Properties

Label 1650.2.d.j.1451.11
Level $1650$
Weight $2$
Character 1650.1451
Analytic conductor $13.175$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1650,2,Mod(1451,1650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1650.1451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1650.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1753163335\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 3x^{10} - 5x^{8} - 46x^{6} - 45x^{4} + 243x^{2} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5}\cdot 3 \)
Twist minimal: no (minimal twist has level 330)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1451.11
Root \(-1.71007 - 0.275064i\) of defining polynomial
Character \(\chi\) \(=\) 1650.1451
Dual form 1650.2.d.j.1451.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(1.71007 - 0.275064i) q^{3} +1.00000 q^{4} +(1.71007 - 0.275064i) q^{6} -2.37039i q^{7} +1.00000 q^{8} +(2.84868 - 0.940756i) q^{9} +(2.83537 + 1.72066i) q^{11} +(1.71007 - 0.275064i) q^{12} +3.93020i q^{13} -2.37039i q^{14} +1.00000 q^{16} -0.381275 q^{17} +(2.84868 - 0.940756i) q^{18} -5.33478i q^{19} +(-0.652007 - 4.05352i) q^{21} +(2.83537 + 1.72066i) q^{22} +1.38613i q^{23} +(1.71007 - 0.275064i) q^{24} +3.93020i q^{26} +(4.61267 - 2.39233i) q^{27} -2.37039i q^{28} -6.97475 q^{29} +7.69736 q^{31} +1.00000 q^{32} +(5.32197 + 2.16255i) q^{33} -0.381275 q^{34} +(2.84868 - 0.940756i) q^{36} -1.08106 q^{37} -5.33478i q^{38} +(1.08106 + 6.72092i) q^{39} -5.89370 q^{41} +(-0.652007 - 4.05352i) q^{42} -4.74077i q^{43} +(2.83537 + 1.72066i) q^{44} +1.38613i q^{46} +12.0557i q^{47} +(1.71007 - 0.275064i) q^{48} +1.38127 q^{49} +(-0.652007 + 0.104875i) q^{51} +3.93020i q^{52} -9.49318i q^{53} +(4.61267 - 2.39233i) q^{54} -2.37039i q^{56} +(-1.46741 - 9.12285i) q^{57} -6.97475 q^{58} +8.18210i q^{59} -13.7061i q^{61} +7.69736 q^{62} +(-2.22995 - 6.75247i) q^{63} +1.00000 q^{64} +(5.32197 + 2.16255i) q^{66} -5.67074 q^{67} -0.381275 q^{68} +(0.381275 + 2.37039i) q^{69} +2.04869i q^{71} +(2.84868 - 0.940756i) q^{72} +11.9451i q^{73} -1.08106 q^{74} -5.33478i q^{76} +(4.07863 - 6.72092i) q^{77} +(1.08106 + 6.72092i) q^{78} -11.1436i q^{79} +(7.22995 - 5.35983i) q^{81} -5.89370 q^{82} +0.762550 q^{83} +(-0.652007 - 4.05352i) q^{84} -4.74077i q^{86} +(-11.9273 + 1.91850i) q^{87} +(2.83537 + 1.72066i) q^{88} -1.88151i q^{89} +9.31608 q^{91} +1.38613i q^{92} +(13.1630 - 2.11726i) q^{93} +12.0557i q^{94} +(1.71007 - 0.275064i) q^{96} -3.28567 q^{97} +1.38127 q^{98} +(9.69578 + 2.23423i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{2} + 12 q^{4} + 12 q^{8} - 6 q^{9} + 12 q^{16} + 4 q^{17} - 6 q^{18} + 12 q^{31} + 12 q^{32} + 18 q^{33} + 4 q^{34} - 6 q^{36} + 8 q^{49} + 14 q^{57} + 12 q^{62} + 22 q^{63} + 12 q^{64} + 18 q^{66}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1650\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(727\) \(1201\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.71007 0.275064i 0.987309 0.158808i
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.71007 0.275064i 0.698133 0.112294i
\(7\) 2.37039i 0.895921i −0.894053 0.447961i \(-0.852150\pi\)
0.894053 0.447961i \(-0.147850\pi\)
\(8\) 1.00000 0.353553
\(9\) 2.84868 0.940756i 0.949560 0.313585i
\(10\) 0 0
\(11\) 2.83537 + 1.72066i 0.854896 + 0.518800i
\(12\) 1.71007 0.275064i 0.493655 0.0794040i
\(13\) 3.93020i 1.09004i 0.838423 + 0.545021i \(0.183478\pi\)
−0.838423 + 0.545021i \(0.816522\pi\)
\(14\) 2.37039i 0.633512i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −0.381275 −0.0924727 −0.0462364 0.998931i \(-0.514723\pi\)
−0.0462364 + 0.998931i \(0.514723\pi\)
\(18\) 2.84868 0.940756i 0.671440 0.221738i
\(19\) 5.33478i 1.22388i −0.790903 0.611942i \(-0.790389\pi\)
0.790903 0.611942i \(-0.209611\pi\)
\(20\) 0 0
\(21\) −0.652007 4.05352i −0.142280 0.884552i
\(22\) 2.83537 + 1.72066i 0.604503 + 0.366847i
\(23\) 1.38613i 0.289029i 0.989503 + 0.144514i \(0.0461620\pi\)
−0.989503 + 0.144514i \(0.953838\pi\)
\(24\) 1.71007 0.275064i 0.349067 0.0561471i
\(25\) 0 0
\(26\) 3.93020i 0.770775i
\(27\) 4.61267 2.39233i 0.887710 0.460404i
\(28\) 2.37039i 0.447961i
\(29\) −6.97475 −1.29518 −0.647589 0.761989i \(-0.724223\pi\)
−0.647589 + 0.761989i \(0.724223\pi\)
\(30\) 0 0
\(31\) 7.69736 1.38249 0.691243 0.722622i \(-0.257063\pi\)
0.691243 + 0.722622i \(0.257063\pi\)
\(32\) 1.00000 0.176777
\(33\) 5.32197 + 2.16255i 0.926436 + 0.376451i
\(34\) −0.381275 −0.0653881
\(35\) 0 0
\(36\) 2.84868 0.940756i 0.474780 0.156793i
\(37\) −1.08106 −0.177724 −0.0888622 0.996044i \(-0.528323\pi\)
−0.0888622 + 0.996044i \(0.528323\pi\)
\(38\) 5.33478i 0.865416i
\(39\) 1.08106 + 6.72092i 0.173107 + 1.07621i
\(40\) 0 0
\(41\) −5.89370 −0.920441 −0.460220 0.887805i \(-0.652230\pi\)
−0.460220 + 0.887805i \(0.652230\pi\)
\(42\) −0.652007 4.05352i −0.100607 0.625472i
\(43\) 4.74077i 0.722961i −0.932380 0.361480i \(-0.882271\pi\)
0.932380 0.361480i \(-0.117729\pi\)
\(44\) 2.83537 + 1.72066i 0.427448 + 0.259400i
\(45\) 0 0
\(46\) 1.38613i 0.204374i
\(47\) 12.0557i 1.75850i 0.476357 + 0.879252i \(0.341957\pi\)
−0.476357 + 0.879252i \(0.658043\pi\)
\(48\) 1.71007 0.275064i 0.246827 0.0397020i
\(49\) 1.38127 0.197325
\(50\) 0 0
\(51\) −0.652007 + 0.104875i −0.0912992 + 0.0146854i
\(52\) 3.93020i 0.545021i
\(53\) 9.49318i 1.30399i −0.758224 0.651994i \(-0.773933\pi\)
0.758224 0.651994i \(-0.226067\pi\)
\(54\) 4.61267 2.39233i 0.627706 0.325555i
\(55\) 0 0
\(56\) 2.37039i 0.316756i
\(57\) −1.46741 9.12285i −0.194363 1.20835i
\(58\) −6.97475 −0.915830
\(59\) 8.18210i 1.06522i 0.846361 + 0.532609i \(0.178788\pi\)
−0.846361 + 0.532609i \(0.821212\pi\)
\(60\) 0 0
\(61\) 13.7061i 1.75488i −0.479683 0.877442i \(-0.659248\pi\)
0.479683 0.877442i \(-0.340752\pi\)
\(62\) 7.69736 0.977566
\(63\) −2.22995 6.75247i −0.280948 0.850731i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 5.32197 + 2.16255i 0.655089 + 0.266191i
\(67\) −5.67074 −0.692791 −0.346395 0.938089i \(-0.612594\pi\)
−0.346395 + 0.938089i \(0.612594\pi\)
\(68\) −0.381275 −0.0462364
\(69\) 0.381275 + 2.37039i 0.0459001 + 0.285361i
\(70\) 0 0
\(71\) 2.04869i 0.243134i 0.992583 + 0.121567i \(0.0387920\pi\)
−0.992583 + 0.121567i \(0.961208\pi\)
\(72\) 2.84868 0.940756i 0.335720 0.110869i
\(73\) 11.9451i 1.39807i 0.715087 + 0.699035i \(0.246387\pi\)
−0.715087 + 0.699035i \(0.753613\pi\)
\(74\) −1.08106 −0.125670
\(75\) 0 0
\(76\) 5.33478i 0.611942i
\(77\) 4.07863 6.72092i 0.464804 0.765919i
\(78\) 1.08106 + 6.72092i 0.122405 + 0.760994i
\(79\) 11.1436i 1.25375i −0.779120 0.626874i \(-0.784334\pi\)
0.779120 0.626874i \(-0.215666\pi\)
\(80\) 0 0
\(81\) 7.22995 5.35983i 0.803328 0.595536i
\(82\) −5.89370 −0.650850
\(83\) 0.762550 0.0837007 0.0418504 0.999124i \(-0.486675\pi\)
0.0418504 + 0.999124i \(0.486675\pi\)
\(84\) −0.652007 4.05352i −0.0711398 0.442276i
\(85\) 0 0
\(86\) 4.74077i 0.511210i
\(87\) −11.9273 + 1.91850i −1.27874 + 0.205685i
\(88\) 2.83537 + 1.72066i 0.302251 + 0.183423i
\(89\) 1.88151i 0.199440i −0.995016 0.0997200i \(-0.968205\pi\)
0.995016 0.0997200i \(-0.0317947\pi\)
\(90\) 0 0
\(91\) 9.31608 0.976591
\(92\) 1.38613i 0.144514i
\(93\) 13.1630 2.11726i 1.36494 0.219550i
\(94\) 12.0557i 1.24345i
\(95\) 0 0
\(96\) 1.71007 0.275064i 0.174533 0.0280736i
\(97\) −3.28567 −0.333609 −0.166805 0.985990i \(-0.553345\pi\)
−0.166805 + 0.985990i \(0.553345\pi\)
\(98\) 1.38127 0.139530
\(99\) 9.69578 + 2.23423i 0.974463 + 0.224548i
\(100\) 0 0
\(101\) −3.50863 −0.349122 −0.174561 0.984646i \(-0.555851\pi\)
−0.174561 + 0.984646i \(0.555851\pi\)
\(102\) −0.652007 + 0.104875i −0.0645583 + 0.0103842i
\(103\) −14.6271 −1.44126 −0.720628 0.693322i \(-0.756146\pi\)
−0.720628 + 0.693322i \(0.756146\pi\)
\(104\) 3.93020i 0.385388i
\(105\) 0 0
\(106\) 9.49318i 0.922059i
\(107\) −9.31608 −0.900620 −0.450310 0.892872i \(-0.648687\pi\)
−0.450310 + 0.892872i \(0.648687\pi\)
\(108\) 4.61267 2.39233i 0.443855 0.230202i
\(109\) 8.37130i 0.801825i 0.916116 + 0.400912i \(0.131307\pi\)
−0.916116 + 0.400912i \(0.868693\pi\)
\(110\) 0 0
\(111\) −1.84868 + 0.297359i −0.175469 + 0.0282241i
\(112\) 2.37039i 0.223980i
\(113\) 6.45667i 0.607392i 0.952769 + 0.303696i \(0.0982207\pi\)
−0.952769 + 0.303696i \(0.901779\pi\)
\(114\) −1.46741 9.12285i −0.137435 0.854433i
\(115\) 0 0
\(116\) −6.97475 −0.647589
\(117\) 3.69736 + 11.1959i 0.341821 + 1.03506i
\(118\) 8.18210i 0.753223i
\(119\) 0.903768i 0.0828483i
\(120\) 0 0
\(121\) 5.07863 + 9.75743i 0.461694 + 0.887039i
\(122\) 13.7061i 1.24089i
\(123\) −10.0786 + 1.62114i −0.908760 + 0.146173i
\(124\) 7.69736 0.691243
\(125\) 0 0
\(126\) −2.22995 6.75247i −0.198660 0.601558i
\(127\) 17.4965i 1.55256i 0.630388 + 0.776280i \(0.282896\pi\)
−0.630388 + 0.776280i \(0.717104\pi\)
\(128\) 1.00000 0.0883883
\(129\) −1.30401 8.10705i −0.114812 0.713786i
\(130\) 0 0
\(131\) 19.4398 1.69846 0.849231 0.528021i \(-0.177066\pi\)
0.849231 + 0.528021i \(0.177066\pi\)
\(132\) 5.32197 + 2.16255i 0.463218 + 0.188226i
\(133\) −12.6455 −1.09650
\(134\) −5.67074 −0.489877
\(135\) 0 0
\(136\) −0.381275 −0.0326941
\(137\) 6.98517i 0.596783i 0.954444 + 0.298391i \(0.0964501\pi\)
−0.954444 + 0.298391i \(0.903550\pi\)
\(138\) 0.381275 + 2.37039i 0.0324563 + 0.201781i
\(139\) 5.54453i 0.470281i 0.971961 + 0.235141i \(0.0755550\pi\)
−0.971961 + 0.235141i \(0.924445\pi\)
\(140\) 0 0
\(141\) 3.31608 + 20.6161i 0.279265 + 1.73619i
\(142\) 2.04869i 0.171922i
\(143\) −6.76255 + 11.1436i −0.565513 + 0.931872i
\(144\) 2.84868 0.940756i 0.237390 0.0783964i
\(145\) 0 0
\(146\) 11.9451i 0.988585i
\(147\) 2.36208 0.379939i 0.194821 0.0313368i
\(148\) −1.08106 −0.0888622
\(149\) −2.20461 −0.180609 −0.0903045 0.995914i \(-0.528784\pi\)
−0.0903045 + 0.995914i \(0.528784\pi\)
\(150\) 0 0
\(151\) 5.07053i 0.412634i 0.978485 + 0.206317i \(0.0661478\pi\)
−0.978485 + 0.206317i \(0.933852\pi\)
\(152\) 5.33478i 0.432708i
\(153\) −1.08613 + 0.358687i −0.0878084 + 0.0289981i
\(154\) 4.07863 6.72092i 0.328666 0.541587i
\(155\) 0 0
\(156\) 1.08106 + 6.72092i 0.0865537 + 0.538104i
\(157\) −10.2604 −0.818871 −0.409435 0.912339i \(-0.634274\pi\)
−0.409435 + 0.912339i \(0.634274\pi\)
\(158\) 11.1436i 0.886534i
\(159\) −2.61123 16.2340i −0.207084 1.28744i
\(160\) 0 0
\(161\) 3.28567 0.258947
\(162\) 7.22995 5.35983i 0.568039 0.421108i
\(163\) 1.52697 0.119602 0.0598008 0.998210i \(-0.480953\pi\)
0.0598008 + 0.998210i \(0.480953\pi\)
\(164\) −5.89370 −0.460220
\(165\) 0 0
\(166\) 0.762550 0.0591853
\(167\) −22.3295 −1.72791 −0.863955 0.503568i \(-0.832020\pi\)
−0.863955 + 0.503568i \(0.832020\pi\)
\(168\) −0.652007 4.05352i −0.0503034 0.312736i
\(169\) −2.44646 −0.188190
\(170\) 0 0
\(171\) −5.01873 15.1971i −0.383792 1.16215i
\(172\) 4.74077i 0.361480i
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) −11.9273 + 1.91850i −0.904207 + 0.145441i
\(175\) 0 0
\(176\) 2.83537 + 1.72066i 0.213724 + 0.129700i
\(177\) 2.25060 + 13.9920i 0.169165 + 1.05170i
\(178\) 1.88151i 0.141025i
\(179\) 5.06247i 0.378387i −0.981940 0.189193i \(-0.939413\pi\)
0.981940 0.189193i \(-0.0605873\pi\)
\(180\) 0 0
\(181\) −9.39472 −0.698304 −0.349152 0.937066i \(-0.613530\pi\)
−0.349152 + 0.937066i \(0.613530\pi\)
\(182\) 9.31608 0.690554
\(183\) −3.77005 23.4384i −0.278690 1.73261i
\(184\) 1.38613i 0.102187i
\(185\) 0 0
\(186\) 13.1630 2.11726i 0.965160 0.155245i
\(187\) −1.08106 0.656046i −0.0790546 0.0479748i
\(188\) 12.0557i 0.879252i
\(189\) −5.67074 10.9338i −0.412485 0.795318i
\(190\) 0 0
\(191\) 4.57360i 0.330934i −0.986215 0.165467i \(-0.947087\pi\)
0.986215 0.165467i \(-0.0529131\pi\)
\(192\) 1.71007 0.275064i 0.123414 0.0198510i
\(193\) 7.92173i 0.570218i −0.958495 0.285109i \(-0.907970\pi\)
0.958495 0.285109i \(-0.0920299\pi\)
\(194\) −3.28567 −0.235897
\(195\) 0 0
\(196\) 1.38127 0.0986625
\(197\) −21.5520 −1.53552 −0.767758 0.640740i \(-0.778628\pi\)
−0.767758 + 0.640740i \(0.778628\pi\)
\(198\) 9.69578 + 2.23423i 0.689049 + 0.158780i
\(199\) 1.06519 0.0755093 0.0377547 0.999287i \(-0.487979\pi\)
0.0377547 + 0.999287i \(0.487979\pi\)
\(200\) 0 0
\(201\) −9.69736 + 1.55981i −0.683999 + 0.110021i
\(202\) −3.50863 −0.246866
\(203\) 16.5328i 1.16038i
\(204\) −0.652007 + 0.104875i −0.0456496 + 0.00734271i
\(205\) 0 0
\(206\) −14.6271 −1.01912
\(207\) 1.30401 + 3.94865i 0.0906352 + 0.274450i
\(208\) 3.93020i 0.272510i
\(209\) 9.17937 15.1261i 0.634950 1.04629i
\(210\) 0 0
\(211\) 18.7766i 1.29264i 0.763068 + 0.646318i \(0.223692\pi\)
−0.763068 + 0.646318i \(0.776308\pi\)
\(212\) 9.49318i 0.651994i
\(213\) 0.563519 + 3.50340i 0.0386117 + 0.240049i
\(214\) −9.31608 −0.636834
\(215\) 0 0
\(216\) 4.61267 2.39233i 0.313853 0.162777i
\(217\) 18.2457i 1.23860i
\(218\) 8.37130i 0.566976i
\(219\) 3.28567 + 20.4270i 0.222025 + 1.38033i
\(220\) 0 0
\(221\) 1.49849i 0.100799i
\(222\) −1.84868 + 0.297359i −0.124075 + 0.0199574i
\(223\) −14.6271 −0.979506 −0.489753 0.871861i \(-0.662913\pi\)
−0.489753 + 0.871861i \(0.662913\pi\)
\(224\) 2.37039i 0.158378i
\(225\) 0 0
\(226\) 6.45667i 0.429491i
\(227\) 16.7108 1.10914 0.554568 0.832139i \(-0.312884\pi\)
0.554568 + 0.832139i \(0.312884\pi\)
\(228\) −1.46741 9.12285i −0.0971813 0.604176i
\(229\) 18.1573 1.19987 0.599933 0.800050i \(-0.295194\pi\)
0.599933 + 0.800050i \(0.295194\pi\)
\(230\) 0 0
\(231\) 5.12607 12.6151i 0.337271 0.830014i
\(232\) −6.97475 −0.457915
\(233\) 1.54009 0.100895 0.0504473 0.998727i \(-0.483935\pi\)
0.0504473 + 0.998727i \(0.483935\pi\)
\(234\) 3.69736 + 11.1959i 0.241704 + 0.731898i
\(235\) 0 0
\(236\) 8.18210i 0.532609i
\(237\) −3.06519 19.0563i −0.199105 1.23784i
\(238\) 0.903768i 0.0585826i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 10.1411i 0.653244i −0.945155 0.326622i \(-0.894090\pi\)
0.945155 0.326622i \(-0.105910\pi\)
\(242\) 5.07863 + 9.75743i 0.326467 + 0.627231i
\(243\) 10.8894 11.1544i 0.698558 0.715554i
\(244\) 13.7061i 0.877442i
\(245\) 0 0
\(246\) −10.0786 + 1.62114i −0.642590 + 0.103360i
\(247\) 20.9668 1.33408
\(248\) 7.69736 0.488783
\(249\) 1.30401 0.209750i 0.0826385 0.0132924i
\(250\) 0 0
\(251\) 20.7833i 1.31183i −0.754836 0.655914i \(-0.772283\pi\)
0.754836 0.655914i \(-0.227717\pi\)
\(252\) −2.22995 6.75247i −0.140474 0.425366i
\(253\) −2.38507 + 3.93020i −0.149948 + 0.247089i
\(254\) 17.4965i 1.09783i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 20.4270i 1.27420i −0.770781 0.637101i \(-0.780134\pi\)
0.770781 0.637101i \(-0.219866\pi\)
\(258\) −1.30401 8.10705i −0.0811843 0.504723i
\(259\) 2.56252i 0.159227i
\(260\) 0 0
\(261\) −19.8688 + 6.56154i −1.22985 + 0.406149i
\(262\) 19.4398 1.20099
\(263\) −23.0921 −1.42392 −0.711959 0.702221i \(-0.752192\pi\)
−0.711959 + 0.702221i \(0.752192\pi\)
\(264\) 5.32197 + 2.16255i 0.327545 + 0.133096i
\(265\) 0 0
\(266\) −12.6455 −0.775345
\(267\) −0.517536 3.21752i −0.0316727 0.196909i
\(268\) −5.67074 −0.346395
\(269\) 23.2150i 1.41544i 0.706492 + 0.707721i \(0.250277\pi\)
−0.706492 + 0.707721i \(0.749723\pi\)
\(270\) 0 0
\(271\) 2.82677i 0.171714i 0.996307 + 0.0858569i \(0.0273628\pi\)
−0.996307 + 0.0858569i \(0.972637\pi\)
\(272\) −0.381275 −0.0231182
\(273\) 15.9312 2.56252i 0.964198 0.155091i
\(274\) 6.98517i 0.421989i
\(275\) 0 0
\(276\) 0.381275 + 2.37039i 0.0229501 + 0.142680i
\(277\) 11.7906i 0.708428i 0.935164 + 0.354214i \(0.115252\pi\)
−0.935164 + 0.354214i \(0.884748\pi\)
\(278\) 5.54453i 0.332539i
\(279\) 21.9273 7.24134i 1.31275 0.433528i
\(280\) 0 0
\(281\) −8.73345 −0.520994 −0.260497 0.965475i \(-0.583886\pi\)
−0.260497 + 0.965475i \(0.583886\pi\)
\(282\) 3.31608 + 20.6161i 0.197470 + 1.22767i
\(283\) 28.6310i 1.70194i 0.525217 + 0.850969i \(0.323984\pi\)
−0.525217 + 0.850969i \(0.676016\pi\)
\(284\) 2.04869i 0.121567i
\(285\) 0 0
\(286\) −6.76255 + 11.1436i −0.399878 + 0.658933i
\(287\) 13.9703i 0.824643i
\(288\) 2.84868 0.940756i 0.167860 0.0554346i
\(289\) −16.8546 −0.991449
\(290\) 0 0
\(291\) −5.61873 + 0.903768i −0.329375 + 0.0529798i
\(292\) 11.9451i 0.699035i
\(293\) 25.3947 1.48358 0.741788 0.670635i \(-0.233978\pi\)
0.741788 + 0.670635i \(0.233978\pi\)
\(294\) 2.36208 0.379939i 0.137759 0.0221585i
\(295\) 0 0
\(296\) −1.08106 −0.0628350
\(297\) 17.1950 + 1.15373i 0.997757 + 0.0669461i
\(298\) −2.20461 −0.127710
\(299\) −5.44778 −0.315053
\(300\) 0 0
\(301\) −11.2375 −0.647716
\(302\) 5.07053i 0.291776i
\(303\) −6.00000 + 0.965096i −0.344691 + 0.0554433i
\(304\) 5.33478i 0.305971i
\(305\) 0 0
\(306\) −1.08613 + 0.358687i −0.0620899 + 0.0205048i
\(307\) 23.8902i 1.36349i −0.731591 0.681744i \(-0.761222\pi\)
0.731591 0.681744i \(-0.238778\pi\)
\(308\) 4.07863 6.72092i 0.232402 0.382960i
\(309\) −25.0134 + 4.02340i −1.42297 + 0.228883i
\(310\) 0 0
\(311\) 8.93134i 0.506450i −0.967407 0.253225i \(-0.918509\pi\)
0.967407 0.253225i \(-0.0814913\pi\)
\(312\) 1.08106 + 6.72092i 0.0612027 + 0.380497i
\(313\) 20.5208 1.15991 0.579953 0.814650i \(-0.303071\pi\)
0.579953 + 0.814650i \(0.303071\pi\)
\(314\) −10.2604 −0.579029
\(315\) 0 0
\(316\) 11.1436i 0.626874i
\(317\) 22.9350i 1.28816i 0.764959 + 0.644079i \(0.222759\pi\)
−0.764959 + 0.644079i \(0.777241\pi\)
\(318\) −2.61123 16.2340i −0.146430 0.910358i
\(319\) −19.7760 12.0012i −1.10724 0.671938i
\(320\) 0 0
\(321\) −15.9312 + 2.56252i −0.889191 + 0.143026i
\(322\) 3.28567 0.183103
\(323\) 2.03402i 0.113176i
\(324\) 7.22995 5.35983i 0.401664 0.297768i
\(325\) 0 0
\(326\) 1.52697 0.0845712
\(327\) 2.30264 + 14.3155i 0.127336 + 0.791649i
\(328\) −5.89370 −0.325425
\(329\) 28.5766 1.57548
\(330\) 0 0
\(331\) −26.9985 −1.48397 −0.741985 0.670417i \(-0.766115\pi\)
−0.741985 + 0.670417i \(0.766115\pi\)
\(332\) 0.762550 0.0418504
\(333\) −3.07958 + 1.01701i −0.168760 + 0.0557318i
\(334\) −22.3295 −1.22182
\(335\) 0 0
\(336\) −0.652007 4.05352i −0.0355699 0.221138i
\(337\) 0.0613278i 0.00334074i −0.999999 0.00167037i \(-0.999468\pi\)
0.999999 0.00167037i \(-0.000531695\pi\)
\(338\) −2.44646 −0.133070
\(339\) 1.77599 + 11.0414i 0.0964588 + 0.599684i
\(340\) 0 0
\(341\) 21.8249 + 13.2446i 1.18188 + 0.717233i
\(342\) −5.01873 15.1971i −0.271382 0.821764i
\(343\) 19.8668i 1.07271i
\(344\) 4.74077i 0.255605i
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) 19.3947 1.04116 0.520582 0.853812i \(-0.325715\pi\)
0.520582 + 0.853812i \(0.325715\pi\)
\(348\) −11.9273 + 1.91850i −0.639371 + 0.102842i
\(349\) 18.5124i 0.990944i 0.868624 + 0.495472i \(0.165005\pi\)
−0.868624 + 0.495472i \(0.834995\pi\)
\(350\) 0 0
\(351\) 9.40232 + 18.1287i 0.501859 + 0.967640i
\(352\) 2.83537 + 1.72066i 0.151126 + 0.0917117i
\(353\) 31.0966i 1.65510i −0.561390 0.827552i \(-0.689733\pi\)
0.561390 0.827552i \(-0.310267\pi\)
\(354\) 2.25060 + 13.9920i 0.119618 + 0.743664i
\(355\) 0 0
\(356\) 1.88151i 0.0997200i
\(357\) 0.248594 + 1.54551i 0.0131570 + 0.0817969i
\(358\) 5.06247i 0.267560i
\(359\) 13.9495 0.736227 0.368113 0.929781i \(-0.380004\pi\)
0.368113 + 0.929781i \(0.380004\pi\)
\(360\) 0 0
\(361\) −9.45991 −0.497890
\(362\) −9.39472 −0.493776
\(363\) 11.3687 + 15.2889i 0.596704 + 0.802461i
\(364\) 9.31608 0.488296
\(365\) 0 0
\(366\) −3.77005 23.4384i −0.197063 1.22514i
\(367\) −12.4650 −0.650670 −0.325335 0.945599i \(-0.605477\pi\)
−0.325335 + 0.945599i \(0.605477\pi\)
\(368\) 1.38613i 0.0722572i
\(369\) −16.7893 + 5.54453i −0.874014 + 0.288637i
\(370\) 0 0
\(371\) −22.5025 −1.16827
\(372\) 13.1630 2.11726i 0.682471 0.109775i
\(373\) 2.43171i 0.125909i −0.998016 0.0629547i \(-0.979948\pi\)
0.998016 0.0629547i \(-0.0200524\pi\)
\(374\) −1.08106 0.656046i −0.0559000 0.0339233i
\(375\) 0 0
\(376\) 12.0557i 0.621725i
\(377\) 27.4122i 1.41180i
\(378\) −5.67074 10.9338i −0.291671 0.562375i
\(379\) 0.553535 0.0284332 0.0142166 0.999899i \(-0.495475\pi\)
0.0142166 + 0.999899i \(0.495475\pi\)
\(380\) 0 0
\(381\) 4.81264 + 29.9202i 0.246559 + 1.53286i
\(382\) 4.57360i 0.234006i
\(383\) 1.38613i 0.0708281i 0.999373 + 0.0354140i \(0.0112750\pi\)
−0.999373 + 0.0354140i \(0.988725\pi\)
\(384\) 1.71007 0.275064i 0.0872667 0.0140368i
\(385\) 0 0
\(386\) 7.92173i 0.403205i
\(387\) −4.45991 13.5049i −0.226710 0.686495i
\(388\) −3.28567 −0.166805
\(389\) 5.87304i 0.297775i 0.988854 + 0.148887i \(0.0475692\pi\)
−0.988854 + 0.148887i \(0.952431\pi\)
\(390\) 0 0
\(391\) 0.528498i 0.0267273i
\(392\) 1.38127 0.0697649
\(393\) 33.2434 5.34718i 1.67691 0.269730i
\(394\) −21.5520 −1.08577
\(395\) 0 0
\(396\) 9.69578 + 2.23423i 0.487231 + 0.112274i
\(397\) 25.0680 1.25813 0.629064 0.777354i \(-0.283438\pi\)
0.629064 + 0.777354i \(0.283438\pi\)
\(398\) 1.06519 0.0533931
\(399\) −21.6247 + 3.47831i −1.08259 + 0.174134i
\(400\) 0 0
\(401\) 20.3876i 1.01811i −0.860735 0.509054i \(-0.829995\pi\)
0.860735 0.509054i \(-0.170005\pi\)
\(402\) −9.69736 + 1.55981i −0.483660 + 0.0777965i
\(403\) 30.2522i 1.50697i
\(404\) −3.50863 −0.174561
\(405\) 0 0
\(406\) 16.5328i 0.820511i
\(407\) −3.06519 1.86013i −0.151936 0.0922033i
\(408\) −0.652007 + 0.104875i −0.0322791 + 0.00519208i
\(409\) 13.4418i 0.664656i 0.943164 + 0.332328i \(0.107834\pi\)
−0.943164 + 0.332328i \(0.892166\pi\)
\(410\) 0 0
\(411\) 1.92137 + 11.9451i 0.0947740 + 0.589209i
\(412\) −14.6271 −0.720628
\(413\) 19.3947 0.954352
\(414\) 1.30401 + 3.94865i 0.0640888 + 0.194066i
\(415\) 0 0
\(416\) 3.93020i 0.192694i
\(417\) 1.52510 + 9.48154i 0.0746844 + 0.464313i
\(418\) 9.17937 15.1261i 0.448977 0.739841i
\(419\) 32.0723i 1.56684i −0.621495 0.783418i \(-0.713474\pi\)
0.621495 0.783418i \(-0.286526\pi\)
\(420\) 0 0
\(421\) −27.2643 −1.32878 −0.664391 0.747385i \(-0.731309\pi\)
−0.664391 + 0.747385i \(0.731309\pi\)
\(422\) 18.7766i 0.914031i
\(423\) 11.3415 + 34.3428i 0.551441 + 1.66981i
\(424\) 9.49318i 0.461030i
\(425\) 0 0
\(426\) 0.563519 + 3.50340i 0.0273026 + 0.169740i
\(427\) −32.4887 −1.57224
\(428\) −9.31608 −0.450310
\(429\) −8.49924 + 20.9164i −0.410347 + 1.00985i
\(430\) 0 0
\(431\) 0.445917 0.0214791 0.0107395 0.999942i \(-0.496581\pi\)
0.0107395 + 0.999942i \(0.496581\pi\)
\(432\) 4.61267 2.39233i 0.221927 0.115101i
\(433\) −34.9163 −1.67797 −0.838984 0.544156i \(-0.816850\pi\)
−0.838984 + 0.544156i \(0.816850\pi\)
\(434\) 18.2457i 0.875822i
\(435\) 0 0
\(436\) 8.37130i 0.400912i
\(437\) 7.39472 0.353737
\(438\) 3.28567 + 20.4270i 0.156995 + 0.976040i
\(439\) 0.473999i 0.0226227i 0.999936 + 0.0113114i \(0.00360059\pi\)
−0.999936 + 0.0113114i \(0.996399\pi\)
\(440\) 0 0
\(441\) 3.93481 1.29944i 0.187372 0.0618782i
\(442\) 1.49849i 0.0712757i
\(443\) 15.3020i 0.727018i −0.931591 0.363509i \(-0.881579\pi\)
0.931591 0.363509i \(-0.118421\pi\)
\(444\) −1.84868 + 0.297359i −0.0877345 + 0.0141120i
\(445\) 0 0
\(446\) −14.6271 −0.692615
\(447\) −3.77005 + 0.606409i −0.178317 + 0.0286822i
\(448\) 2.37039i 0.111990i
\(449\) 16.6985i 0.788053i −0.919099 0.394026i \(-0.871082\pi\)
0.919099 0.394026i \(-0.128918\pi\)
\(450\) 0 0
\(451\) −16.7108 10.1411i −0.786881 0.477524i
\(452\) 6.45667i 0.303696i
\(453\) 1.39472 + 8.67097i 0.0655297 + 0.407398i
\(454\) 16.7108 0.784277
\(455\) 0 0
\(456\) −1.46741 9.12285i −0.0687175 0.427217i
\(457\) 22.3304i 1.04457i 0.852770 + 0.522287i \(0.174921\pi\)
−0.852770 + 0.522287i \(0.825079\pi\)
\(458\) 18.1573 0.848433
\(459\) −1.75870 + 0.912135i −0.0820889 + 0.0425748i
\(460\) 0 0
\(461\) 40.9992 1.90952 0.954761 0.297374i \(-0.0961108\pi\)
0.954761 + 0.297374i \(0.0961108\pi\)
\(462\) 5.12607 12.6151i 0.238486 0.586909i
\(463\) 3.73159 0.173422 0.0867108 0.996234i \(-0.472364\pi\)
0.0867108 + 0.996234i \(0.472364\pi\)
\(464\) −6.97475 −0.323795
\(465\) 0 0
\(466\) 1.54009 0.0713433
\(467\) 19.6887i 0.911087i −0.890214 0.455543i \(-0.849445\pi\)
0.890214 0.455543i \(-0.150555\pi\)
\(468\) 3.69736 + 11.1959i 0.170911 + 0.517530i
\(469\) 13.4418i 0.620686i
\(470\) 0 0
\(471\) −17.5460 + 2.82227i −0.808479 + 0.130043i
\(472\) 8.18210i 0.376612i
\(473\) 8.15727 13.4418i 0.375072 0.618056i
\(474\) −3.06519 19.0563i −0.140789 0.875284i
\(475\) 0 0
\(476\) 0.903768i 0.0414242i
\(477\) −8.93077 27.0430i −0.408912 1.23822i
\(478\) 0 0
\(479\) −27.8990 −1.27474 −0.637369 0.770559i \(-0.719977\pi\)
−0.637369 + 0.770559i \(0.719977\pi\)
\(480\) 0 0
\(481\) 4.24876i 0.193727i
\(482\) 10.1411i 0.461913i
\(483\) 5.61873 0.903768i 0.255661 0.0411229i
\(484\) 5.07863 + 9.75743i 0.230847 + 0.443520i
\(485\) 0 0
\(486\) 10.8894 11.1544i 0.493955 0.505973i
\(487\) −3.28567 −0.148888 −0.0744439 0.997225i \(-0.523718\pi\)
−0.0744439 + 0.997225i \(0.523718\pi\)
\(488\) 13.7061i 0.620445i
\(489\) 2.61123 0.420015i 0.118084 0.0189937i
\(490\) 0 0
\(491\) 40.9992 1.85027 0.925134 0.379642i \(-0.123953\pi\)
0.925134 + 0.379642i \(0.123953\pi\)
\(492\) −10.0786 + 1.62114i −0.454380 + 0.0730867i
\(493\) 2.65930 0.119769
\(494\) 20.9668 0.943339
\(495\) 0 0
\(496\) 7.69736 0.345622
\(497\) 4.85618 0.217829
\(498\) 1.30401 0.209750i 0.0584342 0.00939911i
\(499\) −9.15882 −0.410005 −0.205002 0.978761i \(-0.565720\pi\)
−0.205002 + 0.978761i \(0.565720\pi\)
\(500\) 0 0
\(501\) −38.1851 + 6.14204i −1.70598 + 0.274406i
\(502\) 20.7833i 0.927603i
\(503\) −30.6322 −1.36582 −0.682910 0.730502i \(-0.739286\pi\)
−0.682910 + 0.730502i \(0.739286\pi\)
\(504\) −2.22995 6.75247i −0.0993301 0.300779i
\(505\) 0 0
\(506\) −2.38507 + 3.93020i −0.106029 + 0.174719i
\(507\) −4.18363 + 0.672934i −0.185801 + 0.0298860i
\(508\) 17.4965i 0.776280i
\(509\) 21.1368i 0.936874i −0.883497 0.468437i \(-0.844817\pi\)
0.883497 0.468437i \(-0.155183\pi\)
\(510\) 0 0
\(511\) 28.3145 1.25256
\(512\) 1.00000 0.0441942
\(513\) −12.7625 24.6076i −0.563480 1.08645i
\(514\) 20.4270i 0.900996i
\(515\) 0 0
\(516\) −1.30401 8.10705i −0.0574060 0.356893i
\(517\) −20.7438 + 34.1824i −0.912311 + 1.50334i
\(518\) 2.56252i 0.112591i
\(519\) −10.2604 + 1.65038i −0.450382 + 0.0724437i
\(520\) 0 0
\(521\) 9.14719i 0.400746i 0.979720 + 0.200373i \(0.0642154\pi\)
−0.979720 + 0.200373i \(0.935785\pi\)
\(522\) −19.8688 + 6.56154i −0.869635 + 0.287191i
\(523\) 3.42868i 0.149926i −0.997186 0.0749628i \(-0.976116\pi\)
0.997186 0.0749628i \(-0.0238838\pi\)
\(524\) 19.4398 0.849231
\(525\) 0 0
\(526\) −23.0921 −1.00686
\(527\) −2.93481 −0.127842
\(528\) 5.32197 + 2.16255i 0.231609 + 0.0941128i
\(529\) 21.0786 0.916462
\(530\) 0 0
\(531\) 7.69736 + 23.3082i 0.334037 + 1.01149i
\(532\) −12.6455 −0.548252
\(533\) 23.1634i 1.00332i
\(534\) −0.517536 3.21752i −0.0223960 0.139236i
\(535\) 0 0
\(536\) −5.67074 −0.244939
\(537\) −1.39250 8.65718i −0.0600909 0.373585i
\(538\) 23.2150i 1.00087i
\(539\) 3.91642 + 2.37671i 0.168692 + 0.102372i
\(540\) 0 0
\(541\) 29.5007i 1.26833i −0.773196 0.634167i \(-0.781343\pi\)
0.773196 0.634167i \(-0.218657\pi\)
\(542\) 2.82677i 0.121420i
\(543\) −16.0656 + 2.58415i −0.689442 + 0.110896i
\(544\) −0.381275 −0.0163470
\(545\) 0 0
\(546\) 15.9312 2.56252i 0.681791 0.109666i
\(547\) 3.11963i 0.133386i 0.997774 + 0.0666928i \(0.0212448\pi\)
−0.997774 + 0.0666928i \(0.978755\pi\)
\(548\) 6.98517i 0.298391i
\(549\) −12.8941 39.0442i −0.550306 1.66637i
\(550\) 0 0
\(551\) 37.2088i 1.58515i
\(552\) 0.381275 + 2.37039i 0.0162281 + 0.100890i
\(553\) −26.4145 −1.12326
\(554\) 11.7906i 0.500934i
\(555\) 0 0
\(556\) 5.54453i 0.235141i
\(557\) 26.1573 1.10832 0.554160 0.832410i \(-0.313040\pi\)
0.554160 + 0.832410i \(0.313040\pi\)
\(558\) 21.9273 7.24134i 0.928257 0.306550i
\(559\) 18.6322 0.788057
\(560\) 0 0
\(561\) −2.02913 0.824525i −0.0856701 0.0348115i
\(562\) −8.73345 −0.368398
\(563\) 3.44646 0.145251 0.0726256 0.997359i \(-0.476862\pi\)
0.0726256 + 0.997359i \(0.476862\pi\)
\(564\) 3.31608 + 20.6161i 0.139632 + 0.868094i
\(565\) 0 0
\(566\) 28.6310i 1.20345i
\(567\) −12.7049 17.1378i −0.533554 0.719719i
\(568\) 2.04869i 0.0859610i
\(569\) −9.17937 −0.384819 −0.192410 0.981315i \(-0.561630\pi\)
−0.192410 + 0.981315i \(0.561630\pi\)
\(570\) 0 0
\(571\) 28.1504i 1.17806i 0.808112 + 0.589029i \(0.200490\pi\)
−0.808112 + 0.589029i \(0.799510\pi\)
\(572\) −6.76255 + 11.1436i −0.282756 + 0.465936i
\(573\) −1.25803 7.82117i −0.0525550 0.326734i
\(574\) 13.9703i 0.583110i
\(575\) 0 0
\(576\) 2.84868 0.940756i 0.118695 0.0391982i
\(577\) 25.5227 1.06252 0.531262 0.847208i \(-0.321718\pi\)
0.531262 + 0.847208i \(0.321718\pi\)
\(578\) −16.8546 −0.701060
\(579\) −2.17898 13.5467i −0.0905553 0.562982i
\(580\) 0 0
\(581\) 1.80754i 0.0749893i
\(582\) −5.61873 + 0.903768i −0.232904 + 0.0374624i
\(583\) 16.3346 26.9167i 0.676509 1.11477i
\(584\) 11.9451i 0.494293i
\(585\) 0 0
\(586\) 25.3947 1.04905
\(587\) 28.0055i 1.15591i 0.816068 + 0.577956i \(0.196150\pi\)
−0.816068 + 0.577956i \(0.803850\pi\)
\(588\) 2.36208 0.379939i 0.0974104 0.0156684i
\(589\) 41.0637i 1.69200i
\(590\) 0 0
\(591\) −36.8554 + 5.92817i −1.51603 + 0.243852i
\(592\) −1.08106 −0.0444311
\(593\) 22.7108 0.932621 0.466310 0.884621i \(-0.345583\pi\)
0.466310 + 0.884621i \(0.345583\pi\)
\(594\) 17.1950 + 1.15373i 0.705520 + 0.0473381i
\(595\) 0 0
\(596\) −2.20461 −0.0903045
\(597\) 1.82155 0.292995i 0.0745511 0.0119915i
\(598\) −5.44778 −0.222776
\(599\) 29.1812i 1.19231i 0.802869 + 0.596156i \(0.203306\pi\)
−0.802869 + 0.596156i \(0.796694\pi\)
\(600\) 0 0
\(601\) 2.24377i 0.0915252i −0.998952 0.0457626i \(-0.985428\pi\)
0.998952 0.0457626i \(-0.0145718\pi\)
\(602\) −11.2375 −0.458004
\(603\) −16.1541 + 5.33478i −0.657847 + 0.217249i
\(604\) 5.07053i 0.206317i
\(605\) 0 0
\(606\) −6.00000 + 0.965096i −0.243733 + 0.0392044i
\(607\) 2.37039i 0.0962110i −0.998842 0.0481055i \(-0.984682\pi\)
0.998842 0.0481055i \(-0.0153184\pi\)
\(608\) 5.33478i 0.216354i
\(609\) 4.54759 + 28.2723i 0.184277 + 1.14565i
\(610\) 0 0
\(611\) −47.3813 −1.91684
\(612\) −1.08613 + 0.358687i −0.0439042 + 0.0144991i
\(613\) 24.3918i 0.985174i −0.870263 0.492587i \(-0.836051\pi\)
0.870263 0.492587i \(-0.163949\pi\)
\(614\) 23.8902i 0.964132i
\(615\) 0 0
\(616\) 4.07863 6.72092i 0.164333 0.270793i
\(617\) 14.8825i 0.599145i 0.954073 + 0.299573i \(0.0968441\pi\)
−0.954073 + 0.299573i \(0.903156\pi\)
\(618\) −25.0134 + 4.02340i −1.00619 + 0.161845i
\(619\) 10.2876 0.413496 0.206748 0.978394i \(-0.433712\pi\)
0.206748 + 0.978394i \(0.433712\pi\)
\(620\) 0 0
\(621\) 3.31608 + 6.39378i 0.133070 + 0.256574i
\(622\) 8.93134i 0.358114i
\(623\) −4.45991 −0.178683
\(624\) 1.08106 + 6.72092i 0.0432768 + 0.269052i
\(625\) 0 0
\(626\) 20.5208 0.820178
\(627\) 11.5367 28.3916i 0.460732 1.13385i
\(628\) −10.2604 −0.409435
\(629\) 0.412179 0.0164347
\(630\) 0 0
\(631\) −12.3026 −0.489760 −0.244880 0.969553i \(-0.578749\pi\)
−0.244880 + 0.969553i \(0.578749\pi\)
\(632\) 11.1436i 0.443267i
\(633\) 5.16476 + 32.1093i 0.205281 + 1.27623i
\(634\) 22.9350i 0.910866i
\(635\) 0 0
\(636\) −2.61123 16.2340i −0.103542 0.643720i
\(637\) 5.42869i 0.215092i
\(638\) −19.7760 12.0012i −0.782939 0.475132i
\(639\) 1.92731 + 5.83605i 0.0762434 + 0.230871i
\(640\) 0 0
\(641\) 31.7993i 1.25600i −0.778214 0.627999i \(-0.783874\pi\)
0.778214 0.627999i \(-0.216126\pi\)
\(642\) −15.9312 + 2.56252i −0.628753 + 0.101134i
\(643\) 18.3162 0.722322 0.361161 0.932504i \(-0.382381\pi\)
0.361161 + 0.932504i \(0.382381\pi\)
\(644\) 3.28567 0.129474
\(645\) 0 0
\(646\) 2.03402i 0.0800274i
\(647\) 15.3565i 0.603725i −0.953351 0.301862i \(-0.902392\pi\)
0.953351 0.301862i \(-0.0976083\pi\)
\(648\) 7.22995 5.35983i 0.284019 0.210554i
\(649\) −14.0786 + 23.1993i −0.552635 + 0.910651i
\(650\) 0 0
\(651\) −5.01873 31.2014i −0.196700 1.22288i
\(652\) 1.52697 0.0598008
\(653\) 41.9214i 1.64051i 0.571998 + 0.820255i \(0.306169\pi\)
−0.571998 + 0.820255i \(0.693831\pi\)
\(654\) 2.30264 + 14.3155i 0.0900404 + 0.559781i
\(655\) 0 0
\(656\) −5.89370 −0.230110
\(657\) 11.2375 + 34.0278i 0.438415 + 1.32755i
\(658\) 28.5766 1.11403
\(659\) 2.20461 0.0858796 0.0429398 0.999078i \(-0.486328\pi\)
0.0429398 + 0.999078i \(0.486328\pi\)
\(660\) 0 0
\(661\) 49.7093 1.93347 0.966733 0.255787i \(-0.0823347\pi\)
0.966733 + 0.255787i \(0.0823347\pi\)
\(662\) −26.9985 −1.04932
\(663\) −0.412179 2.56252i −0.0160077 0.0995199i
\(664\) 0.762550 0.0295927
\(665\) 0 0
\(666\) −3.07958 + 1.01701i −0.119331 + 0.0394083i
\(667\) 9.66793i 0.374344i
\(668\) −22.3295 −0.863955
\(669\) −25.0134 + 4.02340i −0.967076 + 0.155553i
\(670\) 0 0
\(671\) 23.5836 38.8618i 0.910433 1.50024i
\(672\) −0.652007 4.05352i −0.0251517 0.156368i
\(673\) 7.92173i 0.305360i −0.988276 0.152680i \(-0.951210\pi\)
0.988276 0.152680i \(-0.0487904\pi\)
\(674\) 0.0613278i 0.00236226i
\(675\) 0 0
\(676\) −2.44646 −0.0940948
\(677\) 39.6824 1.52512 0.762559 0.646919i \(-0.223943\pi\)
0.762559 + 0.646919i \(0.223943\pi\)
\(678\) 1.77599 + 11.0414i 0.0682067 + 0.424041i
\(679\) 7.78830i 0.298888i
\(680\) 0 0
\(681\) 28.5766 4.59654i 1.09506 0.176140i
\(682\) 21.8249 + 13.2446i 0.835717 + 0.507161i
\(683\) 15.0922i 0.577488i 0.957406 + 0.288744i \(0.0932376\pi\)
−0.957406 + 0.288744i \(0.906762\pi\)
\(684\) −5.01873 15.1971i −0.191896 0.581075i
\(685\) 0 0
\(686\) 19.8668i 0.758520i
\(687\) 31.0502 4.99441i 1.18464 0.190548i
\(688\) 4.74077i 0.180740i
\(689\) 37.3101 1.42140
\(690\) 0 0
\(691\) 40.1573 1.52765 0.763827 0.645421i \(-0.223318\pi\)
0.763827 + 0.645421i \(0.223318\pi\)
\(692\) −6.00000 −0.228086
\(693\) 5.29598 22.9827i 0.201178 0.873042i
\(694\) 19.3947 0.736213
\(695\) 0 0
\(696\) −11.9273 + 1.91850i −0.452104 + 0.0727206i
\(697\) 2.24712 0.0851157
\(698\) 18.5124i 0.700703i
\(699\) 2.63366 0.423623i 0.0996143 0.0160229i
\(700\) 0 0
\(701\) −38.8371 −1.46686 −0.733428 0.679767i \(-0.762081\pi\)
−0.733428 + 0.679767i \(0.762081\pi\)
\(702\) 9.40232 + 18.1287i 0.354868 + 0.684225i
\(703\) 5.76719i 0.217514i
\(704\) 2.83537 + 1.72066i 0.106862 + 0.0648499i
\(705\) 0 0
\(706\) 31.0966i 1.17033i
\(707\) 8.31680i 0.312785i
\(708\) 2.25060 + 13.9920i 0.0845826 + 0.525850i
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) −10.4834 31.7444i −0.393157 1.19051i
\(712\) 1.88151i 0.0705127i
\(713\) 10.6696i 0.399578i
\(714\) 0.248594 + 1.54551i 0.00930339 + 0.0578392i
\(715\) 0 0
\(716\) 5.06247i 0.189193i
\(717\) 0 0
\(718\) 13.9495 0.520591
\(719\) 27.8944i 1.04029i −0.854079 0.520143i \(-0.825879\pi\)
0.854079 0.520143i \(-0.174121\pi\)
\(720\) 0 0
\(721\) 34.6720i 1.29125i
\(722\) −9.45991 −0.352061
\(723\) −2.78944 17.3419i −0.103740 0.644954i
\(724\) −9.39472 −0.349152
\(725\) 0 0
\(726\) 11.3687 + 15.2889i 0.421933 + 0.567426i
\(727\) 1.12356 0.0416705 0.0208353 0.999783i \(-0.493367\pi\)
0.0208353 + 0.999783i \(0.493367\pi\)
\(728\) 9.31608 0.345277
\(729\) 15.5535 22.0701i 0.576057 0.817410i
\(730\) 0 0
\(731\) 1.80754i 0.0668542i
\(732\) −3.77005 23.4384i −0.139345 0.866307i
\(733\) 21.2721i 0.785704i 0.919602 + 0.392852i \(0.128512\pi\)
−0.919602 + 0.392852i \(0.871488\pi\)
\(734\) −12.4650 −0.460093
\(735\) 0 0
\(736\) 1.38613i 0.0510935i
\(737\) −16.0786 9.75743i −0.592264 0.359420i
\(738\) −16.7893 + 5.54453i −0.618021 + 0.204097i
\(739\) 11.1981i 0.411927i 0.978560 + 0.205964i \(0.0660329\pi\)
−0.978560 + 0.205964i \(0.933967\pi\)
\(740\) 0 0
\(741\) 35.8546 5.76719i 1.31715 0.211863i
\(742\) −22.5025 −0.826093
\(743\) −13.3797 −0.490855 −0.245427 0.969415i \(-0.578928\pi\)
−0.245427 + 0.969415i \(0.578928\pi\)
\(744\) 13.1630 2.11726i 0.482580 0.0776227i
\(745\) 0 0
\(746\) 2.43171i 0.0890313i
\(747\) 2.17226 0.717374i 0.0794788 0.0262473i
\(748\) −1.08106 0.656046i −0.0395273 0.0239874i
\(749\) 22.0827i 0.806885i
\(750\) 0 0
\(751\) −2.59029 −0.0945210 −0.0472605 0.998883i \(-0.515049\pi\)
−0.0472605 + 0.998883i \(0.515049\pi\)
\(752\) 12.0557i 0.439626i
\(753\) −5.71672 35.5408i −0.208329 1.29518i
\(754\) 27.4122i 0.998292i
\(755\) 0 0
\(756\) −5.67074 10.9338i −0.206243 0.397659i
\(757\) 29.8382 1.08449 0.542243 0.840222i \(-0.317575\pi\)
0.542243 + 0.840222i \(0.317575\pi\)
\(758\) 0.553535 0.0201053
\(759\) −2.99758 + 7.37696i −0.108805 + 0.267767i
\(760\) 0 0
\(761\) 29.2543 1.06047 0.530234 0.847852i \(-0.322104\pi\)
0.530234 + 0.847852i \(0.322104\pi\)
\(762\) 4.81264 + 29.9202i 0.174344 + 1.08389i
\(763\) 19.8432 0.718372
\(764\) 4.57360i 0.165467i
\(765\) 0 0
\(766\) 1.38613i 0.0500830i
\(767\) −32.1573 −1.16113
\(768\) 1.71007 0.275064i 0.0617068 0.00992551i
\(769\) 45.8700i 1.65412i −0.562117 0.827058i \(-0.690013\pi\)
0.562117 0.827058i \(-0.309987\pi\)
\(770\) 0 0
\(771\) −5.61873 34.9316i −0.202353 1.25803i
\(772\) 7.92173i 0.285109i
\(773\) 29.0080i 1.04335i −0.853145 0.521673i \(-0.825308\pi\)
0.853145 0.521673i \(-0.174692\pi\)
\(774\) −4.45991 13.5049i −0.160308 0.485425i
\(775\) 0 0
\(776\) −3.28567 −0.117949
\(777\) 0.704855 + 4.38208i 0.0252865 + 0.157206i
\(778\) 5.87304i 0.210559i
\(779\) 31.4416i 1.12651i
\(780\) 0 0
\(781\) −3.52510 + 5.80878i −0.126138 + 0.207855i
\(782\) 0.528498i 0.0188990i
\(783\) −32.1723 + 16.6859i −1.14974 + 0.596305i
\(784\) 1.38127 0.0493312
\(785\) 0 0
\(786\) 33.2434 5.34718i 1.18575 0.190728i
\(787\) 20.5842i 0.733748i −0.930271 0.366874i \(-0.880428\pi\)
0.930271 0.366874i \(-0.119572\pi\)
\(788\) −21.5520 −0.767758
\(789\) −39.4891 + 6.35179i −1.40585 + 0.226130i
\(790\) 0 0
\(791\) 15.3048 0.544176
\(792\) 9.69578 + 2.23423i 0.344525 + 0.0793898i
\(793\) 53.8676 1.91290
\(794\) 25.0680 0.889631
\(795\) 0 0
\(796\) 1.06519 0.0377547
\(797\) 13.5322i 0.479335i 0.970855 + 0.239667i \(0.0770384\pi\)
−0.970855 + 0.239667i \(0.922962\pi\)
\(798\) −21.6247 + 3.47831i −0.765505 + 0.123131i
\(799\) 4.59654i 0.162614i
\(800\) 0 0
\(801\) −1.77005 5.35983i −0.0625415 0.189380i
\(802\) 20.3876i 0.719911i
\(803\) −20.5535 + 33.8688i −0.725319 + 1.19521i
\(804\) −9.69736 + 1.55981i −0.342000 + 0.0550104i
\(805\) 0 0
\(806\) 30.2522i 1.06559i
\(807\) 6.38560 + 39.6992i 0.224784 + 1.39748i
\(808\) −3.50863 −0.123433
\(809\) 29.4685 1.03606 0.518028 0.855363i \(-0.326666\pi\)
0.518028 + 0.855363i \(0.326666\pi\)
\(810\) 0 0
\(811\) 55.5626i 1.95107i −0.219853 0.975533i \(-0.570558\pi\)
0.219853 0.975533i \(-0.429442\pi\)
\(812\) 16.5328i 0.580189i
\(813\) 0.777541 + 4.83397i 0.0272695 + 0.169535i
\(814\) −3.06519 1.86013i −0.107435 0.0651976i
\(815\) 0 0
\(816\) −0.652007 + 0.104875i −0.0228248 + 0.00367136i
\(817\) −25.2910 −0.884819
\(818\) 13.4418i 0.469983i
\(819\) 26.5385 8.76417i 0.927332 0.306245i
\(820\) 0 0
\(821\) 10.0800 0.351793 0.175897 0.984409i \(-0.443718\pi\)
0.175897 + 0.984409i \(0.443718\pi\)
\(822\) 1.92137 + 11.9451i 0.0670153 + 0.416634i
\(823\) −23.8065 −0.829843 −0.414921 0.909857i \(-0.636191\pi\)
−0.414921 + 0.909857i \(0.636191\pi\)
\(824\) −14.6271 −0.509561
\(825\) 0 0
\(826\) 19.3947 0.674829
\(827\) 45.4216 1.57946 0.789732 0.613452i \(-0.210220\pi\)
0.789732 + 0.613452i \(0.210220\pi\)
\(828\) 1.30401 + 3.94865i 0.0453176 + 0.137225i
\(829\) 24.1842 0.839951 0.419975 0.907536i \(-0.362039\pi\)
0.419975 + 0.907536i \(0.362039\pi\)
\(830\) 0 0
\(831\) 3.24317 + 20.1627i 0.112504 + 0.699438i
\(832\) 3.93020i 0.136255i
\(833\) −0.526645 −0.0182472
\(834\) 1.52510 + 9.48154i 0.0528099 + 0.328319i
\(835\) 0 0
\(836\) 9.17937 15.1261i 0.317475 0.523146i
\(837\) 35.5054 18.4146i 1.22725 0.636502i
\(838\) 32.0723i 1.10792i
\(839\) 43.2069i 1.49167i 0.666132 + 0.745834i \(0.267949\pi\)
−0.666132 + 0.745834i \(0.732051\pi\)
\(840\) 0 0
\(841\) 19.6472 0.677488
\(842\) −27.2643 −0.939591
\(843\) −14.9348 + 2.40225i −0.514382 + 0.0827380i
\(844\) 18.7766i 0.646318i
\(845\) 0 0
\(846\) 11.3415 + 34.3428i 0.389928 + 1.18073i
\(847\) 23.1289 12.0383i 0.794717 0.413642i
\(848\) 9.49318i 0.325997i
\(849\) 7.87535 + 48.9610i 0.270281 + 1.68034i
\(850\) 0 0
\(851\) 1.49849i 0.0513674i
\(852\) 0.563519 + 3.50340i 0.0193058 + 0.120024i
\(853\) 16.7178i 0.572405i −0.958169 0.286203i \(-0.907607\pi\)
0.958169 0.286203i \(-0.0923931\pi\)
\(854\) −32.4887 −1.11174
\(855\) 0 0
\(856\) −9.31608 −0.318417
\(857\) 44.6441 1.52501 0.762506 0.646981i \(-0.223969\pi\)
0.762506 + 0.646981i \(0.223969\pi\)
\(858\) −8.49924 + 20.9164i −0.290159 + 0.714074i
\(859\) −16.8681 −0.575531 −0.287766 0.957701i \(-0.592912\pi\)
−0.287766 + 0.957701i \(0.592912\pi\)
\(860\) 0 0
\(861\) 3.84273 + 23.8902i 0.130960 + 0.814177i
\(862\) 0.445917 0.0151880
\(863\) 14.9370i 0.508460i 0.967144 + 0.254230i \(0.0818220\pi\)
−0.967144 + 0.254230i \(0.918178\pi\)
\(864\) 4.61267 2.39233i 0.156926 0.0813886i
\(865\) 0 0
\(866\) −34.9163 −1.18650
\(867\) −28.8226 + 4.63610i −0.978867 + 0.157450i
\(868\) 18.2457i 0.619300i
\(869\) 19.1743 31.5961i 0.650444 1.07182i
\(870\) 0 0
\(871\) 22.2871i 0.755171i
\(872\) 8.37130i 0.283488i
\(873\) −9.35982 + 3.09101i −0.316782 + 0.104615i
\(874\) 7.39472 0.250130
\(875\) 0 0
\(876\) 3.28567 + 20.4270i 0.111012 + 0.690164i
\(877\) 38.9231i 1.31434i −0.753742 0.657170i \(-0.771753\pi\)
0.753742 0.657170i \(-0.228247\pi\)
\(878\) 0.473999i 0.0159967i
\(879\) 43.4268 6.98517i 1.46475 0.235604i
\(880\) 0 0
\(881\) 5.84117i 0.196794i −0.995147 0.0983970i \(-0.968628\pi\)
0.995147 0.0983970i \(-0.0313715\pi\)
\(882\) 3.93481 1.29944i 0.132492 0.0437545i
\(883\) 22.7255 0.764772 0.382386 0.924003i \(-0.375102\pi\)
0.382386 + 0.924003i \(0.375102\pi\)
\(884\) 1.49849i 0.0503995i
\(885\) 0 0
\(886\) 15.3020i 0.514080i
\(887\) −22.9467 −0.770475 −0.385238 0.922817i \(-0.625880\pi\)
−0.385238 + 0.922817i \(0.625880\pi\)
\(888\) −1.84868 + 0.297359i −0.0620376 + 0.00997871i
\(889\) 41.4734 1.39097
\(890\) 0 0
\(891\) 29.7220 2.75677i 0.995726 0.0923553i
\(892\) −14.6271 −0.489753
\(893\) 64.3145 2.15220
\(894\) −3.77005 + 0.606409i −0.126089 + 0.0202814i
\(895\) 0 0
\(896\) 2.37039i 0.0791890i
\(897\) −9.31608 + 1.49849i −0.311055 + 0.0500330i
\(898\) 16.6985i 0.557238i
\(899\) −53.6872 −1.79057
\(900\) 0 0
\(901\) 3.61951i 0.120583i
\(902\) −16.7108 10.1411i −0.556409 0.337661i
\(903\) −19.2168 + 3.09101i −0.639496 + 0.102863i
\(904\) 6.45667i 0.214746i
\(905\) 0 0
\(906\) 1.39472 + 8.67097i 0.0463365 + 0.288074i
\(907\) 10.9381 0.363192 0.181596 0.983373i \(-0.441874\pi\)
0.181596 + 0.983373i \(0.441874\pi\)
\(908\) 16.7108 0.554568
\(909\) −9.99496 + 3.30076i −0.331512 + 0.109479i
\(910\) 0 0
\(911\) 42.3031i 1.40157i 0.713375 + 0.700783i \(0.247166\pi\)
−0.713375 + 0.700783i \(0.752834\pi\)
\(912\) −1.46741 9.12285i −0.0485906 0.302088i
\(913\) 2.16211 + 1.31209i 0.0715554 + 0.0434239i
\(914\) 22.3304i 0.738625i
\(915\) 0 0
\(916\) 18.1573 0.599933
\(917\) 46.0798i 1.52169i
\(918\) −1.75870 + 0.912135i −0.0580457 + 0.0301049i
\(919\) 1.00250i 0.0330693i −0.999863 0.0165347i \(-0.994737\pi\)
0.999863 0.0165347i \(-0.00526338\pi\)
\(920\) 0 0
\(921\) −6.57134 40.8540i −0.216533 1.34618i
\(922\) 40.9992 1.35024
\(923\) −8.05175 −0.265026
\(924\) 5.12607 12.6151i 0.168635 0.415007i
\(925\) 0 0
\(926\) 3.73159 0.122628
\(927\) −41.6681 + 13.7606i −1.36856 + 0.451957i
\(928\) −6.97475 −0.228957
\(929\) 52.0745i 1.70851i −0.519855 0.854254i \(-0.674014\pi\)
0.519855 0.854254i \(-0.325986\pi\)
\(930\) 0 0
\(931\) 7.36880i 0.241503i
\(932\) 1.54009 0.0504473
\(933\) −2.45669 15.2732i −0.0804283 0.500023i
\(934\) 19.6887i 0.644236i
\(935\) 0 0
\(936\) 3.69736 + 11.1959i 0.120852 + 0.365949i
\(937\) 15.1874i 0.496151i 0.968741 + 0.248075i \(0.0797981\pi\)
−0.968741 + 0.248075i \(0.920202\pi\)
\(938\) 13.4418i 0.438891i
\(939\) 35.0921 5.64454i 1.14519 0.184203i
\(940\) 0 0
\(941\) 8.69094 0.283317 0.141658 0.989916i \(-0.454757\pi\)
0.141658 + 0.989916i \(0.454757\pi\)
\(942\) −17.5460 + 2.82227i −0.571681 + 0.0919545i
\(943\) 8.16945i 0.266034i
\(944\) 8.18210i 0.266305i
\(945\) 0 0
\(946\) 8.15727 13.4418i 0.265216 0.437032i
\(947\) 41.4474i 1.34686i −0.739251 0.673429i \(-0.764821\pi\)
0.739251 0.673429i \(-0.235179\pi\)
\(948\) −3.06519 19.0563i −0.0995527 0.618919i
\(949\) −46.9467 −1.52395
\(950\) 0 0
\(951\) 6.30859 + 39.2205i 0.204570 + 1.27181i
\(952\) 0.903768i 0.0292913i
\(953\) 15.0652 0.488009 0.244005 0.969774i \(-0.421539\pi\)
0.244005 + 0.969774i \(0.421539\pi\)
\(954\) −8.93077 27.0430i −0.289144 0.875551i
\(955\) 0 0
\(956\) 0 0
\(957\) −37.1194 15.0832i −1.19990 0.487572i
\(958\) −27.8990 −0.901376
\(959\) 16.5575 0.534671
\(960\) 0 0
\(961\) 28.2493 0.911269
\(962\) 4.24876i 0.136986i
\(963\) −26.5385 + 8.76417i −0.855193 + 0.282421i
\(964\) 10.1411i 0.326622i
\(965\) 0 0
\(966\) 5.61873 0.903768i 0.180780 0.0290783i
\(967\) 18.7093i 0.601650i 0.953679 + 0.300825i \(0.0972620\pi\)
−0.953679 + 0.300825i \(0.902738\pi\)
\(968\) 5.07863 + 9.75743i 0.163234 + 0.313616i
\(969\) 0.559485 + 3.47831i 0.0179732 + 0.111740i
\(970\) 0 0
\(971\) 14.4214i 0.462803i 0.972858 + 0.231402i \(0.0743311\pi\)
−0.972858 + 0.231402i \(0.925669\pi\)
\(972\) 10.8894 11.1544i 0.349279 0.357777i
\(973\) 13.1427 0.421335
\(974\) −3.28567 −0.105280
\(975\) 0 0
\(976\) 13.7061i 0.438721i
\(977\) 10.2859i 0.329076i −0.986371 0.164538i \(-0.947387\pi\)
0.986371 0.164538i \(-0.0526133\pi\)
\(978\) 2.61123 0.420015i 0.0834979 0.0134306i
\(979\) 3.23745 5.33478i 0.103469 0.170500i
\(980\) 0 0
\(981\) 7.87535 + 23.8471i 0.251441 + 0.761381i
\(982\) 40.9992 1.30834
\(983\) 39.8874i 1.27221i −0.771603 0.636105i \(-0.780545\pi\)
0.771603 0.636105i \(-0.219455\pi\)
\(984\) −10.0786 + 1.62114i −0.321295 + 0.0516801i
\(985\) 0 0
\(986\) 2.65930 0.0846893
\(987\) 48.8681 7.86040i 1.55549 0.250199i
\(988\) 20.9668 0.667041
\(989\) 6.57134 0.208956
\(990\) 0 0
\(991\) 10.8929 0.346025 0.173013 0.984920i \(-0.444650\pi\)
0.173013 + 0.984920i \(0.444650\pi\)
\(992\) 7.69736 0.244391
\(993\) −46.1693 + 7.42629i −1.46514 + 0.235666i
\(994\) 4.85618 0.154029
\(995\) 0 0
\(996\) 1.30401 0.209750i 0.0413193 0.00664618i
\(997\) 21.5812i 0.683483i −0.939794 0.341742i \(-0.888983\pi\)
0.939794 0.341742i \(-0.111017\pi\)
\(998\) −9.15882 −0.289917
\(999\) −4.98656 + 2.58624i −0.157768 + 0.0818249i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1650.2.d.j.1451.11 12
3.2 odd 2 1650.2.d.i.1451.12 12
5.2 odd 4 330.2.f.a.329.17 yes 24
5.3 odd 4 330.2.f.a.329.8 yes 24
5.4 even 2 1650.2.d.i.1451.2 12
11.10 odd 2 1650.2.d.i.1451.11 12
15.2 even 4 330.2.f.a.329.7 yes 24
15.8 even 4 330.2.f.a.329.18 yes 24
15.14 odd 2 inner 1650.2.d.j.1451.1 12
33.32 even 2 inner 1650.2.d.j.1451.12 12
55.32 even 4 330.2.f.a.329.5 24
55.43 even 4 330.2.f.a.329.20 yes 24
55.54 odd 2 inner 1650.2.d.j.1451.2 12
165.32 odd 4 330.2.f.a.329.19 yes 24
165.98 odd 4 330.2.f.a.329.6 yes 24
165.164 even 2 1650.2.d.i.1451.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
330.2.f.a.329.5 24 55.32 even 4
330.2.f.a.329.6 yes 24 165.98 odd 4
330.2.f.a.329.7 yes 24 15.2 even 4
330.2.f.a.329.8 yes 24 5.3 odd 4
330.2.f.a.329.17 yes 24 5.2 odd 4
330.2.f.a.329.18 yes 24 15.8 even 4
330.2.f.a.329.19 yes 24 165.32 odd 4
330.2.f.a.329.20 yes 24 55.43 even 4
1650.2.d.i.1451.1 12 165.164 even 2
1650.2.d.i.1451.2 12 5.4 even 2
1650.2.d.i.1451.11 12 11.10 odd 2
1650.2.d.i.1451.12 12 3.2 odd 2
1650.2.d.j.1451.1 12 15.14 odd 2 inner
1650.2.d.j.1451.2 12 55.54 odd 2 inner
1650.2.d.j.1451.11 12 1.1 even 1 trivial
1650.2.d.j.1451.12 12 33.32 even 2 inner