Properties

Label 1665.2.c.e.334.11
Level $1665$
Weight $2$
Character 1665.334
Analytic conductor $13.295$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1665,2,Mod(334,1665)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1665.334"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1665, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1665 = 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1665.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,-22,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2950919365\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 28x^{16} + 306x^{14} + 1684x^{12} + 5049x^{10} + 8280x^{8} + 7004x^{6} + 2672x^{4} + 368x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 334.11
Root \(-0.296889i\) of defining polynomial
Character \(\chi\) \(=\) 1665.334
Dual form 1665.2.c.e.334.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.703111i q^{2} +1.50564 q^{4} +(2.08504 + 0.807843i) q^{5} -0.501390i q^{7} +2.46485i q^{8} +(-0.568003 + 1.46601i) q^{10} +1.80401 q^{11} +1.63218i q^{13} +0.352533 q^{14} +1.27821 q^{16} +1.92844i q^{17} +0.869173 q^{19} +(3.13931 + 1.21632i) q^{20} +1.26842i q^{22} -4.86522i q^{23} +(3.69478 + 3.36877i) q^{25} -1.14761 q^{26} -0.754910i q^{28} -3.15000 q^{29} +2.39134 q^{31} +5.82842i q^{32} -1.35591 q^{34} +(0.405044 - 1.04542i) q^{35} +1.00000i q^{37} +0.611125i q^{38} +(-1.99121 + 5.13931i) q^{40} -8.24040 q^{41} +11.6931i q^{43} +2.71619 q^{44} +3.42079 q^{46} -1.43311i q^{47} +6.74861 q^{49} +(-2.36862 + 2.59784i) q^{50} +2.45747i q^{52} -10.7692i q^{53} +(3.76144 + 1.45736i) q^{55} +1.23585 q^{56} -2.21480i q^{58} +8.71701 q^{59} -7.84555 q^{61} +1.68138i q^{62} -1.54161 q^{64} +(-1.31855 + 3.40317i) q^{65} -11.8599i q^{67} +2.90353i q^{68} +(0.735044 + 0.284791i) q^{70} +6.06069 q^{71} -5.56086i q^{73} -0.703111 q^{74} +1.30866 q^{76} -0.904514i q^{77} -7.44924 q^{79} +(2.66511 + 1.03259i) q^{80} -5.79391i q^{82} +4.70795i q^{83} +(-1.55788 + 4.02088i) q^{85} -8.22154 q^{86} +4.44662i q^{88} +5.16332 q^{89} +0.818361 q^{91} -7.32524i q^{92} +1.00764 q^{94} +(1.81226 + 0.702156i) q^{95} +6.48639i q^{97} +4.74502i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 22 q^{4} - 2 q^{5} + 6 q^{10} - 8 q^{14} + 22 q^{16} + 8 q^{19} + 4 q^{20} - 18 q^{25} + 12 q^{26} - 4 q^{29} - 12 q^{31} - 12 q^{34} + 2 q^{35} - 6 q^{40} - 4 q^{41} + 8 q^{44} + 32 q^{46} + 14 q^{49}+ \cdots + 44 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1665\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.703111i 0.497174i 0.968610 + 0.248587i \(0.0799662\pi\)
−0.968610 + 0.248587i \(0.920034\pi\)
\(3\) 0 0
\(4\) 1.50564 0.752818
\(5\) 2.08504 + 0.807843i 0.932458 + 0.361279i
\(6\) 0 0
\(7\) 0.501390i 0.189508i −0.995501 0.0947538i \(-0.969794\pi\)
0.995501 0.0947538i \(-0.0302064\pi\)
\(8\) 2.46485i 0.871456i
\(9\) 0 0
\(10\) −0.568003 + 1.46601i −0.179618 + 0.463594i
\(11\) 1.80401 0.543931 0.271965 0.962307i \(-0.412326\pi\)
0.271965 + 0.962307i \(0.412326\pi\)
\(12\) 0 0
\(13\) 1.63218i 0.452686i 0.974048 + 0.226343i \(0.0726771\pi\)
−0.974048 + 0.226343i \(0.927323\pi\)
\(14\) 0.352533 0.0942183
\(15\) 0 0
\(16\) 1.27821 0.319552
\(17\) 1.92844i 0.467717i 0.972271 + 0.233858i \(0.0751352\pi\)
−0.972271 + 0.233858i \(0.924865\pi\)
\(18\) 0 0
\(19\) 0.869173 0.199402 0.0997010 0.995017i \(-0.468211\pi\)
0.0997010 + 0.995017i \(0.468211\pi\)
\(20\) 3.13931 + 1.21632i 0.701971 + 0.271977i
\(21\) 0 0
\(22\) 1.26842i 0.270428i
\(23\) 4.86522i 1.01447i −0.861808 0.507234i \(-0.830668\pi\)
0.861808 0.507234i \(-0.169332\pi\)
\(24\) 0 0
\(25\) 3.69478 + 3.36877i 0.738956 + 0.673754i
\(26\) −1.14761 −0.225064
\(27\) 0 0
\(28\) 0.754910i 0.142665i
\(29\) −3.15000 −0.584940 −0.292470 0.956275i \(-0.594477\pi\)
−0.292470 + 0.956275i \(0.594477\pi\)
\(30\) 0 0
\(31\) 2.39134 0.429498 0.214749 0.976669i \(-0.431107\pi\)
0.214749 + 0.976669i \(0.431107\pi\)
\(32\) 5.82842i 1.03033i
\(33\) 0 0
\(34\) −1.35591 −0.232537
\(35\) 0.405044 1.04542i 0.0684650 0.176708i
\(36\) 0 0
\(37\) 1.00000i 0.164399i
\(38\) 0.611125i 0.0991375i
\(39\) 0 0
\(40\) −1.99121 + 5.13931i −0.314838 + 0.812596i
\(41\) −8.24040 −1.28693 −0.643467 0.765474i \(-0.722505\pi\)
−0.643467 + 0.765474i \(0.722505\pi\)
\(42\) 0 0
\(43\) 11.6931i 1.78318i 0.452844 + 0.891590i \(0.350410\pi\)
−0.452844 + 0.891590i \(0.649590\pi\)
\(44\) 2.71619 0.409481
\(45\) 0 0
\(46\) 3.42079 0.504368
\(47\) 1.43311i 0.209041i −0.994523 0.104521i \(-0.966669\pi\)
0.994523 0.104521i \(-0.0333308\pi\)
\(48\) 0 0
\(49\) 6.74861 0.964087
\(50\) −2.36862 + 2.59784i −0.334973 + 0.367390i
\(51\) 0 0
\(52\) 2.45747i 0.340790i
\(53\) 10.7692i 1.47927i −0.673010 0.739633i \(-0.734999\pi\)
0.673010 0.739633i \(-0.265001\pi\)
\(54\) 0 0
\(55\) 3.76144 + 1.45736i 0.507192 + 0.196510i
\(56\) 1.23585 0.165148
\(57\) 0 0
\(58\) 2.21480i 0.290817i
\(59\) 8.71701 1.13486 0.567429 0.823422i \(-0.307938\pi\)
0.567429 + 0.823422i \(0.307938\pi\)
\(60\) 0 0
\(61\) −7.84555 −1.00452 −0.502260 0.864717i \(-0.667498\pi\)
−0.502260 + 0.864717i \(0.667498\pi\)
\(62\) 1.68138i 0.213535i
\(63\) 0 0
\(64\) −1.54161 −0.192701
\(65\) −1.31855 + 3.40317i −0.163546 + 0.422111i
\(66\) 0 0
\(67\) 11.8599i 1.44891i −0.689321 0.724456i \(-0.742091\pi\)
0.689321 0.724456i \(-0.257909\pi\)
\(68\) 2.90353i 0.352105i
\(69\) 0 0
\(70\) 0.735044 + 0.284791i 0.0878546 + 0.0340390i
\(71\) 6.06069 0.719272 0.359636 0.933093i \(-0.382901\pi\)
0.359636 + 0.933093i \(0.382901\pi\)
\(72\) 0 0
\(73\) 5.56086i 0.650849i −0.945568 0.325424i \(-0.894493\pi\)
0.945568 0.325424i \(-0.105507\pi\)
\(74\) −0.703111 −0.0817350
\(75\) 0 0
\(76\) 1.30866 0.150113
\(77\) 0.904514i 0.103079i
\(78\) 0 0
\(79\) −7.44924 −0.838105 −0.419052 0.907962i \(-0.637638\pi\)
−0.419052 + 0.907962i \(0.637638\pi\)
\(80\) 2.66511 + 1.03259i 0.297969 + 0.115447i
\(81\) 0 0
\(82\) 5.79391i 0.639830i
\(83\) 4.70795i 0.516765i 0.966043 + 0.258382i \(0.0831894\pi\)
−0.966043 + 0.258382i \(0.916811\pi\)
\(84\) 0 0
\(85\) −1.55788 + 4.02088i −0.168976 + 0.436126i
\(86\) −8.22154 −0.886551
\(87\) 0 0
\(88\) 4.44662i 0.474012i
\(89\) 5.16332 0.547311 0.273656 0.961828i \(-0.411767\pi\)
0.273656 + 0.961828i \(0.411767\pi\)
\(90\) 0 0
\(91\) 0.818361 0.0857875
\(92\) 7.32524i 0.763709i
\(93\) 0 0
\(94\) 1.00764 0.103930
\(95\) 1.81226 + 0.702156i 0.185934 + 0.0720396i
\(96\) 0 0
\(97\) 6.48639i 0.658593i 0.944227 + 0.329297i \(0.106812\pi\)
−0.944227 + 0.329297i \(0.893188\pi\)
\(98\) 4.74502i 0.479319i
\(99\) 0 0
\(100\) 5.56299 + 5.07214i 0.556299 + 0.507214i
\(101\) −2.50611 −0.249367 −0.124684 0.992197i \(-0.539792\pi\)
−0.124684 + 0.992197i \(0.539792\pi\)
\(102\) 0 0
\(103\) 6.40079i 0.630688i −0.948977 0.315344i \(-0.897880\pi\)
0.948977 0.315344i \(-0.102120\pi\)
\(104\) −4.02309 −0.394496
\(105\) 0 0
\(106\) 7.57195 0.735453
\(107\) 11.6711i 1.12829i 0.825675 + 0.564146i \(0.190794\pi\)
−0.825675 + 0.564146i \(0.809206\pi\)
\(108\) 0 0
\(109\) −7.93573 −0.760105 −0.380053 0.924965i \(-0.624094\pi\)
−0.380053 + 0.924965i \(0.624094\pi\)
\(110\) −1.02469 + 2.64471i −0.0977000 + 0.252163i
\(111\) 0 0
\(112\) 0.640881i 0.0605575i
\(113\) 16.2261i 1.52643i −0.646146 0.763213i \(-0.723620\pi\)
0.646146 0.763213i \(-0.276380\pi\)
\(114\) 0 0
\(115\) 3.93033 10.1442i 0.366506 0.945949i
\(116\) −4.74275 −0.440353
\(117\) 0 0
\(118\) 6.12902i 0.564222i
\(119\) 0.966903 0.0886358
\(120\) 0 0
\(121\) −7.74553 −0.704139
\(122\) 5.51629i 0.499421i
\(123\) 0 0
\(124\) 3.60049 0.323333
\(125\) 4.98232 + 10.0088i 0.445632 + 0.895216i
\(126\) 0 0
\(127\) 9.56408i 0.848675i 0.905504 + 0.424337i \(0.139493\pi\)
−0.905504 + 0.424337i \(0.860507\pi\)
\(128\) 10.5729i 0.934523i
\(129\) 0 0
\(130\) −2.39280 0.927086i −0.209863 0.0813108i
\(131\) 20.2974 1.77340 0.886698 0.462350i \(-0.152994\pi\)
0.886698 + 0.462350i \(0.152994\pi\)
\(132\) 0 0
\(133\) 0.435795i 0.0377882i
\(134\) 8.33879 0.720362
\(135\) 0 0
\(136\) −4.75333 −0.407594
\(137\) 11.0879i 0.947300i −0.880713 0.473650i \(-0.842936\pi\)
0.880713 0.473650i \(-0.157064\pi\)
\(138\) 0 0
\(139\) −14.1716 −1.20202 −0.601009 0.799242i \(-0.705235\pi\)
−0.601009 + 0.799242i \(0.705235\pi\)
\(140\) 0.609849 1.57402i 0.0515417 0.133029i
\(141\) 0 0
\(142\) 4.26134i 0.357603i
\(143\) 2.94448i 0.246230i
\(144\) 0 0
\(145\) −6.56787 2.54471i −0.545432 0.211326i
\(146\) 3.90990 0.323585
\(147\) 0 0
\(148\) 1.50564i 0.123762i
\(149\) −17.5785 −1.44008 −0.720042 0.693930i \(-0.755878\pi\)
−0.720042 + 0.693930i \(0.755878\pi\)
\(150\) 0 0
\(151\) 10.4870 0.853422 0.426711 0.904388i \(-0.359672\pi\)
0.426711 + 0.904388i \(0.359672\pi\)
\(152\) 2.14238i 0.173770i
\(153\) 0 0
\(154\) 0.635974 0.0512482
\(155\) 4.98604 + 1.93183i 0.400488 + 0.155168i
\(156\) 0 0
\(157\) 14.1135i 1.12638i 0.826328 + 0.563189i \(0.190426\pi\)
−0.826328 + 0.563189i \(0.809574\pi\)
\(158\) 5.23764i 0.416684i
\(159\) 0 0
\(160\) −4.70845 + 12.1525i −0.372236 + 0.960739i
\(161\) −2.43937 −0.192249
\(162\) 0 0
\(163\) 0.261155i 0.0204553i 0.999948 + 0.0102276i \(0.00325561\pi\)
−0.999948 + 0.0102276i \(0.996744\pi\)
\(164\) −12.4070 −0.968826
\(165\) 0 0
\(166\) −3.31021 −0.256922
\(167\) 11.7929i 0.912560i 0.889836 + 0.456280i \(0.150818\pi\)
−0.889836 + 0.456280i \(0.849182\pi\)
\(168\) 0 0
\(169\) 10.3360 0.795075
\(170\) −2.82713 1.09536i −0.216831 0.0840105i
\(171\) 0 0
\(172\) 17.6055i 1.34241i
\(173\) 13.5257i 1.02834i −0.857688 0.514170i \(-0.828100\pi\)
0.857688 0.514170i \(-0.171900\pi\)
\(174\) 0 0
\(175\) 1.68907 1.85252i 0.127681 0.140038i
\(176\) 2.30591 0.173814
\(177\) 0 0
\(178\) 3.63039i 0.272109i
\(179\) 0.443280 0.0331323 0.0165661 0.999863i \(-0.494727\pi\)
0.0165661 + 0.999863i \(0.494727\pi\)
\(180\) 0 0
\(181\) 11.4380 0.850182 0.425091 0.905151i \(-0.360242\pi\)
0.425091 + 0.905151i \(0.360242\pi\)
\(182\) 0.575398i 0.0426513i
\(183\) 0 0
\(184\) 11.9920 0.884064
\(185\) −0.807843 + 2.08504i −0.0593938 + 0.153295i
\(186\) 0 0
\(187\) 3.47894i 0.254405i
\(188\) 2.15775i 0.157370i
\(189\) 0 0
\(190\) −0.493693 + 1.27422i −0.0358163 + 0.0924416i
\(191\) −10.1652 −0.735531 −0.367765 0.929919i \(-0.619877\pi\)
−0.367765 + 0.929919i \(0.619877\pi\)
\(192\) 0 0
\(193\) 8.94479i 0.643860i −0.946763 0.321930i \(-0.895668\pi\)
0.946763 0.321930i \(-0.104332\pi\)
\(194\) −4.56065 −0.327436
\(195\) 0 0
\(196\) 10.1609 0.725782
\(197\) 8.65157i 0.616399i −0.951322 0.308199i \(-0.900274\pi\)
0.951322 0.308199i \(-0.0997264\pi\)
\(198\) 0 0
\(199\) −10.2145 −0.724084 −0.362042 0.932162i \(-0.617920\pi\)
−0.362042 + 0.932162i \(0.617920\pi\)
\(200\) −8.30351 + 9.10707i −0.587147 + 0.643967i
\(201\) 0 0
\(202\) 1.76207i 0.123979i
\(203\) 1.57938i 0.110851i
\(204\) 0 0
\(205\) −17.1816 6.65695i −1.20001 0.464941i
\(206\) 4.50046 0.313562
\(207\) 0 0
\(208\) 2.08627i 0.144657i
\(209\) 1.56800 0.108461
\(210\) 0 0
\(211\) 13.6414 0.939113 0.469557 0.882902i \(-0.344414\pi\)
0.469557 + 0.882902i \(0.344414\pi\)
\(212\) 16.2145i 1.11362i
\(213\) 0 0
\(214\) −8.20611 −0.560958
\(215\) −9.44619 + 24.3806i −0.644225 + 1.66274i
\(216\) 0 0
\(217\) 1.19899i 0.0813930i
\(218\) 5.57970i 0.377905i
\(219\) 0 0
\(220\) 5.66336 + 2.19425i 0.381823 + 0.147937i
\(221\) −3.14758 −0.211729
\(222\) 0 0
\(223\) 6.66288i 0.446180i −0.974798 0.223090i \(-0.928386\pi\)
0.974798 0.223090i \(-0.0716143\pi\)
\(224\) 2.92231 0.195255
\(225\) 0 0
\(226\) 11.4088 0.758900
\(227\) 5.71859i 0.379556i 0.981827 + 0.189778i \(0.0607768\pi\)
−0.981827 + 0.189778i \(0.939223\pi\)
\(228\) 0 0
\(229\) −29.9549 −1.97948 −0.989738 0.142895i \(-0.954359\pi\)
−0.989738 + 0.142895i \(0.954359\pi\)
\(230\) 7.13248 + 2.76346i 0.470302 + 0.182217i
\(231\) 0 0
\(232\) 7.76427i 0.509750i
\(233\) 25.4277i 1.66583i 0.553404 + 0.832913i \(0.313329\pi\)
−0.553404 + 0.832913i \(0.686671\pi\)
\(234\) 0 0
\(235\) 1.15773 2.98810i 0.0755221 0.194922i
\(236\) 13.1246 0.854341
\(237\) 0 0
\(238\) 0.679840i 0.0440675i
\(239\) −10.9704 −0.709615 −0.354808 0.934939i \(-0.615454\pi\)
−0.354808 + 0.934939i \(0.615454\pi\)
\(240\) 0 0
\(241\) 23.8516 1.53642 0.768208 0.640200i \(-0.221149\pi\)
0.768208 + 0.640200i \(0.221149\pi\)
\(242\) 5.44597i 0.350080i
\(243\) 0 0
\(244\) −11.8125 −0.756220
\(245\) 14.0711 + 5.45182i 0.898970 + 0.348304i
\(246\) 0 0
\(247\) 1.41865i 0.0902666i
\(248\) 5.89430i 0.374288i
\(249\) 0 0
\(250\) −7.03731 + 3.50312i −0.445079 + 0.221557i
\(251\) −18.9886 −1.19855 −0.599275 0.800543i \(-0.704545\pi\)
−0.599275 + 0.800543i \(0.704545\pi\)
\(252\) 0 0
\(253\) 8.77692i 0.551800i
\(254\) −6.72461 −0.421939
\(255\) 0 0
\(256\) −10.5172 −0.657322
\(257\) 5.12928i 0.319956i 0.987121 + 0.159978i \(0.0511423\pi\)
−0.987121 + 0.159978i \(0.948858\pi\)
\(258\) 0 0
\(259\) 0.501390 0.0311549
\(260\) −1.98525 + 5.12393i −0.123120 + 0.317773i
\(261\) 0 0
\(262\) 14.2713i 0.881687i
\(263\) 27.1591i 1.67470i −0.546666 0.837351i \(-0.684103\pi\)
0.546666 0.837351i \(-0.315897\pi\)
\(264\) 0 0
\(265\) 8.69984 22.4542i 0.534427 1.37935i
\(266\) 0.306412 0.0187873
\(267\) 0 0
\(268\) 17.8566i 1.09077i
\(269\) 19.0743 1.16298 0.581492 0.813552i \(-0.302469\pi\)
0.581492 + 0.813552i \(0.302469\pi\)
\(270\) 0 0
\(271\) −18.0630 −1.09725 −0.548626 0.836068i \(-0.684849\pi\)
−0.548626 + 0.836068i \(0.684849\pi\)
\(272\) 2.46495i 0.149460i
\(273\) 0 0
\(274\) 7.79600 0.470973
\(275\) 6.66543 + 6.07731i 0.401941 + 0.366475i
\(276\) 0 0
\(277\) 22.9367i 1.37813i −0.724698 0.689067i \(-0.758021\pi\)
0.724698 0.689067i \(-0.241979\pi\)
\(278\) 9.96420i 0.597613i
\(279\) 0 0
\(280\) 2.57680 + 0.998374i 0.153993 + 0.0596642i
\(281\) −14.1793 −0.845869 −0.422934 0.906160i \(-0.639000\pi\)
−0.422934 + 0.906160i \(0.639000\pi\)
\(282\) 0 0
\(283\) 8.55472i 0.508525i −0.967135 0.254263i \(-0.918167\pi\)
0.967135 0.254263i \(-0.0818327\pi\)
\(284\) 9.12519 0.541480
\(285\) 0 0
\(286\) −2.07030 −0.122419
\(287\) 4.13165i 0.243884i
\(288\) 0 0
\(289\) 13.2811 0.781241
\(290\) 1.78921 4.61794i 0.105066 0.271175i
\(291\) 0 0
\(292\) 8.37262i 0.489971i
\(293\) 26.2220i 1.53191i −0.642896 0.765953i \(-0.722267\pi\)
0.642896 0.765953i \(-0.277733\pi\)
\(294\) 0 0
\(295\) 18.1753 + 7.04198i 1.05821 + 0.410000i
\(296\) −2.46485 −0.143266
\(297\) 0 0
\(298\) 12.3596i 0.715973i
\(299\) 7.94093 0.459236
\(300\) 0 0
\(301\) 5.86280 0.337926
\(302\) 7.37354i 0.424300i
\(303\) 0 0
\(304\) 1.11098 0.0637193
\(305\) −16.3583 6.33797i −0.936672 0.362911i
\(306\) 0 0
\(307\) 20.8170i 1.18809i −0.804431 0.594046i \(-0.797530\pi\)
0.804431 0.594046i \(-0.202470\pi\)
\(308\) 1.36187i 0.0775997i
\(309\) 0 0
\(310\) −1.35829 + 3.50574i −0.0771457 + 0.199113i
\(311\) −15.9789 −0.906078 −0.453039 0.891491i \(-0.649660\pi\)
−0.453039 + 0.891491i \(0.649660\pi\)
\(312\) 0 0
\(313\) 4.27429i 0.241597i −0.992677 0.120799i \(-0.961454\pi\)
0.992677 0.120799i \(-0.0385455\pi\)
\(314\) −9.92333 −0.560006
\(315\) 0 0
\(316\) −11.2158 −0.630940
\(317\) 6.19424i 0.347903i −0.984754 0.173952i \(-0.944346\pi\)
0.984754 0.173952i \(-0.0556537\pi\)
\(318\) 0 0
\(319\) −5.68264 −0.318167
\(320\) −3.21432 1.24538i −0.179686 0.0696188i
\(321\) 0 0
\(322\) 1.71515i 0.0955815i
\(323\) 1.67615i 0.0932636i
\(324\) 0 0
\(325\) −5.49845 + 6.03056i −0.304999 + 0.334515i
\(326\) −0.183621 −0.0101698
\(327\) 0 0
\(328\) 20.3113i 1.12151i
\(329\) −0.718549 −0.0396149
\(330\) 0 0
\(331\) −32.0400 −1.76108 −0.880540 0.473972i \(-0.842820\pi\)
−0.880540 + 0.473972i \(0.842820\pi\)
\(332\) 7.08846i 0.389030i
\(333\) 0 0
\(334\) −8.29169 −0.453701
\(335\) 9.58090 24.7283i 0.523461 1.35105i
\(336\) 0 0
\(337\) 12.5183i 0.681917i −0.940078 0.340959i \(-0.889248\pi\)
0.940078 0.340959i \(-0.110752\pi\)
\(338\) 7.26733i 0.395291i
\(339\) 0 0
\(340\) −2.34560 + 6.05398i −0.127208 + 0.328323i
\(341\) 4.31401 0.233617
\(342\) 0 0
\(343\) 6.89341i 0.372209i
\(344\) −28.8217 −1.55396
\(345\) 0 0
\(346\) 9.51007 0.511264
\(347\) 3.30472i 0.177407i 0.996058 + 0.0887033i \(0.0282723\pi\)
−0.996058 + 0.0887033i \(0.971728\pi\)
\(348\) 0 0
\(349\) 4.45130 0.238273 0.119136 0.992878i \(-0.461987\pi\)
0.119136 + 0.992878i \(0.461987\pi\)
\(350\) 1.30253 + 1.18760i 0.0696231 + 0.0634800i
\(351\) 0 0
\(352\) 10.5146i 0.560428i
\(353\) 31.9145i 1.69864i −0.527879 0.849319i \(-0.677013\pi\)
0.527879 0.849319i \(-0.322987\pi\)
\(354\) 0 0
\(355\) 12.6368 + 4.89609i 0.670691 + 0.259857i
\(356\) 7.77408 0.412026
\(357\) 0 0
\(358\) 0.311675i 0.0164725i
\(359\) 31.8986 1.68354 0.841771 0.539835i \(-0.181513\pi\)
0.841771 + 0.539835i \(0.181513\pi\)
\(360\) 0 0
\(361\) −18.2445 −0.960239
\(362\) 8.04220i 0.422689i
\(363\) 0 0
\(364\) 1.23215 0.0645823
\(365\) 4.49230 11.5946i 0.235138 0.606889i
\(366\) 0 0
\(367\) 22.7089i 1.18540i 0.805425 + 0.592698i \(0.201937\pi\)
−0.805425 + 0.592698i \(0.798063\pi\)
\(368\) 6.21876i 0.324175i
\(369\) 0 0
\(370\) −1.46601 0.568003i −0.0762144 0.0295291i
\(371\) −5.39958 −0.280332
\(372\) 0 0
\(373\) 28.7105i 1.48657i −0.668973 0.743287i \(-0.733266\pi\)
0.668973 0.743287i \(-0.266734\pi\)
\(374\) −2.44608 −0.126484
\(375\) 0 0
\(376\) 3.53241 0.182170
\(377\) 5.14138i 0.264794i
\(378\) 0 0
\(379\) −30.3515 −1.55905 −0.779526 0.626370i \(-0.784540\pi\)
−0.779526 + 0.626370i \(0.784540\pi\)
\(380\) 2.72860 + 1.05719i 0.139974 + 0.0542327i
\(381\) 0 0
\(382\) 7.14729i 0.365687i
\(383\) 35.4366i 1.81073i −0.424639 0.905363i \(-0.639599\pi\)
0.424639 0.905363i \(-0.360401\pi\)
\(384\) 0 0
\(385\) 0.730706 1.88595i 0.0372402 0.0961168i
\(386\) 6.28918 0.320111
\(387\) 0 0
\(388\) 9.76614i 0.495801i
\(389\) −17.2794 −0.876102 −0.438051 0.898950i \(-0.644331\pi\)
−0.438051 + 0.898950i \(0.644331\pi\)
\(390\) 0 0
\(391\) 9.38230 0.474483
\(392\) 16.6343i 0.840159i
\(393\) 0 0
\(394\) 6.08301 0.306458
\(395\) −15.5320 6.01782i −0.781498 0.302789i
\(396\) 0 0
\(397\) 4.68683i 0.235225i 0.993060 + 0.117613i \(0.0375241\pi\)
−0.993060 + 0.117613i \(0.962476\pi\)
\(398\) 7.18190i 0.359996i
\(399\) 0 0
\(400\) 4.72270 + 4.30599i 0.236135 + 0.215299i
\(401\) 22.3427 1.11574 0.557871 0.829928i \(-0.311618\pi\)
0.557871 + 0.829928i \(0.311618\pi\)
\(402\) 0 0
\(403\) 3.90311i 0.194428i
\(404\) −3.77329 −0.187728
\(405\) 0 0
\(406\) −1.11048 −0.0551121
\(407\) 1.80401i 0.0894216i
\(408\) 0 0
\(409\) 5.17691 0.255982 0.127991 0.991775i \(-0.459147\pi\)
0.127991 + 0.991775i \(0.459147\pi\)
\(410\) 4.68057 12.0805i 0.231157 0.596615i
\(411\) 0 0
\(412\) 9.63725i 0.474793i
\(413\) 4.37062i 0.215064i
\(414\) 0 0
\(415\) −3.80329 + 9.81626i −0.186696 + 0.481861i
\(416\) −9.51306 −0.466416
\(417\) 0 0
\(418\) 1.10248i 0.0539239i
\(419\) −15.8651 −0.775063 −0.387531 0.921857i \(-0.626672\pi\)
−0.387531 + 0.921857i \(0.626672\pi\)
\(420\) 0 0
\(421\) 6.46992 0.315325 0.157662 0.987493i \(-0.449604\pi\)
0.157662 + 0.987493i \(0.449604\pi\)
\(422\) 9.59142i 0.466903i
\(423\) 0 0
\(424\) 26.5445 1.28912
\(425\) −6.49649 + 7.12518i −0.315126 + 0.345622i
\(426\) 0 0
\(427\) 3.93368i 0.190364i
\(428\) 17.5725i 0.849398i
\(429\) 0 0
\(430\) −17.1422 6.64171i −0.826672 0.320292i
\(431\) 24.9727 1.20289 0.601445 0.798914i \(-0.294592\pi\)
0.601445 + 0.798914i \(0.294592\pi\)
\(432\) 0 0
\(433\) 38.7308i 1.86128i −0.365934 0.930641i \(-0.619250\pi\)
0.365934 0.930641i \(-0.380750\pi\)
\(434\) 0.843026 0.0404665
\(435\) 0 0
\(436\) −11.9483 −0.572220
\(437\) 4.22872i 0.202287i
\(438\) 0 0
\(439\) 32.8425 1.56749 0.783743 0.621085i \(-0.213308\pi\)
0.783743 + 0.621085i \(0.213308\pi\)
\(440\) −3.59217 + 9.27138i −0.171250 + 0.441996i
\(441\) 0 0
\(442\) 2.21310i 0.105266i
\(443\) 24.4262i 1.16052i −0.814430 0.580262i \(-0.802950\pi\)
0.814430 0.580262i \(-0.197050\pi\)
\(444\) 0 0
\(445\) 10.7657 + 4.17116i 0.510345 + 0.197732i
\(446\) 4.68475 0.221829
\(447\) 0 0
\(448\) 0.772947i 0.0365183i
\(449\) −23.8188 −1.12408 −0.562040 0.827110i \(-0.689983\pi\)
−0.562040 + 0.827110i \(0.689983\pi\)
\(450\) 0 0
\(451\) −14.8658 −0.700003
\(452\) 24.4307i 1.14912i
\(453\) 0 0
\(454\) −4.02080 −0.188706
\(455\) 1.70631 + 0.661107i 0.0799932 + 0.0309932i
\(456\) 0 0
\(457\) 35.0439i 1.63928i −0.572876 0.819642i \(-0.694172\pi\)
0.572876 0.819642i \(-0.305828\pi\)
\(458\) 21.0616i 0.984145i
\(459\) 0 0
\(460\) 5.91765 15.2734i 0.275912 0.712127i
\(461\) −7.94572 −0.370069 −0.185035 0.982732i \(-0.559240\pi\)
−0.185035 + 0.982732i \(0.559240\pi\)
\(462\) 0 0
\(463\) 23.9463i 1.11288i 0.830888 + 0.556440i \(0.187833\pi\)
−0.830888 + 0.556440i \(0.812167\pi\)
\(464\) −4.02635 −0.186919
\(465\) 0 0
\(466\) −17.8785 −0.828206
\(467\) 42.2147i 1.95346i 0.214464 + 0.976732i \(0.431200\pi\)
−0.214464 + 0.976732i \(0.568800\pi\)
\(468\) 0 0
\(469\) −5.94641 −0.274580
\(470\) 2.10096 + 0.814013i 0.0969103 + 0.0375476i
\(471\) 0 0
\(472\) 21.4861i 0.988979i
\(473\) 21.0945i 0.969926i
\(474\) 0 0
\(475\) 3.21140 + 2.92804i 0.147349 + 0.134348i
\(476\) 1.45580 0.0667266
\(477\) 0 0
\(478\) 7.71340i 0.352803i
\(479\) 34.3187 1.56806 0.784031 0.620721i \(-0.213160\pi\)
0.784031 + 0.620721i \(0.213160\pi\)
\(480\) 0 0
\(481\) −1.63218 −0.0744212
\(482\) 16.7703i 0.763867i
\(483\) 0 0
\(484\) −11.6619 −0.530089
\(485\) −5.23999 + 13.5244i −0.237936 + 0.614110i
\(486\) 0 0
\(487\) 3.03995i 0.137753i 0.997625 + 0.0688766i \(0.0219415\pi\)
−0.997625 + 0.0688766i \(0.978059\pi\)
\(488\) 19.3381i 0.875394i
\(489\) 0 0
\(490\) −3.83323 + 9.89355i −0.173168 + 0.446945i
\(491\) 11.4565 0.517023 0.258511 0.966008i \(-0.416768\pi\)
0.258511 + 0.966008i \(0.416768\pi\)
\(492\) 0 0
\(493\) 6.07460i 0.273586i
\(494\) −0.997468 −0.0448782
\(495\) 0 0
\(496\) 3.05663 0.137247
\(497\) 3.03877i 0.136307i
\(498\) 0 0
\(499\) 39.9114 1.78668 0.893340 0.449381i \(-0.148355\pi\)
0.893340 + 0.449381i \(0.148355\pi\)
\(500\) 7.50156 + 15.0696i 0.335480 + 0.673934i
\(501\) 0 0
\(502\) 13.3511i 0.595889i
\(503\) 14.8201i 0.660794i 0.943842 + 0.330397i \(0.107183\pi\)
−0.943842 + 0.330397i \(0.892817\pi\)
\(504\) 0 0
\(505\) −5.22534 2.02455i −0.232525 0.0900911i
\(506\) 6.17115 0.274341
\(507\) 0 0
\(508\) 14.4000i 0.638897i
\(509\) −22.3612 −0.991145 −0.495572 0.868567i \(-0.665042\pi\)
−0.495572 + 0.868567i \(0.665042\pi\)
\(510\) 0 0
\(511\) −2.78816 −0.123341
\(512\) 13.7511i 0.607719i
\(513\) 0 0
\(514\) −3.60645 −0.159074
\(515\) 5.17083 13.3459i 0.227854 0.588090i
\(516\) 0 0
\(517\) 2.58536i 0.113704i
\(518\) 0.352533i 0.0154894i
\(519\) 0 0
\(520\) −8.38830 3.25003i −0.367851 0.142523i
\(521\) 2.48042 0.108669 0.0543346 0.998523i \(-0.482696\pi\)
0.0543346 + 0.998523i \(0.482696\pi\)
\(522\) 0 0
\(523\) 0.452507i 0.0197867i −0.999951 0.00989336i \(-0.996851\pi\)
0.999951 0.00989336i \(-0.00314921\pi\)
\(524\) 30.5605 1.33504
\(525\) 0 0
\(526\) 19.0958 0.832618
\(527\) 4.61157i 0.200883i
\(528\) 0 0
\(529\) −0.670348 −0.0291455
\(530\) 15.7878 + 6.11695i 0.685779 + 0.265703i
\(531\) 0 0
\(532\) 0.656148i 0.0284476i
\(533\) 13.4498i 0.582577i
\(534\) 0 0
\(535\) −9.42845 + 24.3348i −0.407628 + 1.05208i
\(536\) 29.2328 1.26266
\(537\) 0 0
\(538\) 13.4114i 0.578205i
\(539\) 12.1746 0.524396
\(540\) 0 0
\(541\) −16.4102 −0.705531 −0.352765 0.935712i \(-0.614759\pi\)
−0.352765 + 0.935712i \(0.614759\pi\)
\(542\) 12.7003i 0.545525i
\(543\) 0 0
\(544\) −11.2398 −0.481902
\(545\) −16.5463 6.41083i −0.708766 0.274610i
\(546\) 0 0
\(547\) 8.18537i 0.349981i −0.984570 0.174991i \(-0.944010\pi\)
0.984570 0.174991i \(-0.0559895\pi\)
\(548\) 16.6943i 0.713144i
\(549\) 0 0
\(550\) −4.27302 + 4.68654i −0.182202 + 0.199835i
\(551\) −2.73789 −0.116638
\(552\) 0 0
\(553\) 3.73497i 0.158827i
\(554\) 16.1271 0.685173
\(555\) 0 0
\(556\) −21.3372 −0.904901
\(557\) 25.8788i 1.09652i 0.836309 + 0.548259i \(0.184709\pi\)
−0.836309 + 0.548259i \(0.815291\pi\)
\(558\) 0 0
\(559\) −19.0853 −0.807221
\(560\) 0.517731 1.33626i 0.0218781 0.0564674i
\(561\) 0 0
\(562\) 9.96965i 0.420544i
\(563\) 24.4404i 1.03004i −0.857178 0.515021i \(-0.827784\pi\)
0.857178 0.515021i \(-0.172216\pi\)
\(564\) 0 0
\(565\) 13.1082 33.8321i 0.551465 1.42333i
\(566\) 6.01491 0.252826
\(567\) 0 0
\(568\) 14.9387i 0.626814i
\(569\) 5.31751 0.222922 0.111461 0.993769i \(-0.464447\pi\)
0.111461 + 0.993769i \(0.464447\pi\)
\(570\) 0 0
\(571\) −13.2022 −0.552496 −0.276248 0.961086i \(-0.589091\pi\)
−0.276248 + 0.961086i \(0.589091\pi\)
\(572\) 4.43332i 0.185366i
\(573\) 0 0
\(574\) −2.90501 −0.121253
\(575\) 16.3898 17.9759i 0.683502 0.749647i
\(576\) 0 0
\(577\) 41.4001i 1.72351i 0.507325 + 0.861755i \(0.330635\pi\)
−0.507325 + 0.861755i \(0.669365\pi\)
\(578\) 9.33808i 0.388413i
\(579\) 0 0
\(580\) −9.88882 3.83140i −0.410611 0.159090i
\(581\) 2.36052 0.0979308
\(582\) 0 0
\(583\) 19.4278i 0.804618i
\(584\) 13.7067 0.567186
\(585\) 0 0
\(586\) 18.4370 0.761625
\(587\) 11.4771i 0.473712i 0.971545 + 0.236856i \(0.0761169\pi\)
−0.971545 + 0.236856i \(0.923883\pi\)
\(588\) 0 0
\(589\) 2.07849 0.0856426
\(590\) −4.95129 + 12.7793i −0.203841 + 0.526114i
\(591\) 0 0
\(592\) 1.27821i 0.0525340i
\(593\) 11.1191i 0.456608i 0.973590 + 0.228304i \(0.0733180\pi\)
−0.973590 + 0.228304i \(0.926682\pi\)
\(594\) 0 0
\(595\) 2.01603 + 0.781106i 0.0826492 + 0.0320222i
\(596\) −26.4668 −1.08412
\(597\) 0 0
\(598\) 5.58335i 0.228320i
\(599\) 7.25813 0.296559 0.148280 0.988945i \(-0.452626\pi\)
0.148280 + 0.988945i \(0.452626\pi\)
\(600\) 0 0
\(601\) −14.6121 −0.596040 −0.298020 0.954560i \(-0.596326\pi\)
−0.298020 + 0.954560i \(0.596326\pi\)
\(602\) 4.12220i 0.168008i
\(603\) 0 0
\(604\) 15.7896 0.642471
\(605\) −16.1497 6.25718i −0.656580 0.254390i
\(606\) 0 0
\(607\) 26.3898i 1.07113i −0.844495 0.535564i \(-0.820099\pi\)
0.844495 0.535564i \(-0.179901\pi\)
\(608\) 5.06591i 0.205450i
\(609\) 0 0
\(610\) 4.45630 11.5017i 0.180430 0.465689i
\(611\) 2.33911 0.0946301
\(612\) 0 0
\(613\) 40.8554i 1.65013i −0.565035 0.825067i \(-0.691137\pi\)
0.565035 0.825067i \(-0.308863\pi\)
\(614\) 14.6367 0.590689
\(615\) 0 0
\(616\) 2.22949 0.0898288
\(617\) 28.2802i 1.13852i 0.822158 + 0.569260i \(0.192770\pi\)
−0.822158 + 0.569260i \(0.807230\pi\)
\(618\) 0 0
\(619\) 7.17028 0.288198 0.144099 0.989563i \(-0.453972\pi\)
0.144099 + 0.989563i \(0.453972\pi\)
\(620\) 7.50716 + 2.90863i 0.301495 + 0.116813i
\(621\) 0 0
\(622\) 11.2349i 0.450479i
\(623\) 2.58884i 0.103720i
\(624\) 0 0
\(625\) 2.30277 + 24.8937i 0.0921110 + 0.995749i
\(626\) 3.00530 0.120116
\(627\) 0 0
\(628\) 21.2497i 0.847957i
\(629\) −1.92844 −0.0768921
\(630\) 0 0
\(631\) −7.70444 −0.306709 −0.153354 0.988171i \(-0.549008\pi\)
−0.153354 + 0.988171i \(0.549008\pi\)
\(632\) 18.3613i 0.730372i
\(633\) 0 0
\(634\) 4.35524 0.172969
\(635\) −7.72628 + 19.9415i −0.306608 + 0.791354i
\(636\) 0 0
\(637\) 11.0150i 0.436429i
\(638\) 3.99553i 0.158184i
\(639\) 0 0
\(640\) −8.54126 + 22.0450i −0.337623 + 0.871403i
\(641\) −24.3375 −0.961274 −0.480637 0.876920i \(-0.659595\pi\)
−0.480637 + 0.876920i \(0.659595\pi\)
\(642\) 0 0
\(643\) 27.8512i 1.09834i 0.835710 + 0.549171i \(0.185057\pi\)
−0.835710 + 0.549171i \(0.814943\pi\)
\(644\) −3.67280 −0.144729
\(645\) 0 0
\(646\) −1.17852 −0.0463683
\(647\) 24.6280i 0.968228i 0.875005 + 0.484114i \(0.160858\pi\)
−0.875005 + 0.484114i \(0.839142\pi\)
\(648\) 0 0
\(649\) 15.7256 0.617284
\(650\) −4.24015 3.86602i −0.166312 0.151638i
\(651\) 0 0
\(652\) 0.393205i 0.0153991i
\(653\) 27.8960i 1.09165i 0.837898 + 0.545827i \(0.183784\pi\)
−0.837898 + 0.545827i \(0.816216\pi\)
\(654\) 0 0
\(655\) 42.3210 + 16.3971i 1.65362 + 0.640690i
\(656\) −10.5329 −0.411242
\(657\) 0 0
\(658\) 0.505219i 0.0196955i
\(659\) −18.3903 −0.716384 −0.358192 0.933648i \(-0.616607\pi\)
−0.358192 + 0.933648i \(0.616607\pi\)
\(660\) 0 0
\(661\) 2.05323 0.0798614 0.0399307 0.999202i \(-0.487286\pi\)
0.0399307 + 0.999202i \(0.487286\pi\)
\(662\) 22.5277i 0.875564i
\(663\) 0 0
\(664\) −11.6044 −0.450338
\(665\) 0.352054 0.908649i 0.0136521 0.0352359i
\(666\) 0 0
\(667\) 15.3254i 0.593403i
\(668\) 17.7558i 0.686991i
\(669\) 0 0
\(670\) 17.3867 + 6.73643i 0.671707 + 0.260251i
\(671\) −14.1535 −0.546389
\(672\) 0 0
\(673\) 16.8287i 0.648698i 0.945938 + 0.324349i \(0.105145\pi\)
−0.945938 + 0.324349i \(0.894855\pi\)
\(674\) 8.80178 0.339032
\(675\) 0 0
\(676\) 15.5622 0.598546
\(677\) 20.8182i 0.800108i −0.916491 0.400054i \(-0.868991\pi\)
0.916491 0.400054i \(-0.131009\pi\)
\(678\) 0 0
\(679\) 3.25221 0.124808
\(680\) −9.91087 3.83994i −0.380065 0.147255i
\(681\) 0 0
\(682\) 3.03323i 0.116148i
\(683\) 6.40527i 0.245091i −0.992463 0.122545i \(-0.960894\pi\)
0.992463 0.122545i \(-0.0391057\pi\)
\(684\) 0 0
\(685\) 8.95726 23.1186i 0.342239 0.883318i
\(686\) 4.84683 0.185053
\(687\) 0 0
\(688\) 14.9462i 0.569819i
\(689\) 17.5774 0.669644
\(690\) 0 0
\(691\) −0.406659 −0.0154700 −0.00773502 0.999970i \(-0.502462\pi\)
−0.00773502 + 0.999970i \(0.502462\pi\)
\(692\) 20.3648i 0.774153i
\(693\) 0 0
\(694\) −2.32358 −0.0882020
\(695\) −29.5483 11.4484i −1.12083 0.434263i
\(696\) 0 0
\(697\) 15.8911i 0.601920i
\(698\) 3.12976i 0.118463i
\(699\) 0 0
\(700\) 2.54312 2.78923i 0.0961209 0.105423i
\(701\) −2.39744 −0.0905501 −0.0452750 0.998975i \(-0.514416\pi\)
−0.0452750 + 0.998975i \(0.514416\pi\)
\(702\) 0 0
\(703\) 0.869173i 0.0327815i
\(704\) −2.78108 −0.104816
\(705\) 0 0
\(706\) 22.4394 0.844520
\(707\) 1.25654i 0.0472570i
\(708\) 0 0
\(709\) −22.0154 −0.826804 −0.413402 0.910549i \(-0.635660\pi\)
−0.413402 + 0.910549i \(0.635660\pi\)
\(710\) −3.44249 + 8.88506i −0.129194 + 0.333450i
\(711\) 0 0
\(712\) 12.7268i 0.476958i
\(713\) 11.6344i 0.435712i
\(714\) 0 0
\(715\) −2.37868 + 6.13936i −0.0889576 + 0.229599i
\(716\) 0.667418 0.0249426
\(717\) 0 0
\(718\) 22.4282i 0.837014i
\(719\) −9.29180 −0.346526 −0.173263 0.984876i \(-0.555431\pi\)
−0.173263 + 0.984876i \(0.555431\pi\)
\(720\) 0 0
\(721\) −3.20929 −0.119520
\(722\) 12.8279i 0.477406i
\(723\) 0 0
\(724\) 17.2215 0.640032
\(725\) −11.6385 10.6116i −0.432245 0.394106i
\(726\) 0 0
\(727\) 29.4352i 1.09169i 0.837886 + 0.545846i \(0.183792\pi\)
−0.837886 + 0.545846i \(0.816208\pi\)
\(728\) 2.01714i 0.0747600i
\(729\) 0 0
\(730\) 8.15229 + 3.15858i 0.301730 + 0.116904i
\(731\) −22.5495 −0.834023
\(732\) 0 0
\(733\) 3.71935i 0.137377i −0.997638 0.0686887i \(-0.978118\pi\)
0.997638 0.0686887i \(-0.0218815\pi\)
\(734\) −15.9669 −0.589349
\(735\) 0 0
\(736\) 28.3565 1.04524
\(737\) 21.3953i 0.788107i
\(738\) 0 0
\(739\) −20.2734 −0.745768 −0.372884 0.927878i \(-0.621631\pi\)
−0.372884 + 0.927878i \(0.621631\pi\)
\(740\) −1.21632 + 3.13931i −0.0447127 + 0.115403i
\(741\) 0 0
\(742\) 3.79650i 0.139374i
\(743\) 1.11337i 0.0408457i −0.999791 0.0204229i \(-0.993499\pi\)
0.999791 0.0204229i \(-0.00650125\pi\)
\(744\) 0 0
\(745\) −36.6518 14.2006i −1.34282 0.520271i
\(746\) 20.1867 0.739086
\(747\) 0 0
\(748\) 5.23802i 0.191521i
\(749\) 5.85179 0.213820
\(750\) 0 0
\(751\) −37.9213 −1.38377 −0.691885 0.722008i \(-0.743219\pi\)
−0.691885 + 0.722008i \(0.743219\pi\)
\(752\) 1.83182i 0.0667995i
\(753\) 0 0
\(754\) 3.61496 0.131649
\(755\) 21.8659 + 8.47187i 0.795780 + 0.308323i
\(756\) 0 0
\(757\) 41.8794i 1.52213i 0.648674 + 0.761066i \(0.275324\pi\)
−0.648674 + 0.761066i \(0.724676\pi\)
\(758\) 21.3405i 0.775121i
\(759\) 0 0
\(760\) −1.73071 + 4.46695i −0.0627794 + 0.162033i
\(761\) 12.6827 0.459749 0.229875 0.973220i \(-0.426168\pi\)
0.229875 + 0.973220i \(0.426168\pi\)
\(762\) 0 0
\(763\) 3.97889i 0.144046i
\(764\) −15.3051 −0.553721
\(765\) 0 0
\(766\) 24.9159 0.900247
\(767\) 14.2278i 0.513735i
\(768\) 0 0
\(769\) −34.0483 −1.22781 −0.613907 0.789378i \(-0.710403\pi\)
−0.613907 + 0.789378i \(0.710403\pi\)
\(770\) 1.32603 + 0.513767i 0.0477868 + 0.0185149i
\(771\) 0 0
\(772\) 13.4676i 0.484709i
\(773\) 20.6092i 0.741261i 0.928780 + 0.370630i \(0.120858\pi\)
−0.928780 + 0.370630i \(0.879142\pi\)
\(774\) 0 0
\(775\) 8.83548 + 8.05588i 0.317380 + 0.289376i
\(776\) −15.9880 −0.573935
\(777\) 0 0
\(778\) 12.1494i 0.435576i
\(779\) −7.16233 −0.256617
\(780\) 0 0
\(781\) 10.9336 0.391234
\(782\) 6.59680i 0.235901i
\(783\) 0 0
\(784\) 8.62613 0.308076
\(785\) −11.4015 + 29.4271i −0.406936 + 1.05030i
\(786\) 0 0
\(787\) 49.1315i 1.75135i 0.482903 + 0.875674i \(0.339583\pi\)
−0.482903 + 0.875674i \(0.660417\pi\)
\(788\) 13.0261i 0.464036i
\(789\) 0 0
\(790\) 4.23119 10.9207i 0.150539 0.388541i
\(791\) −8.13562 −0.289269
\(792\) 0 0
\(793\) 12.8054i 0.454732i
\(794\) −3.29536 −0.116948
\(795\) 0 0
\(796\) −15.3793 −0.545103
\(797\) 1.87847i 0.0665389i 0.999446 + 0.0332694i \(0.0105919\pi\)
−0.999446 + 0.0332694i \(0.989408\pi\)
\(798\) 0 0
\(799\) 2.76368 0.0977720
\(800\) −19.6346 + 21.5347i −0.694188 + 0.761368i
\(801\) 0 0
\(802\) 15.7094i 0.554718i
\(803\) 10.0319i 0.354017i
\(804\) 0 0
\(805\) −5.08618 1.97063i −0.179264 0.0694556i
\(806\) −2.74432 −0.0966645
\(807\) 0 0
\(808\) 6.17719i 0.217313i
\(809\) −15.4989 −0.544912 −0.272456 0.962168i \(-0.587836\pi\)
−0.272456 + 0.962168i \(0.587836\pi\)
\(810\) 0 0
\(811\) 6.06459 0.212956 0.106478 0.994315i \(-0.466043\pi\)
0.106478 + 0.994315i \(0.466043\pi\)
\(812\) 2.37797i 0.0834503i
\(813\) 0 0
\(814\) −1.26842 −0.0444582
\(815\) −0.210973 + 0.544519i −0.00739005 + 0.0190737i
\(816\) 0 0
\(817\) 10.1633i 0.355570i
\(818\) 3.63994i 0.127267i
\(819\) 0 0
\(820\) −25.8691 10.0229i −0.903390 0.350016i
\(821\) 3.79024 0.132280 0.0661402 0.997810i \(-0.478932\pi\)
0.0661402 + 0.997810i \(0.478932\pi\)
\(822\) 0 0
\(823\) 2.64216i 0.0920999i 0.998939 + 0.0460499i \(0.0146633\pi\)
−0.998939 + 0.0460499i \(0.985337\pi\)
\(824\) 15.7770 0.549617
\(825\) 0 0
\(826\) 3.07303 0.106924
\(827\) 21.8953i 0.761376i 0.924704 + 0.380688i \(0.124313\pi\)
−0.924704 + 0.380688i \(0.875687\pi\)
\(828\) 0 0
\(829\) −7.03307 −0.244269 −0.122134 0.992514i \(-0.538974\pi\)
−0.122134 + 0.992514i \(0.538974\pi\)
\(830\) −6.90192 2.67413i −0.239569 0.0928204i
\(831\) 0 0
\(832\) 2.51619i 0.0872332i
\(833\) 13.0143i 0.450919i
\(834\) 0 0
\(835\) −9.52679 + 24.5886i −0.329688 + 0.850923i
\(836\) 2.36084 0.0816512
\(837\) 0 0
\(838\) 11.1549i 0.385341i
\(839\) −49.4466 −1.70709 −0.853544 0.521021i \(-0.825551\pi\)
−0.853544 + 0.521021i \(0.825551\pi\)
\(840\) 0 0
\(841\) −19.0775 −0.657845
\(842\) 4.54907i 0.156771i
\(843\) 0 0
\(844\) 20.5390 0.706981
\(845\) 21.5509 + 8.34985i 0.741374 + 0.287244i
\(846\) 0 0
\(847\) 3.88353i 0.133440i
\(848\) 13.7653i 0.472703i
\(849\) 0 0
\(850\) −5.00979 4.56775i −0.171834 0.156673i
\(851\) 4.86522 0.166778
\(852\) 0 0
\(853\) 2.94665i 0.100891i 0.998727 + 0.0504457i \(0.0160642\pi\)
−0.998727 + 0.0504457i \(0.983936\pi\)
\(854\) −2.76581 −0.0946441
\(855\) 0 0
\(856\) −28.7676 −0.983257
\(857\) 27.7795i 0.948929i −0.880275 0.474465i \(-0.842642\pi\)
0.880275 0.474465i \(-0.157358\pi\)
\(858\) 0 0
\(859\) 50.2134 1.71326 0.856629 0.515933i \(-0.172555\pi\)
0.856629 + 0.515933i \(0.172555\pi\)
\(860\) −14.2225 + 36.7082i −0.484984 + 1.25174i
\(861\) 0 0
\(862\) 17.5585i 0.598046i
\(863\) 1.11827i 0.0380663i 0.999819 + 0.0190331i \(0.00605880\pi\)
−0.999819 + 0.0190331i \(0.993941\pi\)
\(864\) 0 0
\(865\) 10.9267 28.2016i 0.371517 0.958884i
\(866\) 27.2320 0.925382
\(867\) 0 0
\(868\) 1.80525i 0.0612741i
\(869\) −13.4385 −0.455871
\(870\) 0 0
\(871\) 19.3575 0.655903
\(872\) 19.5604i 0.662398i
\(873\) 0 0
\(874\) 2.97326 0.100572
\(875\) 5.01832 2.49808i 0.169650 0.0844507i
\(876\) 0 0
\(877\) 23.0843i 0.779502i −0.920920 0.389751i \(-0.872561\pi\)
0.920920 0.389751i \(-0.127439\pi\)
\(878\) 23.0919i 0.779314i
\(879\) 0 0
\(880\) 4.80790 + 1.86281i 0.162074 + 0.0627953i
\(881\) 10.1304 0.341301 0.170650 0.985332i \(-0.445413\pi\)
0.170650 + 0.985332i \(0.445413\pi\)
\(882\) 0 0
\(883\) 0.620421i 0.0208788i 0.999946 + 0.0104394i \(0.00332303\pi\)
−0.999946 + 0.0104394i \(0.996677\pi\)
\(884\) −4.73910 −0.159393
\(885\) 0 0
\(886\) 17.1743 0.576983
\(887\) 0.762728i 0.0256099i 0.999918 + 0.0128049i \(0.00407605\pi\)
−0.999918 + 0.0128049i \(0.995924\pi\)
\(888\) 0 0
\(889\) 4.79533 0.160830
\(890\) −2.93279 + 7.56950i −0.0983072 + 0.253730i
\(891\) 0 0
\(892\) 10.0319i 0.335892i
\(893\) 1.24562i 0.0416832i
\(894\) 0 0
\(895\) 0.924256 + 0.358101i 0.0308945 + 0.0119700i
\(896\) 5.30116 0.177099
\(897\) 0 0
\(898\) 16.7473i 0.558864i
\(899\) −7.53272 −0.251230
\(900\) 0 0
\(901\) 20.7678 0.691877
\(902\) 10.4523i 0.348023i
\(903\) 0 0
\(904\) 39.9950 1.33021
\(905\) 23.8487 + 9.24013i 0.792759 + 0.307152i
\(906\) 0 0
\(907\) 44.6062i 1.48112i −0.671988 0.740562i \(-0.734559\pi\)
0.671988 0.740562i \(-0.265441\pi\)
\(908\) 8.61011i 0.285737i
\(909\) 0 0
\(910\) −0.464832 + 1.19973i −0.0154090 + 0.0397706i
\(911\) −21.5382 −0.713591 −0.356796 0.934182i \(-0.616131\pi\)
−0.356796 + 0.934182i \(0.616131\pi\)
\(912\) 0 0
\(913\) 8.49321i 0.281084i
\(914\) 24.6397 0.815010
\(915\) 0 0
\(916\) −45.1012 −1.49018
\(917\) 10.1769i 0.336072i
\(918\) 0 0
\(919\) 32.1570 1.06076 0.530380 0.847760i \(-0.322049\pi\)
0.530380 + 0.847760i \(0.322049\pi\)
\(920\) 25.0039 + 9.68768i 0.824353 + 0.319393i
\(921\) 0 0
\(922\) 5.58672i 0.183989i
\(923\) 9.89217i 0.325605i
\(924\) 0 0
\(925\) −3.36877 + 3.69478i −0.110764 + 0.121484i
\(926\) −16.8369 −0.553295
\(927\) 0 0
\(928\) 18.3595i 0.602681i
\(929\) 53.7540 1.76361 0.881805 0.471614i \(-0.156328\pi\)
0.881805 + 0.471614i \(0.156328\pi\)
\(930\) 0 0
\(931\) 5.86571 0.192241
\(932\) 38.2849i 1.25406i
\(933\) 0 0
\(934\) −29.6816 −0.971212
\(935\) −2.81044 + 7.25373i −0.0919112 + 0.237222i
\(936\) 0 0
\(937\) 32.7426i 1.06965i 0.844961 + 0.534827i \(0.179623\pi\)
−0.844961 + 0.534827i \(0.820377\pi\)
\(938\) 4.18098i 0.136514i
\(939\) 0 0
\(940\) 1.74312 4.49899i 0.0568543 0.146741i
\(941\) 7.12766 0.232355 0.116178 0.993228i \(-0.462936\pi\)
0.116178 + 0.993228i \(0.462936\pi\)
\(942\) 0 0
\(943\) 40.0913i 1.30555i
\(944\) 11.1422 0.362646
\(945\) 0 0
\(946\) −14.8318 −0.482222
\(947\) 14.6389i 0.475702i −0.971302 0.237851i \(-0.923557\pi\)
0.971302 0.237851i \(-0.0764429\pi\)
\(948\) 0 0
\(949\) 9.07634 0.294630
\(950\) −2.05874 + 2.25797i −0.0667943 + 0.0732582i
\(951\) 0 0
\(952\) 2.38327i 0.0772422i
\(953\) 51.2467i 1.66004i 0.557731 + 0.830021i \(0.311672\pi\)
−0.557731 + 0.830021i \(0.688328\pi\)
\(954\) 0 0
\(955\) −21.1949 8.21192i −0.685852 0.265732i
\(956\) −16.5174 −0.534211
\(957\) 0 0
\(958\) 24.1299i 0.779601i
\(959\) −5.55934 −0.179521
\(960\) 0 0
\(961\) −25.2815 −0.815532
\(962\) 1.14761i 0.0370003i
\(963\) 0 0
\(964\) 35.9118 1.15664
\(965\) 7.22599 18.6502i 0.232613 0.600372i
\(966\) 0 0
\(967\) 12.5599i 0.403899i 0.979396 + 0.201949i \(0.0647277\pi\)
−0.979396 + 0.201949i \(0.935272\pi\)
\(968\) 19.0916i 0.613627i
\(969\) 0 0
\(970\) −9.50914 3.68429i −0.305320 0.118295i
\(971\) 5.56513 0.178594 0.0892968 0.996005i \(-0.471538\pi\)
0.0892968 + 0.996005i \(0.471538\pi\)
\(972\) 0 0
\(973\) 7.10549i 0.227792i
\(974\) −2.13742 −0.0684874
\(975\) 0 0
\(976\) −10.0282 −0.320996
\(977\) 25.6883i 0.821843i −0.911671 0.410922i \(-0.865207\pi\)
0.911671 0.410922i \(-0.134793\pi\)
\(978\) 0 0
\(979\) 9.31471 0.297699
\(980\) 21.1860 + 8.20845i 0.676761 + 0.262209i
\(981\) 0 0
\(982\) 8.05516i 0.257050i
\(983\) 21.5725i 0.688057i 0.938959 + 0.344028i \(0.111792\pi\)
−0.938959 + 0.344028i \(0.888208\pi\)
\(984\) 0 0
\(985\) 6.98911 18.0389i 0.222692 0.574766i
\(986\) 4.27112 0.136020
\(987\) 0 0
\(988\) 2.13597i 0.0679543i
\(989\) 56.8894 1.80898
\(990\) 0 0
\(991\) 9.15527 0.290827 0.145413 0.989371i \(-0.453549\pi\)
0.145413 + 0.989371i \(0.453549\pi\)
\(992\) 13.9377i 0.442524i
\(993\) 0 0
\(994\) 2.13659 0.0677686
\(995\) −21.2976 8.25169i −0.675178 0.261596i
\(996\) 0 0
\(997\) 21.1522i 0.669896i −0.942237 0.334948i \(-0.891281\pi\)
0.942237 0.334948i \(-0.108719\pi\)
\(998\) 28.0621i 0.888292i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1665.2.c.e.334.11 18
3.2 odd 2 185.2.b.a.149.8 18
5.2 odd 4 8325.2.a.cq.1.5 9
5.3 odd 4 8325.2.a.cr.1.5 9
5.4 even 2 inner 1665.2.c.e.334.8 18
15.2 even 4 925.2.a.m.1.5 9
15.8 even 4 925.2.a.l.1.5 9
15.14 odd 2 185.2.b.a.149.11 yes 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.b.a.149.8 18 3.2 odd 2
185.2.b.a.149.11 yes 18 15.14 odd 2
925.2.a.l.1.5 9 15.8 even 4
925.2.a.m.1.5 9 15.2 even 4
1665.2.c.e.334.8 18 5.4 even 2 inner
1665.2.c.e.334.11 18 1.1 even 1 trivial
8325.2.a.cq.1.5 9 5.2 odd 4
8325.2.a.cr.1.5 9 5.3 odd 4