952\) 1.16222 0.0376676
\(953\) −28.5363 −0.924382 −0.462191 0.886780i \(-0.652937\pi\)
−0.462191 + 0.886780i \(0.652937\pi\)
\(954\) 0 0
\(955\) −24.3111 + 42.1080i −0.786688 + 1.36258i
\(956\) −13.8340 −0.447423
\(957\) 0 0
\(958\) 25.2674 0.816354
\(959\) 0.469163 + 0.812615i 0.0151501 + 0.0262407i
\(960\) 0 0
\(961\) −4.71644 30.6391i −0.152143 0.988358i
\(962\) −5.37758 −0.173380
\(963\) 0 0
\(964\) 13.9301 24.1277i 0.448659 0.777100i
\(965\) 5.83433 10.1054i 0.187814 0.325303i
\(966\) 0 0
\(967\) −12.6640 −0.407245 −0.203623 0.979049i \(-0.565272\pi\)
−0.203623 + 0.979049i \(0.565272\pi\)
\(968\) −4.93492 −0.158614
\(969\) 0 0
\(970\) 43.8993 1.40952
\(971\) −18.7126 32.4111i −0.600515 1.04012i −0.992743 0.120255i \(-0.961629\pi\)
0.392228 0.919868i \(-0.371705\pi\)
\(972\) 0 0
\(973\) −4.65581 + 8.06410i −0.149258 + 0.258523i
\(974\) −27.8791 −0.893303
\(975\) 0 0
\(976\) −6.92283 11.9907i −0.221594 0.383813i
\(977\) −20.4535 35.4264i −0.654364 1.13339i −0.982053 0.188606i \(-0.939603\pi\)
0.327689 0.944786i \(-0.393730\pi\)
\(978\) 0 0
\(979\) 14.5218 0.464117
\(980\) −9.22805 + 15.9835i −0.294779 + 0.510573i
\(981\) 0 0
\(982\) −1.00378 1.73860i −0.0320319 0.0554809i
\(983\) −19.5580 −0.623802 −0.311901 0.950115i \(-0.600966\pi\)
−0.311901 + 0.950115i \(0.600966\pi\)
\(984\) 0 0
\(985\) 61.0511 1.94525
\(986\) 8.86099 0.282191
\(987\) 0 0
\(988\) −2.13966 + 3.70601i −0.0680718 + 0.117904i
\(989\) 13.1833 22.8341i 0.419204 0.726083i
\(990\) 0 0
\(991\) 17.9448 0.570035 0.285018 0.958522i \(-0.408001\pi\)
0.285018 + 0.958522i \(0.408001\pi\)
\(992\) 5.47232 + 1.02653i 0.173746 + 0.0325924i
\(993\) 0 0
\(994\) 1.20786 + 2.09208i 0.0383111 + 0.0663568i
\(995\) −23.3381 −0.739868
\(996\) 0 0
\(997\) 13.6427 0.432070 0.216035 0.976386i \(-0.430688\pi\)
0.216035 + 0.976386i \(0.430688\pi\)
\(998\) −10.2613 + 17.7731i −0.324817 + 0.562599i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1674.2.g.b.1369.13 32
3.2 odd 2 558.2.g.a.439.3 yes 32
9.4 even 3 1674.2.h.b.253.4 32
9.5 odd 6 558.2.h.a.67.14 yes 32
31.25 even 3 1674.2.h.b.397.4 32
93.56 odd 6 558.2.h.a.25.14 yes 32
279.149 odd 6 558.2.g.a.211.3 32
279.211 even 3 inner 1674.2.g.b.955.13 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
558.2.g.a.211.3 32 279.149 odd 6
558.2.g.a.439.3 yes 32 3.2 odd 2
558.2.h.a.25.14 yes 32 93.56 odd 6
558.2.h.a.67.14 yes 32 9.5 odd 6
1674.2.g.b.955.13 32 279.211 even 3 inner
1674.2.g.b.1369.13 32 1.1 even 1 trivial
1674.2.h.b.253.4 32 9.4 even 3
1674.2.h.b.397.4 32 31.25 even 3