Properties

Label 1672.2.a.j.1.3
Level $1672$
Weight $2$
Character 1672.1
Self dual yes
Analytic conductor $13.351$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1672,2,Mod(1,1672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1672.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1672 = 2^{3} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1672.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,4,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.3509872180\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.576096652.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 8x^{4} + 11x^{3} + 16x^{2} - 6x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.634105\) of defining polynomial
Character \(\chi\) \(=\) 1672.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.365895 q^{3} +3.51994 q^{5} +1.20230 q^{7} -2.86612 q^{9} +1.00000 q^{11} +1.20230 q^{13} +1.28793 q^{15} -3.15405 q^{17} +1.00000 q^{19} +0.439914 q^{21} +6.54966 q^{23} +7.39001 q^{25} -2.14638 q^{27} +4.07236 q^{29} +5.34737 q^{31} +0.365895 q^{33} +4.23202 q^{35} +1.39561 q^{37} +0.439914 q^{39} -0.683544 q^{41} +3.62600 q^{43} -10.0886 q^{45} +5.67280 q^{47} -5.55448 q^{49} -1.15405 q^{51} -0.523891 q^{53} +3.51994 q^{55} +0.365895 q^{57} -8.37564 q^{59} -6.55777 q^{61} -3.44593 q^{63} +4.23202 q^{65} +1.71120 q^{67} +2.39649 q^{69} +14.1389 q^{71} -14.5048 q^{73} +2.70397 q^{75} +1.20230 q^{77} +10.6190 q^{79} +7.81301 q^{81} -7.55086 q^{83} -11.1021 q^{85} +1.49006 q^{87} -10.6447 q^{89} +1.44552 q^{91} +1.95657 q^{93} +3.51994 q^{95} +12.8239 q^{97} -2.86612 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{3} + q^{5} + 4 q^{9} + 6 q^{11} + 7 q^{15} + 3 q^{17} + 6 q^{19} + 7 q^{21} + 7 q^{23} + 3 q^{25} + 13 q^{27} - 4 q^{29} + 7 q^{31} + 4 q^{33} + 6 q^{35} - 2 q^{37} + 7 q^{39} + 7 q^{41} + 21 q^{43}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.365895 0.211249 0.105625 0.994406i \(-0.466316\pi\)
0.105625 + 0.994406i \(0.466316\pi\)
\(4\) 0 0
\(5\) 3.51994 1.57417 0.787084 0.616846i \(-0.211590\pi\)
0.787084 + 0.616846i \(0.211590\pi\)
\(6\) 0 0
\(7\) 1.20230 0.454425 0.227213 0.973845i \(-0.427039\pi\)
0.227213 + 0.973845i \(0.427039\pi\)
\(8\) 0 0
\(9\) −2.86612 −0.955374
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 1.20230 0.333457 0.166728 0.986003i \(-0.446680\pi\)
0.166728 + 0.986003i \(0.446680\pi\)
\(14\) 0 0
\(15\) 1.28793 0.332542
\(16\) 0 0
\(17\) −3.15405 −0.764970 −0.382485 0.923962i \(-0.624932\pi\)
−0.382485 + 0.923962i \(0.624932\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0.439914 0.0959970
\(22\) 0 0
\(23\) 6.54966 1.36570 0.682850 0.730559i \(-0.260740\pi\)
0.682850 + 0.730559i \(0.260740\pi\)
\(24\) 0 0
\(25\) 7.39001 1.47800
\(26\) 0 0
\(27\) −2.14638 −0.413072
\(28\) 0 0
\(29\) 4.07236 0.756219 0.378109 0.925761i \(-0.376574\pi\)
0.378109 + 0.925761i \(0.376574\pi\)
\(30\) 0 0
\(31\) 5.34737 0.960416 0.480208 0.877155i \(-0.340561\pi\)
0.480208 + 0.877155i \(0.340561\pi\)
\(32\) 0 0
\(33\) 0.365895 0.0636941
\(34\) 0 0
\(35\) 4.23202 0.715341
\(36\) 0 0
\(37\) 1.39561 0.229438 0.114719 0.993398i \(-0.463403\pi\)
0.114719 + 0.993398i \(0.463403\pi\)
\(38\) 0 0
\(39\) 0.439914 0.0704426
\(40\) 0 0
\(41\) −0.683544 −0.106752 −0.0533758 0.998574i \(-0.516998\pi\)
−0.0533758 + 0.998574i \(0.516998\pi\)
\(42\) 0 0
\(43\) 3.62600 0.552960 0.276480 0.961020i \(-0.410832\pi\)
0.276480 + 0.961020i \(0.410832\pi\)
\(44\) 0 0
\(45\) −10.0886 −1.50392
\(46\) 0 0
\(47\) 5.67280 0.827463 0.413732 0.910399i \(-0.364225\pi\)
0.413732 + 0.910399i \(0.364225\pi\)
\(48\) 0 0
\(49\) −5.55448 −0.793498
\(50\) 0 0
\(51\) −1.15405 −0.161599
\(52\) 0 0
\(53\) −0.523891 −0.0719620 −0.0359810 0.999352i \(-0.511456\pi\)
−0.0359810 + 0.999352i \(0.511456\pi\)
\(54\) 0 0
\(55\) 3.51994 0.474629
\(56\) 0 0
\(57\) 0.365895 0.0484639
\(58\) 0 0
\(59\) −8.37564 −1.09042 −0.545208 0.838301i \(-0.683549\pi\)
−0.545208 + 0.838301i \(0.683549\pi\)
\(60\) 0 0
\(61\) −6.55777 −0.839636 −0.419818 0.907608i \(-0.637906\pi\)
−0.419818 + 0.907608i \(0.637906\pi\)
\(62\) 0 0
\(63\) −3.44593 −0.434146
\(64\) 0 0
\(65\) 4.23202 0.524917
\(66\) 0 0
\(67\) 1.71120 0.209056 0.104528 0.994522i \(-0.466667\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(68\) 0 0
\(69\) 2.39649 0.288503
\(70\) 0 0
\(71\) 14.1389 1.67798 0.838989 0.544148i \(-0.183147\pi\)
0.838989 + 0.544148i \(0.183147\pi\)
\(72\) 0 0
\(73\) −14.5048 −1.69766 −0.848829 0.528668i \(-0.822692\pi\)
−0.848829 + 0.528668i \(0.822692\pi\)
\(74\) 0 0
\(75\) 2.70397 0.312227
\(76\) 0 0
\(77\) 1.20230 0.137014
\(78\) 0 0
\(79\) 10.6190 1.19473 0.597363 0.801971i \(-0.296215\pi\)
0.597363 + 0.801971i \(0.296215\pi\)
\(80\) 0 0
\(81\) 7.81301 0.868113
\(82\) 0 0
\(83\) −7.55086 −0.828814 −0.414407 0.910092i \(-0.636011\pi\)
−0.414407 + 0.910092i \(0.636011\pi\)
\(84\) 0 0
\(85\) −11.1021 −1.20419
\(86\) 0 0
\(87\) 1.49006 0.159751
\(88\) 0 0
\(89\) −10.6447 −1.12834 −0.564169 0.825659i \(-0.690804\pi\)
−0.564169 + 0.825659i \(0.690804\pi\)
\(90\) 0 0
\(91\) 1.44552 0.151531
\(92\) 0 0
\(93\) 1.95657 0.202887
\(94\) 0 0
\(95\) 3.51994 0.361139
\(96\) 0 0
\(97\) 12.8239 1.30207 0.651034 0.759048i \(-0.274335\pi\)
0.651034 + 0.759048i \(0.274335\pi\)
\(98\) 0 0
\(99\) −2.86612 −0.288056
\(100\) 0 0
\(101\) 5.82598 0.579707 0.289853 0.957071i \(-0.406393\pi\)
0.289853 + 0.957071i \(0.406393\pi\)
\(102\) 0 0
\(103\) −8.49462 −0.837000 −0.418500 0.908217i \(-0.637444\pi\)
−0.418500 + 0.908217i \(0.637444\pi\)
\(104\) 0 0
\(105\) 1.54847 0.151115
\(106\) 0 0
\(107\) −7.56378 −0.731218 −0.365609 0.930768i \(-0.619139\pi\)
−0.365609 + 0.930768i \(0.619139\pi\)
\(108\) 0 0
\(109\) 9.77301 0.936084 0.468042 0.883706i \(-0.344960\pi\)
0.468042 + 0.883706i \(0.344960\pi\)
\(110\) 0 0
\(111\) 0.510648 0.0484686
\(112\) 0 0
\(113\) −6.28747 −0.591475 −0.295738 0.955269i \(-0.595565\pi\)
−0.295738 + 0.955269i \(0.595565\pi\)
\(114\) 0 0
\(115\) 23.0545 2.14984
\(116\) 0 0
\(117\) −3.44593 −0.318576
\(118\) 0 0
\(119\) −3.79210 −0.347621
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −0.250105 −0.0225512
\(124\) 0 0
\(125\) 8.41271 0.752456
\(126\) 0 0
\(127\) 0.482121 0.0427813 0.0213906 0.999771i \(-0.493191\pi\)
0.0213906 + 0.999771i \(0.493191\pi\)
\(128\) 0 0
\(129\) 1.32673 0.116812
\(130\) 0 0
\(131\) −10.5164 −0.918823 −0.459411 0.888224i \(-0.651940\pi\)
−0.459411 + 0.888224i \(0.651940\pi\)
\(132\) 0 0
\(133\) 1.20230 0.104252
\(134\) 0 0
\(135\) −7.55515 −0.650244
\(136\) 0 0
\(137\) −0.538471 −0.0460047 −0.0230023 0.999735i \(-0.507323\pi\)
−0.0230023 + 0.999735i \(0.507323\pi\)
\(138\) 0 0
\(139\) −4.33970 −0.368089 −0.184044 0.982918i \(-0.558919\pi\)
−0.184044 + 0.982918i \(0.558919\pi\)
\(140\) 0 0
\(141\) 2.07565 0.174801
\(142\) 0 0
\(143\) 1.20230 0.100541
\(144\) 0 0
\(145\) 14.3345 1.19042
\(146\) 0 0
\(147\) −2.03236 −0.167626
\(148\) 0 0
\(149\) −15.3721 −1.25933 −0.629665 0.776866i \(-0.716808\pi\)
−0.629665 + 0.776866i \(0.716808\pi\)
\(150\) 0 0
\(151\) 5.48533 0.446390 0.223195 0.974774i \(-0.428351\pi\)
0.223195 + 0.974774i \(0.428351\pi\)
\(152\) 0 0
\(153\) 9.03989 0.730832
\(154\) 0 0
\(155\) 18.8224 1.51186
\(156\) 0 0
\(157\) −7.33247 −0.585195 −0.292597 0.956236i \(-0.594520\pi\)
−0.292597 + 0.956236i \(0.594520\pi\)
\(158\) 0 0
\(159\) −0.191689 −0.0152019
\(160\) 0 0
\(161\) 7.87464 0.620608
\(162\) 0 0
\(163\) 7.08074 0.554606 0.277303 0.960783i \(-0.410559\pi\)
0.277303 + 0.960783i \(0.410559\pi\)
\(164\) 0 0
\(165\) 1.28793 0.100265
\(166\) 0 0
\(167\) 18.0849 1.39945 0.699727 0.714411i \(-0.253305\pi\)
0.699727 + 0.714411i \(0.253305\pi\)
\(168\) 0 0
\(169\) −11.5545 −0.888806
\(170\) 0 0
\(171\) −2.86612 −0.219178
\(172\) 0 0
\(173\) −20.2877 −1.54244 −0.771221 0.636568i \(-0.780354\pi\)
−0.771221 + 0.636568i \(0.780354\pi\)
\(174\) 0 0
\(175\) 8.88498 0.671642
\(176\) 0 0
\(177\) −3.06460 −0.230350
\(178\) 0 0
\(179\) 17.2173 1.28688 0.643440 0.765496i \(-0.277507\pi\)
0.643440 + 0.765496i \(0.277507\pi\)
\(180\) 0 0
\(181\) 10.5723 0.785836 0.392918 0.919574i \(-0.371466\pi\)
0.392918 + 0.919574i \(0.371466\pi\)
\(182\) 0 0
\(183\) −2.39945 −0.177373
\(184\) 0 0
\(185\) 4.91249 0.361173
\(186\) 0 0
\(187\) −3.15405 −0.230647
\(188\) 0 0
\(189\) −2.58059 −0.187710
\(190\) 0 0
\(191\) 8.57377 0.620376 0.310188 0.950675i \(-0.399608\pi\)
0.310188 + 0.950675i \(0.399608\pi\)
\(192\) 0 0
\(193\) 9.75494 0.702176 0.351088 0.936342i \(-0.385812\pi\)
0.351088 + 0.936342i \(0.385812\pi\)
\(194\) 0 0
\(195\) 1.54847 0.110888
\(196\) 0 0
\(197\) 18.1258 1.29141 0.645704 0.763588i \(-0.276564\pi\)
0.645704 + 0.763588i \(0.276564\pi\)
\(198\) 0 0
\(199\) −18.3156 −1.29836 −0.649178 0.760636i \(-0.724887\pi\)
−0.649178 + 0.760636i \(0.724887\pi\)
\(200\) 0 0
\(201\) 0.626118 0.0441630
\(202\) 0 0
\(203\) 4.89619 0.343645
\(204\) 0 0
\(205\) −2.40604 −0.168045
\(206\) 0 0
\(207\) −18.7721 −1.30475
\(208\) 0 0
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) −8.94748 −0.615970 −0.307985 0.951391i \(-0.599655\pi\)
−0.307985 + 0.951391i \(0.599655\pi\)
\(212\) 0 0
\(213\) 5.17335 0.354472
\(214\) 0 0
\(215\) 12.7633 0.870451
\(216\) 0 0
\(217\) 6.42912 0.436437
\(218\) 0 0
\(219\) −5.30723 −0.358629
\(220\) 0 0
\(221\) −3.79210 −0.255084
\(222\) 0 0
\(223\) −5.86139 −0.392508 −0.196254 0.980553i \(-0.562878\pi\)
−0.196254 + 0.980553i \(0.562878\pi\)
\(224\) 0 0
\(225\) −21.1807 −1.41204
\(226\) 0 0
\(227\) −7.61983 −0.505746 −0.252873 0.967500i \(-0.581375\pi\)
−0.252873 + 0.967500i \(0.581375\pi\)
\(228\) 0 0
\(229\) 18.5863 1.22822 0.614108 0.789222i \(-0.289516\pi\)
0.614108 + 0.789222i \(0.289516\pi\)
\(230\) 0 0
\(231\) 0.439914 0.0289442
\(232\) 0 0
\(233\) 19.6588 1.28789 0.643947 0.765070i \(-0.277296\pi\)
0.643947 + 0.765070i \(0.277296\pi\)
\(234\) 0 0
\(235\) 19.9680 1.30257
\(236\) 0 0
\(237\) 3.88542 0.252385
\(238\) 0 0
\(239\) −12.2588 −0.792958 −0.396479 0.918044i \(-0.629768\pi\)
−0.396479 + 0.918044i \(0.629768\pi\)
\(240\) 0 0
\(241\) −19.1499 −1.23356 −0.616778 0.787138i \(-0.711562\pi\)
−0.616778 + 0.787138i \(0.711562\pi\)
\(242\) 0 0
\(243\) 9.29789 0.596460
\(244\) 0 0
\(245\) −19.5515 −1.24910
\(246\) 0 0
\(247\) 1.20230 0.0765003
\(248\) 0 0
\(249\) −2.76282 −0.175087
\(250\) 0 0
\(251\) 7.54090 0.475977 0.237989 0.971268i \(-0.423512\pi\)
0.237989 + 0.971268i \(0.423512\pi\)
\(252\) 0 0
\(253\) 6.54966 0.411774
\(254\) 0 0
\(255\) −4.06219 −0.254384
\(256\) 0 0
\(257\) −27.4533 −1.71249 −0.856244 0.516571i \(-0.827208\pi\)
−0.856244 + 0.516571i \(0.827208\pi\)
\(258\) 0 0
\(259\) 1.67794 0.104262
\(260\) 0 0
\(261\) −11.6719 −0.722472
\(262\) 0 0
\(263\) −22.1136 −1.36358 −0.681792 0.731546i \(-0.738799\pi\)
−0.681792 + 0.731546i \(0.738799\pi\)
\(264\) 0 0
\(265\) −1.84407 −0.113280
\(266\) 0 0
\(267\) −3.89485 −0.238361
\(268\) 0 0
\(269\) −13.6931 −0.834886 −0.417443 0.908703i \(-0.637074\pi\)
−0.417443 + 0.908703i \(0.637074\pi\)
\(270\) 0 0
\(271\) −19.8960 −1.20860 −0.604299 0.796758i \(-0.706547\pi\)
−0.604299 + 0.796758i \(0.706547\pi\)
\(272\) 0 0
\(273\) 0.528907 0.0320109
\(274\) 0 0
\(275\) 7.39001 0.445635
\(276\) 0 0
\(277\) −26.9072 −1.61670 −0.808349 0.588703i \(-0.799639\pi\)
−0.808349 + 0.588703i \(0.799639\pi\)
\(278\) 0 0
\(279\) −15.3262 −0.917556
\(280\) 0 0
\(281\) −21.5531 −1.28575 −0.642875 0.765971i \(-0.722259\pi\)
−0.642875 + 0.765971i \(0.722259\pi\)
\(282\) 0 0
\(283\) −6.76939 −0.402398 −0.201199 0.979550i \(-0.564484\pi\)
−0.201199 + 0.979550i \(0.564484\pi\)
\(284\) 0 0
\(285\) 1.28793 0.0762903
\(286\) 0 0
\(287\) −0.821822 −0.0485106
\(288\) 0 0
\(289\) −7.05197 −0.414822
\(290\) 0 0
\(291\) 4.69219 0.275061
\(292\) 0 0
\(293\) 14.9628 0.874134 0.437067 0.899429i \(-0.356017\pi\)
0.437067 + 0.899429i \(0.356017\pi\)
\(294\) 0 0
\(295\) −29.4818 −1.71650
\(296\) 0 0
\(297\) −2.14638 −0.124546
\(298\) 0 0
\(299\) 7.87464 0.455402
\(300\) 0 0
\(301\) 4.35953 0.251279
\(302\) 0 0
\(303\) 2.13170 0.122463
\(304\) 0 0
\(305\) −23.0830 −1.32173
\(306\) 0 0
\(307\) −12.6139 −0.719913 −0.359957 0.932969i \(-0.617208\pi\)
−0.359957 + 0.932969i \(0.617208\pi\)
\(308\) 0 0
\(309\) −3.10814 −0.176816
\(310\) 0 0
\(311\) 29.0144 1.64526 0.822628 0.568580i \(-0.192507\pi\)
0.822628 + 0.568580i \(0.192507\pi\)
\(312\) 0 0
\(313\) −6.20308 −0.350619 −0.175309 0.984513i \(-0.556093\pi\)
−0.175309 + 0.984513i \(0.556093\pi\)
\(314\) 0 0
\(315\) −12.1295 −0.683418
\(316\) 0 0
\(317\) −13.7236 −0.770796 −0.385398 0.922750i \(-0.625936\pi\)
−0.385398 + 0.922750i \(0.625936\pi\)
\(318\) 0 0
\(319\) 4.07236 0.228009
\(320\) 0 0
\(321\) −2.76755 −0.154469
\(322\) 0 0
\(323\) −3.15405 −0.175496
\(324\) 0 0
\(325\) 8.88498 0.492850
\(326\) 0 0
\(327\) 3.57589 0.197747
\(328\) 0 0
\(329\) 6.82039 0.376020
\(330\) 0 0
\(331\) 9.96456 0.547702 0.273851 0.961772i \(-0.411703\pi\)
0.273851 + 0.961772i \(0.411703\pi\)
\(332\) 0 0
\(333\) −4.00000 −0.219199
\(334\) 0 0
\(335\) 6.02332 0.329089
\(336\) 0 0
\(337\) −28.8617 −1.57220 −0.786099 0.618100i \(-0.787903\pi\)
−0.786099 + 0.618100i \(0.787903\pi\)
\(338\) 0 0
\(339\) −2.30055 −0.124949
\(340\) 0 0
\(341\) 5.34737 0.289576
\(342\) 0 0
\(343\) −15.0942 −0.815011
\(344\) 0 0
\(345\) 8.43550 0.454152
\(346\) 0 0
\(347\) 3.06265 0.164411 0.0822057 0.996615i \(-0.473804\pi\)
0.0822057 + 0.996615i \(0.473804\pi\)
\(348\) 0 0
\(349\) −22.8672 −1.22405 −0.612026 0.790837i \(-0.709645\pi\)
−0.612026 + 0.790837i \(0.709645\pi\)
\(350\) 0 0
\(351\) −2.58059 −0.137742
\(352\) 0 0
\(353\) 22.7933 1.21316 0.606582 0.795021i \(-0.292540\pi\)
0.606582 + 0.795021i \(0.292540\pi\)
\(354\) 0 0
\(355\) 49.7681 2.64142
\(356\) 0 0
\(357\) −1.38751 −0.0734348
\(358\) 0 0
\(359\) −26.7211 −1.41028 −0.705142 0.709066i \(-0.749117\pi\)
−0.705142 + 0.709066i \(0.749117\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0.365895 0.0192045
\(364\) 0 0
\(365\) −51.0561 −2.67240
\(366\) 0 0
\(367\) 0.803413 0.0419378 0.0209689 0.999780i \(-0.493325\pi\)
0.0209689 + 0.999780i \(0.493325\pi\)
\(368\) 0 0
\(369\) 1.95912 0.101988
\(370\) 0 0
\(371\) −0.629873 −0.0327014
\(372\) 0 0
\(373\) 26.1021 1.35151 0.675757 0.737125i \(-0.263817\pi\)
0.675757 + 0.737125i \(0.263817\pi\)
\(374\) 0 0
\(375\) 3.07817 0.158956
\(376\) 0 0
\(377\) 4.89619 0.252166
\(378\) 0 0
\(379\) 5.29257 0.271861 0.135930 0.990718i \(-0.456598\pi\)
0.135930 + 0.990718i \(0.456598\pi\)
\(380\) 0 0
\(381\) 0.176405 0.00903752
\(382\) 0 0
\(383\) 20.7583 1.06070 0.530350 0.847779i \(-0.322061\pi\)
0.530350 + 0.847779i \(0.322061\pi\)
\(384\) 0 0
\(385\) 4.23202 0.215683
\(386\) 0 0
\(387\) −10.3926 −0.528283
\(388\) 0 0
\(389\) −0.361176 −0.0183124 −0.00915618 0.999958i \(-0.502915\pi\)
−0.00915618 + 0.999958i \(0.502915\pi\)
\(390\) 0 0
\(391\) −20.6580 −1.04472
\(392\) 0 0
\(393\) −3.84790 −0.194101
\(394\) 0 0
\(395\) 37.3781 1.88070
\(396\) 0 0
\(397\) −34.7796 −1.74554 −0.872768 0.488135i \(-0.837677\pi\)
−0.872768 + 0.488135i \(0.837677\pi\)
\(398\) 0 0
\(399\) 0.439914 0.0220232
\(400\) 0 0
\(401\) 9.71865 0.485326 0.242663 0.970111i \(-0.421979\pi\)
0.242663 + 0.970111i \(0.421979\pi\)
\(402\) 0 0
\(403\) 6.42912 0.320257
\(404\) 0 0
\(405\) 27.5014 1.36655
\(406\) 0 0
\(407\) 1.39561 0.0691780
\(408\) 0 0
\(409\) −17.2083 −0.850897 −0.425448 0.904983i \(-0.639884\pi\)
−0.425448 + 0.904983i \(0.639884\pi\)
\(410\) 0 0
\(411\) −0.197024 −0.00971846
\(412\) 0 0
\(413\) −10.0700 −0.495512
\(414\) 0 0
\(415\) −26.5786 −1.30469
\(416\) 0 0
\(417\) −1.58787 −0.0777585
\(418\) 0 0
\(419\) 26.5600 1.29754 0.648771 0.760984i \(-0.275283\pi\)
0.648771 + 0.760984i \(0.275283\pi\)
\(420\) 0 0
\(421\) 17.2380 0.840128 0.420064 0.907494i \(-0.362008\pi\)
0.420064 + 0.907494i \(0.362008\pi\)
\(422\) 0 0
\(423\) −16.2589 −0.790537
\(424\) 0 0
\(425\) −23.3085 −1.13063
\(426\) 0 0
\(427\) −7.88438 −0.381552
\(428\) 0 0
\(429\) 0.439914 0.0212392
\(430\) 0 0
\(431\) 7.01404 0.337855 0.168927 0.985629i \(-0.445970\pi\)
0.168927 + 0.985629i \(0.445970\pi\)
\(432\) 0 0
\(433\) −17.6289 −0.847193 −0.423596 0.905851i \(-0.639233\pi\)
−0.423596 + 0.905851i \(0.639233\pi\)
\(434\) 0 0
\(435\) 5.24492 0.251474
\(436\) 0 0
\(437\) 6.54966 0.313313
\(438\) 0 0
\(439\) 3.49465 0.166791 0.0833953 0.996517i \(-0.473424\pi\)
0.0833953 + 0.996517i \(0.473424\pi\)
\(440\) 0 0
\(441\) 15.9198 0.758087
\(442\) 0 0
\(443\) 3.47907 0.165296 0.0826479 0.996579i \(-0.473662\pi\)
0.0826479 + 0.996579i \(0.473662\pi\)
\(444\) 0 0
\(445\) −37.4689 −1.77619
\(446\) 0 0
\(447\) −5.62457 −0.266033
\(448\) 0 0
\(449\) 24.8822 1.17426 0.587131 0.809492i \(-0.300257\pi\)
0.587131 + 0.809492i \(0.300257\pi\)
\(450\) 0 0
\(451\) −0.683544 −0.0321868
\(452\) 0 0
\(453\) 2.00705 0.0942995
\(454\) 0 0
\(455\) 5.08814 0.238535
\(456\) 0 0
\(457\) −9.90793 −0.463473 −0.231737 0.972779i \(-0.574441\pi\)
−0.231737 + 0.972779i \(0.574441\pi\)
\(458\) 0 0
\(459\) 6.76980 0.315987
\(460\) 0 0
\(461\) 2.11797 0.0986439 0.0493219 0.998783i \(-0.484294\pi\)
0.0493219 + 0.998783i \(0.484294\pi\)
\(462\) 0 0
\(463\) −14.1093 −0.655715 −0.327858 0.944727i \(-0.606327\pi\)
−0.327858 + 0.944727i \(0.606327\pi\)
\(464\) 0 0
\(465\) 6.88703 0.319378
\(466\) 0 0
\(467\) 3.62118 0.167568 0.0837841 0.996484i \(-0.473299\pi\)
0.0837841 + 0.996484i \(0.473299\pi\)
\(468\) 0 0
\(469\) 2.05737 0.0950003
\(470\) 0 0
\(471\) −2.68291 −0.123622
\(472\) 0 0
\(473\) 3.62600 0.166724
\(474\) 0 0
\(475\) 7.39001 0.339077
\(476\) 0 0
\(477\) 1.50154 0.0687506
\(478\) 0 0
\(479\) −17.0418 −0.778660 −0.389330 0.921098i \(-0.627293\pi\)
−0.389330 + 0.921098i \(0.627293\pi\)
\(480\) 0 0
\(481\) 1.67794 0.0765076
\(482\) 0 0
\(483\) 2.88129 0.131103
\(484\) 0 0
\(485\) 45.1394 2.04967
\(486\) 0 0
\(487\) −0.323990 −0.0146814 −0.00734069 0.999973i \(-0.502337\pi\)
−0.00734069 + 0.999973i \(0.502337\pi\)
\(488\) 0 0
\(489\) 2.59080 0.117160
\(490\) 0 0
\(491\) −32.1744 −1.45201 −0.726005 0.687690i \(-0.758625\pi\)
−0.726005 + 0.687690i \(0.758625\pi\)
\(492\) 0 0
\(493\) −12.8444 −0.578484
\(494\) 0 0
\(495\) −10.0886 −0.453448
\(496\) 0 0
\(497\) 16.9991 0.762516
\(498\) 0 0
\(499\) −26.7659 −1.19821 −0.599104 0.800671i \(-0.704476\pi\)
−0.599104 + 0.800671i \(0.704476\pi\)
\(500\) 0 0
\(501\) 6.61718 0.295634
\(502\) 0 0
\(503\) −24.2384 −1.08074 −0.540369 0.841428i \(-0.681715\pi\)
−0.540369 + 0.841428i \(0.681715\pi\)
\(504\) 0 0
\(505\) 20.5071 0.912555
\(506\) 0 0
\(507\) −4.22772 −0.187760
\(508\) 0 0
\(509\) −2.51666 −0.111549 −0.0557745 0.998443i \(-0.517763\pi\)
−0.0557745 + 0.998443i \(0.517763\pi\)
\(510\) 0 0
\(511\) −17.4391 −0.771458
\(512\) 0 0
\(513\) −2.14638 −0.0947651
\(514\) 0 0
\(515\) −29.9006 −1.31758
\(516\) 0 0
\(517\) 5.67280 0.249490
\(518\) 0 0
\(519\) −7.42314 −0.325840
\(520\) 0 0
\(521\) 23.2024 1.01651 0.508257 0.861205i \(-0.330290\pi\)
0.508257 + 0.861205i \(0.330290\pi\)
\(522\) 0 0
\(523\) 7.29602 0.319033 0.159516 0.987195i \(-0.449007\pi\)
0.159516 + 0.987195i \(0.449007\pi\)
\(524\) 0 0
\(525\) 3.25097 0.141884
\(526\) 0 0
\(527\) −16.8659 −0.734689
\(528\) 0 0
\(529\) 19.8981 0.865135
\(530\) 0 0
\(531\) 24.0056 1.04175
\(532\) 0 0
\(533\) −0.821822 −0.0355971
\(534\) 0 0
\(535\) −26.6241 −1.15106
\(536\) 0 0
\(537\) 6.29971 0.271853
\(538\) 0 0
\(539\) −5.55448 −0.239249
\(540\) 0 0
\(541\) −24.8917 −1.07018 −0.535089 0.844796i \(-0.679722\pi\)
−0.535089 + 0.844796i \(0.679722\pi\)
\(542\) 0 0
\(543\) 3.86836 0.166007
\(544\) 0 0
\(545\) 34.4004 1.47355
\(546\) 0 0
\(547\) 25.6886 1.09837 0.549184 0.835702i \(-0.314939\pi\)
0.549184 + 0.835702i \(0.314939\pi\)
\(548\) 0 0
\(549\) 18.7954 0.802166
\(550\) 0 0
\(551\) 4.07236 0.173489
\(552\) 0 0
\(553\) 12.7671 0.542913
\(554\) 0 0
\(555\) 1.79745 0.0762976
\(556\) 0 0
\(557\) 31.5541 1.33699 0.668494 0.743717i \(-0.266939\pi\)
0.668494 + 0.743717i \(0.266939\pi\)
\(558\) 0 0
\(559\) 4.35953 0.184388
\(560\) 0 0
\(561\) −1.15405 −0.0487240
\(562\) 0 0
\(563\) −34.3994 −1.44976 −0.724882 0.688873i \(-0.758106\pi\)
−0.724882 + 0.688873i \(0.758106\pi\)
\(564\) 0 0
\(565\) −22.1315 −0.931081
\(566\) 0 0
\(567\) 9.39355 0.394492
\(568\) 0 0
\(569\) 6.34244 0.265889 0.132944 0.991123i \(-0.457557\pi\)
0.132944 + 0.991123i \(0.457557\pi\)
\(570\) 0 0
\(571\) 4.49002 0.187902 0.0939508 0.995577i \(-0.470050\pi\)
0.0939508 + 0.995577i \(0.470050\pi\)
\(572\) 0 0
\(573\) 3.13710 0.131054
\(574\) 0 0
\(575\) 48.4021 2.01851
\(576\) 0 0
\(577\) −28.6227 −1.19158 −0.595789 0.803141i \(-0.703161\pi\)
−0.595789 + 0.803141i \(0.703161\pi\)
\(578\) 0 0
\(579\) 3.56928 0.148334
\(580\) 0 0
\(581\) −9.07837 −0.376634
\(582\) 0 0
\(583\) −0.523891 −0.0216974
\(584\) 0 0
\(585\) −12.1295 −0.501492
\(586\) 0 0
\(587\) −8.94511 −0.369204 −0.184602 0.982813i \(-0.559100\pi\)
−0.184602 + 0.982813i \(0.559100\pi\)
\(588\) 0 0
\(589\) 5.34737 0.220334
\(590\) 0 0
\(591\) 6.63212 0.272809
\(592\) 0 0
\(593\) 4.48487 0.184172 0.0920859 0.995751i \(-0.470647\pi\)
0.0920859 + 0.995751i \(0.470647\pi\)
\(594\) 0 0
\(595\) −13.3480 −0.547214
\(596\) 0 0
\(597\) −6.70157 −0.274277
\(598\) 0 0
\(599\) 2.13414 0.0871985 0.0435992 0.999049i \(-0.486118\pi\)
0.0435992 + 0.999049i \(0.486118\pi\)
\(600\) 0 0
\(601\) 33.1661 1.35287 0.676436 0.736501i \(-0.263524\pi\)
0.676436 + 0.736501i \(0.263524\pi\)
\(602\) 0 0
\(603\) −4.90450 −0.199727
\(604\) 0 0
\(605\) 3.51994 0.143106
\(606\) 0 0
\(607\) −49.0969 −1.99278 −0.996391 0.0848855i \(-0.972948\pi\)
−0.996391 + 0.0848855i \(0.972948\pi\)
\(608\) 0 0
\(609\) 1.79149 0.0725948
\(610\) 0 0
\(611\) 6.82039 0.275923
\(612\) 0 0
\(613\) 34.6846 1.40090 0.700450 0.713702i \(-0.252983\pi\)
0.700450 + 0.713702i \(0.252983\pi\)
\(614\) 0 0
\(615\) −0.880356 −0.0354994
\(616\) 0 0
\(617\) −20.9248 −0.842400 −0.421200 0.906968i \(-0.638391\pi\)
−0.421200 + 0.906968i \(0.638391\pi\)
\(618\) 0 0
\(619\) −23.8215 −0.957468 −0.478734 0.877960i \(-0.658904\pi\)
−0.478734 + 0.877960i \(0.658904\pi\)
\(620\) 0 0
\(621\) −14.0581 −0.564132
\(622\) 0 0
\(623\) −12.7981 −0.512746
\(624\) 0 0
\(625\) −7.33778 −0.293511
\(626\) 0 0
\(627\) 0.365895 0.0146124
\(628\) 0 0
\(629\) −4.40184 −0.175513
\(630\) 0 0
\(631\) −44.1992 −1.75954 −0.879771 0.475398i \(-0.842304\pi\)
−0.879771 + 0.475398i \(0.842304\pi\)
\(632\) 0 0
\(633\) −3.27383 −0.130123
\(634\) 0 0
\(635\) 1.69704 0.0673449
\(636\) 0 0
\(637\) −6.67813 −0.264597
\(638\) 0 0
\(639\) −40.5238 −1.60310
\(640\) 0 0
\(641\) 4.85043 0.191580 0.0957902 0.995402i \(-0.469462\pi\)
0.0957902 + 0.995402i \(0.469462\pi\)
\(642\) 0 0
\(643\) 25.8729 1.02033 0.510165 0.860077i \(-0.329584\pi\)
0.510165 + 0.860077i \(0.329584\pi\)
\(644\) 0 0
\(645\) 4.67003 0.183882
\(646\) 0 0
\(647\) 23.7816 0.934952 0.467476 0.884006i \(-0.345163\pi\)
0.467476 + 0.884006i \(0.345163\pi\)
\(648\) 0 0
\(649\) −8.37564 −0.328773
\(650\) 0 0
\(651\) 2.35238 0.0921971
\(652\) 0 0
\(653\) 40.7334 1.59402 0.797011 0.603965i \(-0.206414\pi\)
0.797011 + 0.603965i \(0.206414\pi\)
\(654\) 0 0
\(655\) −37.0172 −1.44638
\(656\) 0 0
\(657\) 41.5725 1.62190
\(658\) 0 0
\(659\) −6.03351 −0.235032 −0.117516 0.993071i \(-0.537493\pi\)
−0.117516 + 0.993071i \(0.537493\pi\)
\(660\) 0 0
\(661\) −6.42894 −0.250057 −0.125028 0.992153i \(-0.539902\pi\)
−0.125028 + 0.992153i \(0.539902\pi\)
\(662\) 0 0
\(663\) −1.38751 −0.0538864
\(664\) 0 0
\(665\) 4.23202 0.164111
\(666\) 0 0
\(667\) 26.6726 1.03277
\(668\) 0 0
\(669\) −2.14465 −0.0829170
\(670\) 0 0
\(671\) −6.55777 −0.253160
\(672\) 0 0
\(673\) 23.1621 0.892832 0.446416 0.894826i \(-0.352700\pi\)
0.446416 + 0.894826i \(0.352700\pi\)
\(674\) 0 0
\(675\) −15.8618 −0.610521
\(676\) 0 0
\(677\) 10.0519 0.386325 0.193163 0.981167i \(-0.438125\pi\)
0.193163 + 0.981167i \(0.438125\pi\)
\(678\) 0 0
\(679\) 15.4181 0.591693
\(680\) 0 0
\(681\) −2.78805 −0.106838
\(682\) 0 0
\(683\) 30.1560 1.15389 0.576943 0.816784i \(-0.304245\pi\)
0.576943 + 0.816784i \(0.304245\pi\)
\(684\) 0 0
\(685\) −1.89539 −0.0724191
\(686\) 0 0
\(687\) 6.80062 0.259460
\(688\) 0 0
\(689\) −0.629873 −0.0239962
\(690\) 0 0
\(691\) 36.7673 1.39870 0.699348 0.714782i \(-0.253474\pi\)
0.699348 + 0.714782i \(0.253474\pi\)
\(692\) 0 0
\(693\) −3.44593 −0.130900
\(694\) 0 0
\(695\) −15.2755 −0.579433
\(696\) 0 0
\(697\) 2.15593 0.0816617
\(698\) 0 0
\(699\) 7.19307 0.272067
\(700\) 0 0
\(701\) 19.7296 0.745176 0.372588 0.927997i \(-0.378471\pi\)
0.372588 + 0.927997i \(0.378471\pi\)
\(702\) 0 0
\(703\) 1.39561 0.0526366
\(704\) 0 0
\(705\) 7.30617 0.275166
\(706\) 0 0
\(707\) 7.00455 0.263433
\(708\) 0 0
\(709\) 3.17620 0.119285 0.0596424 0.998220i \(-0.481004\pi\)
0.0596424 + 0.998220i \(0.481004\pi\)
\(710\) 0 0
\(711\) −30.4352 −1.14141
\(712\) 0 0
\(713\) 35.0235 1.31164
\(714\) 0 0
\(715\) 4.23202 0.158268
\(716\) 0 0
\(717\) −4.48544 −0.167512
\(718\) 0 0
\(719\) −12.2220 −0.455805 −0.227903 0.973684i \(-0.573187\pi\)
−0.227903 + 0.973684i \(0.573187\pi\)
\(720\) 0 0
\(721\) −10.2131 −0.380354
\(722\) 0 0
\(723\) −7.00686 −0.260588
\(724\) 0 0
\(725\) 30.0948 1.11769
\(726\) 0 0
\(727\) 12.0446 0.446711 0.223355 0.974737i \(-0.428299\pi\)
0.223355 + 0.974737i \(0.428299\pi\)
\(728\) 0 0
\(729\) −20.0370 −0.742111
\(730\) 0 0
\(731\) −11.4366 −0.422998
\(732\) 0 0
\(733\) 0.0621934 0.00229717 0.00114858 0.999999i \(-0.499634\pi\)
0.00114858 + 0.999999i \(0.499634\pi\)
\(734\) 0 0
\(735\) −7.15378 −0.263871
\(736\) 0 0
\(737\) 1.71120 0.0630328
\(738\) 0 0
\(739\) −30.4907 −1.12162 −0.560810 0.827945i \(-0.689510\pi\)
−0.560810 + 0.827945i \(0.689510\pi\)
\(740\) 0 0
\(741\) 0.439914 0.0161606
\(742\) 0 0
\(743\) 1.38168 0.0506891 0.0253445 0.999679i \(-0.491932\pi\)
0.0253445 + 0.999679i \(0.491932\pi\)
\(744\) 0 0
\(745\) −54.1089 −1.98240
\(746\) 0 0
\(747\) 21.6417 0.791827
\(748\) 0 0
\(749\) −9.09390 −0.332284
\(750\) 0 0
\(751\) −12.6933 −0.463185 −0.231593 0.972813i \(-0.574394\pi\)
−0.231593 + 0.972813i \(0.574394\pi\)
\(752\) 0 0
\(753\) 2.75917 0.100550
\(754\) 0 0
\(755\) 19.3081 0.702692
\(756\) 0 0
\(757\) 13.3745 0.486103 0.243051 0.970013i \(-0.421852\pi\)
0.243051 + 0.970013i \(0.421852\pi\)
\(758\) 0 0
\(759\) 2.39649 0.0869870
\(760\) 0 0
\(761\) −18.7046 −0.678041 −0.339021 0.940779i \(-0.610096\pi\)
−0.339021 + 0.940779i \(0.610096\pi\)
\(762\) 0 0
\(763\) 11.7500 0.425380
\(764\) 0 0
\(765\) 31.8199 1.15045
\(766\) 0 0
\(767\) −10.0700 −0.363607
\(768\) 0 0
\(769\) 0.784395 0.0282860 0.0141430 0.999900i \(-0.495498\pi\)
0.0141430 + 0.999900i \(0.495498\pi\)
\(770\) 0 0
\(771\) −10.0450 −0.361762
\(772\) 0 0
\(773\) 49.7624 1.78983 0.894915 0.446236i \(-0.147236\pi\)
0.894915 + 0.446236i \(0.147236\pi\)
\(774\) 0 0
\(775\) 39.5171 1.41950
\(776\) 0 0
\(777\) 0.613950 0.0220253
\(778\) 0 0
\(779\) −0.683544 −0.0244905
\(780\) 0 0
\(781\) 14.1389 0.505930
\(782\) 0 0
\(783\) −8.74085 −0.312373
\(784\) 0 0
\(785\) −25.8099 −0.921194
\(786\) 0 0
\(787\) −10.4745 −0.373377 −0.186689 0.982419i \(-0.559776\pi\)
−0.186689 + 0.982419i \(0.559776\pi\)
\(788\) 0 0
\(789\) −8.09126 −0.288056
\(790\) 0 0
\(791\) −7.55940 −0.268781
\(792\) 0 0
\(793\) −7.88438 −0.279983
\(794\) 0 0
\(795\) −0.674735 −0.0239304
\(796\) 0 0
\(797\) 51.0562 1.80850 0.904252 0.427000i \(-0.140429\pi\)
0.904252 + 0.427000i \(0.140429\pi\)
\(798\) 0 0
\(799\) −17.8923 −0.632984
\(800\) 0 0
\(801\) 30.5091 1.07799
\(802\) 0 0
\(803\) −14.5048 −0.511863
\(804\) 0 0
\(805\) 27.7183 0.976941
\(806\) 0 0
\(807\) −5.01025 −0.176369
\(808\) 0 0
\(809\) 53.6806 1.88731 0.943655 0.330929i \(-0.107362\pi\)
0.943655 + 0.330929i \(0.107362\pi\)
\(810\) 0 0
\(811\) 21.3619 0.750117 0.375058 0.927001i \(-0.377623\pi\)
0.375058 + 0.927001i \(0.377623\pi\)
\(812\) 0 0
\(813\) −7.27985 −0.255315
\(814\) 0 0
\(815\) 24.9238 0.873043
\(816\) 0 0
\(817\) 3.62600 0.126858
\(818\) 0 0
\(819\) −4.14302 −0.144769
\(820\) 0 0
\(821\) 7.58097 0.264578 0.132289 0.991211i \(-0.457767\pi\)
0.132289 + 0.991211i \(0.457767\pi\)
\(822\) 0 0
\(823\) −31.9617 −1.11411 −0.557057 0.830474i \(-0.688070\pi\)
−0.557057 + 0.830474i \(0.688070\pi\)
\(824\) 0 0
\(825\) 2.70397 0.0941400
\(826\) 0 0
\(827\) −5.13967 −0.178724 −0.0893620 0.995999i \(-0.528483\pi\)
−0.0893620 + 0.995999i \(0.528483\pi\)
\(828\) 0 0
\(829\) −55.6227 −1.93186 −0.965928 0.258811i \(-0.916669\pi\)
−0.965928 + 0.258811i \(0.916669\pi\)
\(830\) 0 0
\(831\) −9.84521 −0.341527
\(832\) 0 0
\(833\) 17.5191 0.607002
\(834\) 0 0
\(835\) 63.6579 2.20297
\(836\) 0 0
\(837\) −11.4775 −0.396720
\(838\) 0 0
\(839\) 28.4332 0.981624 0.490812 0.871265i \(-0.336700\pi\)
0.490812 + 0.871265i \(0.336700\pi\)
\(840\) 0 0
\(841\) −12.4159 −0.428133
\(842\) 0 0
\(843\) −7.88617 −0.271614
\(844\) 0 0
\(845\) −40.6711 −1.39913
\(846\) 0 0
\(847\) 1.20230 0.0413114
\(848\) 0 0
\(849\) −2.47688 −0.0850064
\(850\) 0 0
\(851\) 9.14081 0.313343
\(852\) 0 0
\(853\) 27.7505 0.950160 0.475080 0.879943i \(-0.342419\pi\)
0.475080 + 0.879943i \(0.342419\pi\)
\(854\) 0 0
\(855\) −10.0886 −0.345022
\(856\) 0 0
\(857\) 23.9861 0.819348 0.409674 0.912232i \(-0.365642\pi\)
0.409674 + 0.912232i \(0.365642\pi\)
\(858\) 0 0
\(859\) −14.1447 −0.482609 −0.241305 0.970449i \(-0.577575\pi\)
−0.241305 + 0.970449i \(0.577575\pi\)
\(860\) 0 0
\(861\) −0.300700 −0.0102478
\(862\) 0 0
\(863\) −54.3214 −1.84912 −0.924561 0.381034i \(-0.875568\pi\)
−0.924561 + 0.381034i \(0.875568\pi\)
\(864\) 0 0
\(865\) −71.4114 −2.42806
\(866\) 0 0
\(867\) −2.58028 −0.0876308
\(868\) 0 0
\(869\) 10.6190 0.360223
\(870\) 0 0
\(871\) 2.05737 0.0697112
\(872\) 0 0
\(873\) −36.7548 −1.24396
\(874\) 0 0
\(875\) 10.1146 0.341935
\(876\) 0 0
\(877\) −11.4882 −0.387930 −0.193965 0.981008i \(-0.562135\pi\)
−0.193965 + 0.981008i \(0.562135\pi\)
\(878\) 0 0
\(879\) 5.47480 0.184660
\(880\) 0 0
\(881\) 5.50799 0.185569 0.0927844 0.995686i \(-0.470423\pi\)
0.0927844 + 0.995686i \(0.470423\pi\)
\(882\) 0 0
\(883\) 40.8837 1.37585 0.687923 0.725783i \(-0.258522\pi\)
0.687923 + 0.725783i \(0.258522\pi\)
\(884\) 0 0
\(885\) −10.7872 −0.362609
\(886\) 0 0
\(887\) 47.7220 1.60235 0.801175 0.598430i \(-0.204209\pi\)
0.801175 + 0.598430i \(0.204209\pi\)
\(888\) 0 0
\(889\) 0.579652 0.0194409
\(890\) 0 0
\(891\) 7.81301 0.261746
\(892\) 0 0
\(893\) 5.67280 0.189833
\(894\) 0 0
\(895\) 60.6039 2.02576
\(896\) 0 0
\(897\) 2.88129 0.0962034
\(898\) 0 0
\(899\) 21.7764 0.726285
\(900\) 0 0
\(901\) 1.65238 0.0550488
\(902\) 0 0
\(903\) 1.59513 0.0530825
\(904\) 0 0
\(905\) 37.2140 1.23704
\(906\) 0 0
\(907\) −26.2158 −0.870480 −0.435240 0.900314i \(-0.643337\pi\)
−0.435240 + 0.900314i \(0.643337\pi\)
\(908\) 0 0
\(909\) −16.6980 −0.553836
\(910\) 0 0
\(911\) −4.52294 −0.149852 −0.0749258 0.997189i \(-0.523872\pi\)
−0.0749258 + 0.997189i \(0.523872\pi\)
\(912\) 0 0
\(913\) −7.55086 −0.249897
\(914\) 0 0
\(915\) −8.44594 −0.279214
\(916\) 0 0
\(917\) −12.6438 −0.417536
\(918\) 0 0
\(919\) 5.66305 0.186807 0.0934034 0.995628i \(-0.470225\pi\)
0.0934034 + 0.995628i \(0.470225\pi\)
\(920\) 0 0
\(921\) −4.61536 −0.152081
\(922\) 0 0
\(923\) 16.9991 0.559534
\(924\) 0 0
\(925\) 10.3136 0.339109
\(926\) 0 0
\(927\) 24.3466 0.799648
\(928\) 0 0
\(929\) −44.7181 −1.46715 −0.733577 0.679607i \(-0.762151\pi\)
−0.733577 + 0.679607i \(0.762151\pi\)
\(930\) 0 0
\(931\) −5.55448 −0.182041
\(932\) 0 0
\(933\) 10.6162 0.347559
\(934\) 0 0
\(935\) −11.1021 −0.363077
\(936\) 0 0
\(937\) 18.0094 0.588340 0.294170 0.955753i \(-0.404957\pi\)
0.294170 + 0.955753i \(0.404957\pi\)
\(938\) 0 0
\(939\) −2.26967 −0.0740680
\(940\) 0 0
\(941\) −2.92714 −0.0954220 −0.0477110 0.998861i \(-0.515193\pi\)
−0.0477110 + 0.998861i \(0.515193\pi\)
\(942\) 0 0
\(943\) −4.47698 −0.145791
\(944\) 0 0
\(945\) −9.08352 −0.295487
\(946\) 0 0
\(947\) 25.0977 0.815564 0.407782 0.913079i \(-0.366302\pi\)
0.407782 + 0.913079i \(0.366302\pi\)
\(948\) 0 0
\(949\) −17.4391 −0.566096
\(950\) 0 0
\(951\) −5.02141 −0.162830
\(952\) 0 0
\(953\) 23.5782 0.763773 0.381886 0.924209i \(-0.375275\pi\)
0.381886 + 0.924209i \(0.375275\pi\)
\(954\) 0 0
\(955\) 30.1792 0.976576
\(956\) 0 0
\(957\) 1.49006 0.0481667
\(958\) 0 0
\(959\) −0.647401 −0.0209057
\(960\) 0 0
\(961\) −2.40565 −0.0776015
\(962\) 0 0
\(963\) 21.6787 0.698587
\(964\) 0 0
\(965\) 34.3369 1.10534
\(966\) 0 0
\(967\) 38.9377 1.25215 0.626076 0.779762i \(-0.284660\pi\)
0.626076 + 0.779762i \(0.284660\pi\)
\(968\) 0 0
\(969\) −1.15405 −0.0370734
\(970\) 0 0
\(971\) 58.9978 1.89333 0.946665 0.322219i \(-0.104429\pi\)
0.946665 + 0.322219i \(0.104429\pi\)
\(972\) 0 0
\(973\) −5.21761 −0.167269
\(974\) 0 0
\(975\) 3.25097 0.104114
\(976\) 0 0
\(977\) 23.7802 0.760795 0.380398 0.924823i \(-0.375787\pi\)
0.380398 + 0.924823i \(0.375787\pi\)
\(978\) 0 0
\(979\) −10.6447 −0.340207
\(980\) 0 0
\(981\) −28.0106 −0.894310
\(982\) 0 0
\(983\) −39.0553 −1.24567 −0.622835 0.782353i \(-0.714019\pi\)
−0.622835 + 0.782353i \(0.714019\pi\)
\(984\) 0 0
\(985\) 63.8017 2.03289
\(986\) 0 0
\(987\) 2.49554 0.0794340
\(988\) 0 0
\(989\) 23.7491 0.755177
\(990\) 0 0
\(991\) 12.5250 0.397871 0.198935 0.980013i \(-0.436252\pi\)
0.198935 + 0.980013i \(0.436252\pi\)
\(992\) 0 0
\(993\) 3.64598 0.115702
\(994\) 0 0
\(995\) −64.4698 −2.04383
\(996\) 0 0
\(997\) 23.8834 0.756393 0.378197 0.925725i \(-0.376544\pi\)
0.378197 + 0.925725i \(0.376544\pi\)
\(998\) 0 0
\(999\) −2.99552 −0.0947741
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1672.2.a.j.1.3 6
4.3 odd 2 3344.2.a.v.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1672.2.a.j.1.3 6 1.1 even 1 trivial
3344.2.a.v.1.4 6 4.3 odd 2