Defining parameters
Level: | \( N \) | \(=\) | \( 1672 = 2^{3} \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1672.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 11 \) | ||
Sturm bound: | \(480\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1672))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 248 | 44 | 204 |
Cusp forms | 233 | 44 | 189 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(11\) | \(19\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | $+$ | \(4\) |
\(+\) | \(+\) | \(-\) | $-$ | \(6\) |
\(+\) | \(-\) | \(+\) | $-$ | \(9\) |
\(+\) | \(-\) | \(-\) | $+$ | \(4\) |
\(-\) | \(+\) | \(+\) | $-$ | \(3\) |
\(-\) | \(+\) | \(-\) | $+$ | \(6\) |
\(-\) | \(-\) | \(+\) | $+$ | \(6\) |
\(-\) | \(-\) | \(-\) | $-$ | \(6\) |
Plus space | \(+\) | \(20\) | ||
Minus space | \(-\) | \(24\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1672))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1672))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1672)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(152))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(209))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(418))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(836))\)\(^{\oplus 2}\)