Properties

Label 1650.2.d.i.1451.10
Level $1650$
Weight $2$
Character 1650.1451
Analytic conductor $13.175$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1650,2,Mod(1451,1650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1650.1451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1650.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1753163335\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 3x^{10} - 5x^{8} - 46x^{6} - 45x^{4} + 243x^{2} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5}\cdot 3 \)
Twist minimal: no (minimal twist has level 330)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1451.10
Root \(-0.839210 - 1.51517i\) of defining polynomial
Character \(\chi\) \(=\) 1650.1451
Dual form 1650.2.d.i.1451.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(0.839210 + 1.51517i) q^{3} +1.00000 q^{4} +(-0.839210 - 1.51517i) q^{6} +3.51327i q^{7} -1.00000 q^{8} +(-1.59145 + 2.54308i) q^{9} +(-0.486823 - 3.28070i) q^{11} +(0.839210 + 1.51517i) q^{12} -2.03804i q^{13} -3.51327i q^{14} +1.00000 q^{16} -6.34310 q^{17} +(1.59145 - 2.54308i) q^{18} -2.47606i q^{19} +(-5.32319 + 2.94838i) q^{21} +(0.486823 + 3.28070i) q^{22} +4.18641i q^{23} +(-0.839210 - 1.51517i) q^{24} +2.03804i q^{26} +(-5.18876 - 0.277134i) q^{27} +3.51327i q^{28} -9.67274 q^{29} -1.18291 q^{31} -1.00000 q^{32} +(4.56226 - 3.49082i) q^{33} +6.34310 q^{34} +(-1.59145 + 2.54308i) q^{36} +3.08797 q^{37} +2.47606i q^{38} +(3.08797 - 1.71034i) q^{39} -6.58477 q^{41} +(5.32319 - 2.94838i) q^{42} +7.02655i q^{43} +(-0.486823 - 3.28070i) q^{44} -4.18641i q^{46} -0.765721i q^{47} +(0.839210 + 1.51517i) q^{48} -5.34310 q^{49} +(-5.32319 - 9.61085i) q^{51} -2.03804i q^{52} -10.0832i q^{53} +(5.18876 + 0.277134i) q^{54} -3.51327i q^{56} +(3.75165 - 2.07794i) q^{57} +9.67274 q^{58} +0.465146i q^{59} -9.85671i q^{61} +1.18291 q^{62} +(-8.93455 - 5.59121i) q^{63} +1.00000 q^{64} +(-4.56226 + 3.49082i) q^{66} -0.973646 q^{67} -6.34310 q^{68} +(-6.34310 + 3.51327i) q^{69} +7.12421i q^{71} +(1.59145 - 2.54308i) q^{72} +9.70719i q^{73} -3.08797 q^{74} -2.47606i q^{76} +(11.5260 - 1.71034i) q^{77} +(-3.08797 + 1.71034i) q^{78} +0.992165i q^{79} +(-3.93455 - 8.09440i) q^{81} +6.58477 q^{82} +12.6862 q^{83} +(-5.32319 + 2.94838i) q^{84} -7.02655i q^{86} +(-8.11746 - 14.6558i) q^{87} +(0.486823 + 3.28070i) q^{88} +5.08617i q^{89} +7.16019 q^{91} +4.18641i q^{92} +(-0.992707 - 1.79230i) q^{93} +0.765721i q^{94} +(-0.839210 - 1.51517i) q^{96} -14.7080 q^{97} +5.34310 q^{98} +(9.11786 + 3.98305i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{2} + 12 q^{4} - 12 q^{8} - 6 q^{9} + 12 q^{16} - 4 q^{17} + 6 q^{18} + 12 q^{31} - 12 q^{32} - 18 q^{33} + 4 q^{34} - 6 q^{36} + 8 q^{49} - 14 q^{57} - 12 q^{62} - 22 q^{63} + 12 q^{64} + 18 q^{66}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1650\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(727\) \(1201\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.839210 + 1.51517i 0.484518 + 0.874781i
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −0.839210 1.51517i −0.342606 0.618564i
\(7\) 3.51327i 1.32789i 0.747780 + 0.663947i \(0.231120\pi\)
−0.747780 + 0.663947i \(0.768880\pi\)
\(8\) −1.00000 −0.353553
\(9\) −1.59145 + 2.54308i −0.530484 + 0.847695i
\(10\) 0 0
\(11\) −0.486823 3.28070i −0.146783 0.989169i
\(12\) 0.839210 + 1.51517i 0.242259 + 0.437391i
\(13\) 2.03804i 0.565251i −0.959230 0.282625i \(-0.908795\pi\)
0.959230 0.282625i \(-0.0912053\pi\)
\(14\) 3.51327i 0.938962i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −6.34310 −1.53843 −0.769214 0.638991i \(-0.779352\pi\)
−0.769214 + 0.638991i \(0.779352\pi\)
\(18\) 1.59145 2.54308i 0.375109 0.599411i
\(19\) 2.47606i 0.568048i −0.958817 0.284024i \(-0.908330\pi\)
0.958817 0.284024i \(-0.0916695\pi\)
\(20\) 0 0
\(21\) −5.32319 + 2.94838i −1.16162 + 0.643388i
\(22\) 0.486823 + 3.28070i 0.103791 + 0.699448i
\(23\) 4.18641i 0.872926i 0.899722 + 0.436463i \(0.143769\pi\)
−0.899722 + 0.436463i \(0.856231\pi\)
\(24\) −0.839210 1.51517i −0.171303 0.309282i
\(25\) 0 0
\(26\) 2.03804i 0.399692i
\(27\) −5.18876 0.277134i −0.998577 0.0533344i
\(28\) 3.51327i 0.663947i
\(29\) −9.67274 −1.79618 −0.898091 0.439809i \(-0.855046\pi\)
−0.898091 + 0.439809i \(0.855046\pi\)
\(30\) 0 0
\(31\) −1.18291 −0.212456 −0.106228 0.994342i \(-0.533877\pi\)
−0.106228 + 0.994342i \(0.533877\pi\)
\(32\) −1.00000 −0.176777
\(33\) 4.56226 3.49082i 0.794187 0.607673i
\(34\) 6.34310 1.08783
\(35\) 0 0
\(36\) −1.59145 + 2.54308i −0.265242 + 0.423847i
\(37\) 3.08797 0.507659 0.253829 0.967249i \(-0.418310\pi\)
0.253829 + 0.967249i \(0.418310\pi\)
\(38\) 2.47606i 0.401671i
\(39\) 3.08797 1.71034i 0.494471 0.273874i
\(40\) 0 0
\(41\) −6.58477 −1.02837 −0.514184 0.857680i \(-0.671905\pi\)
−0.514184 + 0.857680i \(0.671905\pi\)
\(42\) 5.32319 2.94838i 0.821387 0.454944i
\(43\) 7.02655i 1.07154i 0.844364 + 0.535769i \(0.179978\pi\)
−0.844364 + 0.535769i \(0.820022\pi\)
\(44\) −0.486823 3.28070i −0.0733913 0.494584i
\(45\) 0 0
\(46\) 4.18641i 0.617252i
\(47\) 0.765721i 0.111692i −0.998439 0.0558459i \(-0.982214\pi\)
0.998439 0.0558459i \(-0.0177856\pi\)
\(48\) 0.839210 + 1.51517i 0.121130 + 0.218695i
\(49\) −5.34310 −0.763300
\(50\) 0 0
\(51\) −5.32319 9.61085i −0.745396 1.34579i
\(52\) 2.03804i 0.282625i
\(53\) 10.0832i 1.38503i −0.721404 0.692514i \(-0.756503\pi\)
0.721404 0.692514i \(-0.243497\pi\)
\(54\) 5.18876 + 0.277134i 0.706100 + 0.0377131i
\(55\) 0 0
\(56\) 3.51327i 0.469481i
\(57\) 3.75165 2.07794i 0.496918 0.275230i
\(58\) 9.67274 1.27009
\(59\) 0.465146i 0.0605569i 0.999542 + 0.0302785i \(0.00963940\pi\)
−0.999542 + 0.0302785i \(0.990361\pi\)
\(60\) 0 0
\(61\) 9.85671i 1.26202i −0.775774 0.631011i \(-0.782640\pi\)
0.775774 0.631011i \(-0.217360\pi\)
\(62\) 1.18291 0.150229
\(63\) −8.93455 5.59121i −1.12565 0.704427i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −4.56226 + 3.49082i −0.561575 + 0.429690i
\(67\) −0.973646 −0.118950 −0.0594749 0.998230i \(-0.518943\pi\)
−0.0594749 + 0.998230i \(0.518943\pi\)
\(68\) −6.34310 −0.769214
\(69\) −6.34310 + 3.51327i −0.763620 + 0.422949i
\(70\) 0 0
\(71\) 7.12421i 0.845488i 0.906249 + 0.422744i \(0.138933\pi\)
−0.906249 + 0.422744i \(0.861067\pi\)
\(72\) 1.59145 2.54308i 0.187555 0.299705i
\(73\) 9.70719i 1.13614i 0.822980 + 0.568070i \(0.192310\pi\)
−0.822980 + 0.568070i \(0.807690\pi\)
\(74\) −3.08797 −0.358969
\(75\) 0 0
\(76\) 2.47606i 0.284024i
\(77\) 11.5260 1.71034i 1.31351 0.194912i
\(78\) −3.08797 + 1.71034i −0.349643 + 0.193658i
\(79\) 0.992165i 0.111627i 0.998441 + 0.0558136i \(0.0177753\pi\)
−0.998441 + 0.0558136i \(0.982225\pi\)
\(80\) 0 0
\(81\) −3.93455 8.09440i −0.437173 0.899378i
\(82\) 6.58477 0.727166
\(83\) 12.6862 1.39249 0.696246 0.717804i \(-0.254852\pi\)
0.696246 + 0.717804i \(0.254852\pi\)
\(84\) −5.32319 + 2.94838i −0.580808 + 0.321694i
\(85\) 0 0
\(86\) 7.02655i 0.757692i
\(87\) −8.11746 14.6558i −0.870283 1.57127i
\(88\) 0.486823 + 3.28070i 0.0518955 + 0.349724i
\(89\) 5.08617i 0.539133i 0.962982 + 0.269566i \(0.0868804\pi\)
−0.962982 + 0.269566i \(0.913120\pi\)
\(90\) 0 0
\(91\) 7.16019 0.750592
\(92\) 4.18641i 0.436463i
\(93\) −0.992707 1.79230i −0.102939 0.185853i
\(94\) 0.765721i 0.0789781i
\(95\) 0 0
\(96\) −0.839210 1.51517i −0.0856515 0.154641i
\(97\) −14.7080 −1.49337 −0.746686 0.665177i \(-0.768356\pi\)
−0.746686 + 0.665177i \(0.768356\pi\)
\(98\) 5.34310 0.539735
\(99\) 9.11786 + 3.98305i 0.916379 + 0.400312i
\(100\) 0 0
\(101\) 7.14958 0.711410 0.355705 0.934598i \(-0.384241\pi\)
0.355705 + 0.934598i \(0.384241\pi\)
\(102\) 5.32319 + 9.61085i 0.527075 + 0.951616i
\(103\) −16.6553 −1.64109 −0.820547 0.571579i \(-0.806331\pi\)
−0.820547 + 0.571579i \(0.806331\pi\)
\(104\) 2.03804i 0.199846i
\(105\) 0 0
\(106\) 10.0832i 0.979363i
\(107\) 7.16019 0.692202 0.346101 0.938197i \(-0.387505\pi\)
0.346101 + 0.938197i \(0.387505\pi\)
\(108\) −5.18876 0.277134i −0.499288 0.0266672i
\(109\) 7.38065i 0.706938i 0.935446 + 0.353469i \(0.114998\pi\)
−0.935446 + 0.353469i \(0.885002\pi\)
\(110\) 0 0
\(111\) 2.59145 + 4.67878i 0.245970 + 0.444090i
\(112\) 3.51327i 0.331973i
\(113\) 14.9877i 1.40993i 0.709243 + 0.704964i \(0.249037\pi\)
−0.709243 + 0.704964i \(0.750963\pi\)
\(114\) −3.75165 + 2.07794i −0.351374 + 0.194617i
\(115\) 0 0
\(116\) −9.67274 −0.898091
\(117\) 5.18291 + 3.24344i 0.479160 + 0.299857i
\(118\) 0.465146i 0.0428202i
\(119\) 22.2851i 2.04287i
\(120\) 0 0
\(121\) −10.5260 + 3.19424i −0.956910 + 0.290386i
\(122\) 9.85671i 0.892385i
\(123\) −5.52601 9.97702i −0.498263 0.899598i
\(124\) −1.18291 −0.106228
\(125\) 0 0
\(126\) 8.93455 + 5.59121i 0.795953 + 0.498105i
\(127\) 2.30787i 0.204790i −0.994744 0.102395i \(-0.967349\pi\)
0.994744 0.102395i \(-0.0326506\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −10.6464 + 5.89675i −0.937362 + 0.519180i
\(130\) 0 0
\(131\) −13.1585 −1.14966 −0.574831 0.818272i \(-0.694932\pi\)
−0.574831 + 0.818272i \(0.694932\pi\)
\(132\) 4.56226 3.49082i 0.397094 0.303836i
\(133\) 8.69909 0.754307
\(134\) 0.973646 0.0841102
\(135\) 0 0
\(136\) 6.34310 0.543916
\(137\) 11.5671i 0.988240i −0.869394 0.494120i \(-0.835490\pi\)
0.869394 0.494120i \(-0.164510\pi\)
\(138\) 6.34310 3.51327i 0.539961 0.299070i
\(139\) 16.7456i 1.42035i −0.704027 0.710173i \(-0.748617\pi\)
0.704027 0.710173i \(-0.251383\pi\)
\(140\) 0 0
\(141\) 1.16019 0.642601i 0.0977059 0.0541167i
\(142\) 7.12421i 0.597850i
\(143\) −6.68620 + 0.992165i −0.559128 + 0.0829690i
\(144\) −1.59145 + 2.54308i −0.132621 + 0.211924i
\(145\) 0 0
\(146\) 9.70719i 0.803373i
\(147\) −4.48398 8.09568i −0.369833 0.667721i
\(148\) 3.08797 0.253829
\(149\) 17.7960 1.45790 0.728951 0.684566i \(-0.240008\pi\)
0.728951 + 0.684566i \(0.240008\pi\)
\(150\) 0 0
\(151\) 10.8013i 0.879000i −0.898243 0.439500i \(-0.855156\pi\)
0.898243 0.439500i \(-0.144844\pi\)
\(152\) 2.47606i 0.200835i
\(153\) 10.0947 16.1310i 0.816112 1.30412i
\(154\) −11.5260 + 1.71034i −0.928792 + 0.137823i
\(155\) 0 0
\(156\) 3.08797 1.71034i 0.247235 0.136937i
\(157\) −5.03526 −0.401857 −0.200929 0.979606i \(-0.564396\pi\)
−0.200929 + 0.979606i \(0.564396\pi\)
\(158\) 0.992165i 0.0789324i
\(159\) 15.2777 8.46189i 1.21160 0.671071i
\(160\) 0 0
\(161\) −14.7080 −1.15915
\(162\) 3.93455 + 8.09440i 0.309128 + 0.635956i
\(163\) −18.2048 −1.42591 −0.712955 0.701210i \(-0.752644\pi\)
−0.712955 + 0.701210i \(0.752644\pi\)
\(164\) −6.58477 −0.514184
\(165\) 0 0
\(166\) −12.6862 −0.984640
\(167\) 9.13748 0.707080 0.353540 0.935419i \(-0.384978\pi\)
0.353540 + 0.935419i \(0.384978\pi\)
\(168\) 5.32319 2.94838i 0.410693 0.227472i
\(169\) 8.84639 0.680492
\(170\) 0 0
\(171\) 6.29684 + 3.94054i 0.481531 + 0.301341i
\(172\) 7.02655i 0.535769i
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 8.11746 + 14.6558i 0.615383 + 1.11105i
\(175\) 0 0
\(176\) −0.486823 3.28070i −0.0366957 0.247292i
\(177\) −0.704774 + 0.390356i −0.0529740 + 0.0293409i
\(178\) 5.08617i 0.381224i
\(179\) 3.41562i 0.255295i −0.991820 0.127648i \(-0.959257\pi\)
0.991820 0.127648i \(-0.0407426\pi\)
\(180\) 0 0
\(181\) 8.36581 0.621826 0.310913 0.950438i \(-0.399365\pi\)
0.310913 + 0.950438i \(0.399365\pi\)
\(182\) −7.16019 −0.530749
\(183\) 14.9346 8.27185i 1.10399 0.611473i
\(184\) 4.18641i 0.308626i
\(185\) 0 0
\(186\) 0.992707 + 1.79230i 0.0727888 + 0.131418i
\(187\) 3.08797 + 20.8098i 0.225815 + 1.52176i
\(188\) 0.765721i 0.0558459i
\(189\) 0.973646 18.2295i 0.0708223 1.32600i
\(190\) 0 0
\(191\) 5.18383i 0.375089i 0.982256 + 0.187544i \(0.0600528\pi\)
−0.982256 + 0.187544i \(0.939947\pi\)
\(192\) 0.839210 + 1.51517i 0.0605648 + 0.109348i
\(193\) 15.5283i 1.11775i 0.829251 + 0.558877i \(0.188768\pi\)
−0.829251 + 0.558877i \(0.811232\pi\)
\(194\) 14.7080 1.05597
\(195\) 0 0
\(196\) −5.34310 −0.381650
\(197\) −27.4178 −1.95344 −0.976720 0.214520i \(-0.931181\pi\)
−0.976720 + 0.214520i \(0.931181\pi\)
\(198\) −9.11786 3.98305i −0.647978 0.283063i
\(199\) −3.50329 −0.248342 −0.124171 0.992261i \(-0.539627\pi\)
−0.124171 + 0.992261i \(0.539627\pi\)
\(200\) 0 0
\(201\) −0.817094 1.47524i −0.0576333 0.104055i
\(202\) −7.14958 −0.503043
\(203\) 33.9830i 2.38514i
\(204\) −5.32319 9.61085i −0.372698 0.672894i
\(205\) 0 0
\(206\) 16.6553 1.16043
\(207\) −10.6464 6.66247i −0.739975 0.463074i
\(208\) 2.03804i 0.141313i
\(209\) −8.12323 + 1.20541i −0.561895 + 0.0833796i
\(210\) 0 0
\(211\) 0.944623i 0.0650305i −0.999471 0.0325152i \(-0.989648\pi\)
0.999471 0.0325152i \(-0.0103517\pi\)
\(212\) 10.0832i 0.692514i
\(213\) −10.7944 + 5.97871i −0.739617 + 0.409654i
\(214\) −7.16019 −0.489461
\(215\) 0 0
\(216\) 5.18876 + 0.277134i 0.353050 + 0.0188565i
\(217\) 4.15588i 0.282119i
\(218\) 7.38065i 0.499881i
\(219\) −14.7080 + 8.14637i −0.993875 + 0.550481i
\(220\) 0 0
\(221\) 12.9275i 0.869597i
\(222\) −2.59145 4.67878i −0.173927 0.314019i
\(223\) −16.6553 −1.11532 −0.557660 0.830069i \(-0.688301\pi\)
−0.557660 + 0.830069i \(0.688301\pi\)
\(224\) 3.51327i 0.234741i
\(225\) 0 0
\(226\) 14.9877i 0.996970i
\(227\) 3.20562 0.212764 0.106382 0.994325i \(-0.466073\pi\)
0.106382 + 0.994325i \(0.466073\pi\)
\(228\) 3.75165 2.07794i 0.248459 0.137615i
\(229\) −13.0520 −0.862501 −0.431251 0.902232i \(-0.641928\pi\)
−0.431251 + 0.902232i \(0.641928\pi\)
\(230\) 0 0
\(231\) 12.2642 + 16.0285i 0.806925 + 1.05460i
\(232\) 9.67274 0.635046
\(233\) −23.8691 −1.56372 −0.781859 0.623456i \(-0.785728\pi\)
−0.781859 + 0.623456i \(0.785728\pi\)
\(234\) −5.18291 3.24344i −0.338817 0.212031i
\(235\) 0 0
\(236\) 0.465146i 0.0302785i
\(237\) −1.50329 + 0.832635i −0.0976494 + 0.0540854i
\(238\) 22.2851i 1.44453i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 21.6027i 1.39155i 0.718260 + 0.695775i \(0.244939\pi\)
−0.718260 + 0.695775i \(0.755061\pi\)
\(242\) 10.5260 3.19424i 0.676637 0.205334i
\(243\) 8.96244 12.7544i 0.574941 0.818195i
\(244\) 9.85671i 0.631011i
\(245\) 0 0
\(246\) 5.52601 + 9.97702i 0.352325 + 0.636112i
\(247\) −5.04632 −0.321089
\(248\) 1.18291 0.0751146
\(249\) 10.6464 + 19.2217i 0.674687 + 1.21813i
\(250\) 0 0
\(251\) 11.5678i 0.730152i −0.930978 0.365076i \(-0.881043\pi\)
0.930978 0.365076i \(-0.118957\pi\)
\(252\) −8.93455 5.59121i −0.562824 0.352213i
\(253\) 13.7344 2.03804i 0.863471 0.128130i
\(254\) 2.30787i 0.144809i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 8.14637i 0.508157i 0.967184 + 0.254078i \(0.0817721\pi\)
−0.967184 + 0.254078i \(0.918228\pi\)
\(258\) 10.6464 5.89675i 0.662815 0.367116i
\(259\) 10.8489i 0.674117i
\(260\) 0 0
\(261\) 15.3937 24.5986i 0.952847 1.52261i
\(262\) 13.1585 0.812934
\(263\) −3.54872 −0.218823 −0.109412 0.993997i \(-0.534897\pi\)
−0.109412 + 0.993997i \(0.534897\pi\)
\(264\) −4.56226 + 3.49082i −0.280788 + 0.214845i
\(265\) 0 0
\(266\) −8.69909 −0.533376
\(267\) −7.70639 + 4.26836i −0.471623 + 0.261220i
\(268\) −0.973646 −0.0594749
\(269\) 26.5333i 1.61776i 0.587971 + 0.808882i \(0.299927\pi\)
−0.587971 + 0.808882i \(0.700073\pi\)
\(270\) 0 0
\(271\) 24.1263i 1.46557i 0.680462 + 0.732784i \(0.261779\pi\)
−0.680462 + 0.732784i \(0.738221\pi\)
\(272\) −6.34310 −0.384607
\(273\) 6.00891 + 10.8489i 0.363676 + 0.656604i
\(274\) 11.5671i 0.698791i
\(275\) 0 0
\(276\) −6.34310 + 3.51327i −0.381810 + 0.211474i
\(277\) 6.11412i 0.367362i −0.982986 0.183681i \(-0.941199\pi\)
0.982986 0.183681i \(-0.0588013\pi\)
\(278\) 16.7456i 1.00434i
\(279\) 1.88254 3.00823i 0.112705 0.180098i
\(280\) 0 0
\(281\) 23.2401 1.38639 0.693193 0.720752i \(-0.256203\pi\)
0.693193 + 0.720752i \(0.256203\pi\)
\(282\) −1.16019 + 0.642601i −0.0690885 + 0.0382663i
\(283\) 12.3878i 0.736380i 0.929751 + 0.368190i \(0.120022\pi\)
−0.929751 + 0.368190i \(0.879978\pi\)
\(284\) 7.12421i 0.422744i
\(285\) 0 0
\(286\) 6.68620 0.992165i 0.395363 0.0586679i
\(287\) 23.1341i 1.36556i
\(288\) 1.59145 2.54308i 0.0937773 0.149853i
\(289\) 23.2349 1.36676
\(290\) 0 0
\(291\) −12.3431 22.2851i −0.723565 1.30637i
\(292\) 9.70719i 0.568070i
\(293\) −7.63419 −0.445994 −0.222997 0.974819i \(-0.571584\pi\)
−0.222997 + 0.974819i \(0.571584\pi\)
\(294\) 4.48398 + 8.09568i 0.261511 + 0.472150i
\(295\) 0 0
\(296\) −3.08797 −0.179484
\(297\) 1.61681 + 17.1577i 0.0938171 + 0.995589i
\(298\) −17.7960 −1.03089
\(299\) 8.53206 0.493422
\(300\) 0 0
\(301\) −24.6862 −1.42289
\(302\) 10.8013i 0.621547i
\(303\) 6.00000 + 10.8328i 0.344691 + 0.622328i
\(304\) 2.47606i 0.142012i
\(305\) 0 0
\(306\) −10.0947 + 16.1310i −0.577078 + 0.922150i
\(307\) 19.4144i 1.10804i −0.832504 0.554019i \(-0.813094\pi\)
0.832504 0.554019i \(-0.186906\pi\)
\(308\) 11.5260 1.71034i 0.656755 0.0974559i
\(309\) −13.9773 25.2355i −0.795140 1.43560i
\(310\) 0 0
\(311\) 5.99860i 0.340149i 0.985431 + 0.170075i \(0.0544009\pi\)
−0.985431 + 0.170075i \(0.945599\pi\)
\(312\) −3.08797 + 1.71034i −0.174822 + 0.0968291i
\(313\) 10.0705 0.569219 0.284610 0.958643i \(-0.408136\pi\)
0.284610 + 0.958643i \(0.408136\pi\)
\(314\) 5.03526 0.284156
\(315\) 0 0
\(316\) 0.992165i 0.0558136i
\(317\) 13.5038i 0.758451i 0.925304 + 0.379226i \(0.123810\pi\)
−0.925304 + 0.379226i \(0.876190\pi\)
\(318\) −15.2777 + 8.46189i −0.856728 + 0.474519i
\(319\) 4.70891 + 31.7334i 0.263649 + 1.77673i
\(320\) 0 0
\(321\) 6.00891 + 10.8489i 0.335384 + 0.605525i
\(322\) 14.7080 0.819645
\(323\) 15.7059i 0.873901i
\(324\) −3.93455 8.09440i −0.218586 0.449689i
\(325\) 0 0
\(326\) 18.2048 1.00827
\(327\) −11.1829 + 6.19392i −0.618416 + 0.342524i
\(328\) 6.58477 0.363583
\(329\) 2.69019 0.148315
\(330\) 0 0
\(331\) 33.2642 1.82837 0.914183 0.405301i \(-0.132833\pi\)
0.914183 + 0.405301i \(0.132833\pi\)
\(332\) 12.6862 0.696246
\(333\) −4.91436 + 7.85296i −0.269305 + 0.430340i
\(334\) −9.13748 −0.499981
\(335\) 0 0
\(336\) −5.32319 + 2.94838i −0.290404 + 0.160847i
\(337\) 11.4523i 0.623844i 0.950108 + 0.311922i \(0.100973\pi\)
−0.950108 + 0.311922i \(0.899027\pi\)
\(338\) −8.84639 −0.481180
\(339\) −22.7089 + 12.5779i −1.23338 + 0.683136i
\(340\) 0 0
\(341\) 0.575866 + 3.88076i 0.0311849 + 0.210155i
\(342\) −6.29684 3.94054i −0.340494 0.213080i
\(343\) 5.82114i 0.314312i
\(344\) 7.02655i 0.378846i
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) −1.63419 −0.0877278 −0.0438639 0.999038i \(-0.513967\pi\)
−0.0438639 + 0.999038i \(0.513967\pi\)
\(348\) −8.11746 14.6558i −0.435142 0.785633i
\(349\) 14.2220i 0.761287i −0.924722 0.380644i \(-0.875702\pi\)
0.924722 0.380644i \(-0.124298\pi\)
\(350\) 0 0
\(351\) −0.564809 + 10.5749i −0.0301473 + 0.564446i
\(352\) 0.486823 + 3.28070i 0.0259478 + 0.174862i
\(353\) 13.0985i 0.697163i 0.937279 + 0.348581i \(0.113337\pi\)
−0.937279 + 0.348581i \(0.886663\pi\)
\(354\) 0.704774 0.390356i 0.0374583 0.0207472i
\(355\) 0 0
\(356\) 5.08617i 0.269566i
\(357\) 33.7655 18.7018i 1.78706 0.989806i
\(358\) 3.41562i 0.180521i
\(359\) 19.3455 1.02102 0.510508 0.859873i \(-0.329457\pi\)
0.510508 + 0.859873i \(0.329457\pi\)
\(360\) 0 0
\(361\) 12.8691 0.677321
\(362\) −8.36581 −0.439697
\(363\) −13.6733 13.2680i −0.717664 0.696390i
\(364\) 7.16019 0.375296
\(365\) 0 0
\(366\) −14.9346 + 8.27185i −0.780642 + 0.432377i
\(367\) −22.8312 −1.19178 −0.595890 0.803066i \(-0.703201\pi\)
−0.595890 + 0.803066i \(0.703201\pi\)
\(368\) 4.18641i 0.218232i
\(369\) 10.4794 16.7456i 0.545534 0.871743i
\(370\) 0 0
\(371\) 35.4249 1.83917
\(372\) −0.992707 1.79230i −0.0514695 0.0929264i
\(373\) 14.9655i 0.774886i 0.921894 + 0.387443i \(0.126642\pi\)
−0.921894 + 0.387443i \(0.873358\pi\)
\(374\) −3.08797 20.8098i −0.159675 1.07605i
\(375\) 0 0
\(376\) 0.765721i 0.0394890i
\(377\) 19.7134i 1.01529i
\(378\) −0.973646 + 18.2295i −0.0500790 + 0.937626i
\(379\) 11.8464 0.608508 0.304254 0.952591i \(-0.401593\pi\)
0.304254 + 0.952591i \(0.401593\pi\)
\(380\) 0 0
\(381\) 3.49680 1.93679i 0.179147 0.0992246i
\(382\) 5.18383i 0.265228i
\(383\) 4.18641i 0.213915i 0.994264 + 0.106958i \(0.0341109\pi\)
−0.994264 + 0.106958i \(0.965889\pi\)
\(384\) −0.839210 1.51517i −0.0428258 0.0773205i
\(385\) 0 0
\(386\) 15.5283i 0.790371i
\(387\) −17.8691 11.1824i −0.908338 0.568435i
\(388\) −14.7080 −0.746686
\(389\) 8.40413i 0.426106i 0.977041 + 0.213053i \(0.0683407\pi\)
−0.977041 + 0.213053i \(0.931659\pi\)
\(390\) 0 0
\(391\) 26.5548i 1.34293i
\(392\) 5.34310 0.269867
\(393\) −11.0427 19.9373i −0.557032 1.00570i
\(394\) 27.4178 1.38129
\(395\) 0 0
\(396\) 9.11786 + 3.98305i 0.458190 + 0.200156i
\(397\) −9.83977 −0.493844 −0.246922 0.969035i \(-0.579419\pi\)
−0.246922 + 0.969035i \(0.579419\pi\)
\(398\) 3.50329 0.175604
\(399\) 7.30037 + 13.1806i 0.365475 + 0.659854i
\(400\) 0 0
\(401\) 24.3052i 1.21375i 0.794799 + 0.606873i \(0.207576\pi\)
−0.794799 + 0.606873i \(0.792424\pi\)
\(402\) 0.817094 + 1.47524i 0.0407529 + 0.0735780i
\(403\) 2.41081i 0.120091i
\(404\) 7.14958 0.355705
\(405\) 0 0
\(406\) 33.9830i 1.68655i
\(407\) −1.50329 10.1307i −0.0745155 0.502160i
\(408\) 5.32319 + 9.61085i 0.263537 + 0.475808i
\(409\) 3.42069i 0.169142i −0.996417 0.0845710i \(-0.973048\pi\)
0.996417 0.0845710i \(-0.0269520\pi\)
\(410\) 0 0
\(411\) 17.5260 9.70719i 0.864494 0.478820i
\(412\) −16.6553 −0.820547
\(413\) −1.63419 −0.0804131
\(414\) 10.6464 + 6.66247i 0.523241 + 0.327443i
\(415\) 0 0
\(416\) 2.03804i 0.0999231i
\(417\) 25.3724 14.0531i 1.24249 0.688183i
\(418\) 8.12323 1.20541i 0.397320 0.0589583i
\(419\) 18.9492i 0.925731i 0.886429 + 0.462865i \(0.153179\pi\)
−0.886429 + 0.462865i \(0.846821\pi\)
\(420\) 0 0
\(421\) −18.6408 −0.908496 −0.454248 0.890875i \(-0.650092\pi\)
−0.454248 + 0.890875i \(0.650092\pi\)
\(422\) 0.944623i 0.0459835i
\(423\) 1.94729 + 1.21861i 0.0946806 + 0.0592508i
\(424\) 10.0832i 0.489681i
\(425\) 0 0
\(426\) 10.7944 5.97871i 0.522988 0.289669i
\(427\) 34.6293 1.67583
\(428\) 7.16019 0.346101
\(429\) −7.11442 9.29807i −0.343487 0.448915i
\(430\) 0 0
\(431\) 15.1168 0.728152 0.364076 0.931369i \(-0.381385\pi\)
0.364076 + 0.931369i \(0.381385\pi\)
\(432\) −5.18876 0.277134i −0.249644 0.0133336i
\(433\) 24.3918 1.17219 0.586097 0.810241i \(-0.300664\pi\)
0.586097 + 0.810241i \(0.300664\pi\)
\(434\) 4.15588i 0.199488i
\(435\) 0 0
\(436\) 7.38065i 0.353469i
\(437\) 10.3658 0.495864
\(438\) 14.7080 8.14637i 0.702775 0.389249i
\(439\) 5.94429i 0.283706i −0.989888 0.141853i \(-0.954694\pi\)
0.989888 0.141853i \(-0.0453060\pi\)
\(440\) 0 0
\(441\) 8.50329 13.5880i 0.404919 0.647045i
\(442\) 12.9275i 0.614898i
\(443\) 13.5514i 0.643846i −0.946766 0.321923i \(-0.895671\pi\)
0.946766 0.321923i \(-0.104329\pi\)
\(444\) 2.59145 + 4.67878i 0.122985 + 0.222045i
\(445\) 0 0
\(446\) 16.6553 0.788651
\(447\) 14.9346 + 26.9638i 0.706380 + 1.27535i
\(448\) 3.51327i 0.165987i
\(449\) 25.3510i 1.19639i −0.801351 0.598195i \(-0.795885\pi\)
0.801351 0.598195i \(-0.204115\pi\)
\(450\) 0 0
\(451\) 3.20562 + 21.6027i 0.150947 + 1.01723i
\(452\) 14.9877i 0.704964i
\(453\) 16.3658 9.06459i 0.768933 0.425892i
\(454\) −3.20562 −0.150447
\(455\) 0 0
\(456\) −3.75165 + 2.07794i −0.175687 + 0.0973083i
\(457\) 17.9391i 0.839158i 0.907719 + 0.419579i \(0.137822\pi\)
−0.907719 + 0.419579i \(0.862178\pi\)
\(458\) 13.0520 0.609881
\(459\) 32.9128 + 1.75789i 1.53624 + 0.0820511i
\(460\) 0 0
\(461\) 3.83086 0.178421 0.0892105 0.996013i \(-0.471566\pi\)
0.0892105 + 0.996013i \(0.471566\pi\)
\(462\) −12.2642 16.0285i −0.570582 0.745712i
\(463\) −0.408837 −0.0190003 −0.00950014 0.999955i \(-0.503024\pi\)
−0.00950014 + 0.999955i \(0.503024\pi\)
\(464\) −9.67274 −0.449046
\(465\) 0 0
\(466\) 23.8691 1.10572
\(467\) 0.813263i 0.0376333i 0.999823 + 0.0188167i \(0.00598988\pi\)
−0.999823 + 0.0188167i \(0.994010\pi\)
\(468\) 5.18291 + 3.24344i 0.239580 + 0.149928i
\(469\) 3.42069i 0.157953i
\(470\) 0 0
\(471\) −4.22564 7.62925i −0.194707 0.351537i
\(472\) 0.465146i 0.0214101i
\(473\) 23.0520 3.42069i 1.05993 0.157283i
\(474\) 1.50329 0.832635i 0.0690486 0.0382442i
\(475\) 0 0
\(476\) 22.2851i 1.02143i
\(477\) 25.6423 + 16.0469i 1.17408 + 0.734736i
\(478\) 0 0
\(479\) −38.6910 −1.76784 −0.883918 0.467643i \(-0.845103\pi\)
−0.883918 + 0.467643i \(0.845103\pi\)
\(480\) 0 0
\(481\) 6.29340i 0.286954i
\(482\) 21.6027i 0.983975i
\(483\) −12.3431 22.2851i −0.561631 1.01401i
\(484\) −10.5260 + 3.19424i −0.478455 + 0.145193i
\(485\) 0 0
\(486\) −8.96244 + 12.7544i −0.406544 + 0.578551i
\(487\) −14.7080 −0.666483 −0.333242 0.942841i \(-0.608142\pi\)
−0.333242 + 0.942841i \(0.608142\pi\)
\(488\) 9.85671i 0.446192i
\(489\) −15.2777 27.5833i −0.690879 1.24736i
\(490\) 0 0
\(491\) 3.83086 0.172884 0.0864422 0.996257i \(-0.472450\pi\)
0.0864422 + 0.996257i \(0.472450\pi\)
\(492\) −5.52601 9.97702i −0.249132 0.449799i
\(493\) 61.3552 2.76330
\(494\) 5.04632 0.227045
\(495\) 0 0
\(496\) −1.18291 −0.0531141
\(497\) −25.0293 −1.12272
\(498\) −10.6464 19.2217i −0.477076 0.861345i
\(499\) −38.2122 −1.71061 −0.855307 0.518122i \(-0.826631\pi\)
−0.855307 + 0.518122i \(0.826631\pi\)
\(500\) 0 0
\(501\) 7.66827 + 13.8448i 0.342593 + 0.618540i
\(502\) 11.5678i 0.516295i
\(503\) 26.3204 1.17357 0.586784 0.809743i \(-0.300394\pi\)
0.586784 + 0.809743i \(0.300394\pi\)
\(504\) 8.93455 + 5.59121i 0.397977 + 0.249052i
\(505\) 0 0
\(506\) −13.7344 + 2.03804i −0.610566 + 0.0906019i
\(507\) 7.42398 + 13.4038i 0.329711 + 0.595281i
\(508\) 2.30787i 0.102395i
\(509\) 30.7690i 1.36381i 0.731440 + 0.681905i \(0.238848\pi\)
−0.731440 + 0.681905i \(0.761152\pi\)
\(510\) 0 0
\(511\) −34.1040 −1.50867
\(512\) −1.00000 −0.0441942
\(513\) −0.686200 + 12.8477i −0.0302965 + 0.567240i
\(514\) 8.14637i 0.359321i
\(515\) 0 0
\(516\) −10.6464 + 5.89675i −0.468681 + 0.259590i
\(517\) −2.51210 + 0.372771i −0.110482 + 0.0163944i
\(518\) 10.8489i 0.476672i
\(519\) 5.03526 + 9.09099i 0.221023 + 0.399050i
\(520\) 0 0
\(521\) 10.3677i 0.454215i −0.973870 0.227108i \(-0.927073\pi\)
0.973870 0.227108i \(-0.0729269\pi\)
\(522\) −15.3937 + 24.5986i −0.673765 + 1.07665i
\(523\) 34.5931i 1.51265i −0.654196 0.756325i \(-0.726993\pi\)
0.654196 0.756325i \(-0.273007\pi\)
\(524\) −13.1585 −0.574831
\(525\) 0 0
\(526\) 3.54872 0.154732
\(527\) 7.50329 0.326849
\(528\) 4.56226 3.49082i 0.198547 0.151918i
\(529\) 5.47399 0.238000
\(530\) 0 0
\(531\) −1.18291 0.740259i −0.0513338 0.0321245i
\(532\) 8.69909 0.377154
\(533\) 13.4200i 0.581286i
\(534\) 7.70639 4.26836i 0.333488 0.184710i
\(535\) 0 0
\(536\) 0.973646 0.0420551
\(537\) 5.17522 2.86642i 0.223327 0.123695i
\(538\) 26.5333i 1.14393i
\(539\) 2.60114 + 17.5291i 0.112039 + 0.755033i
\(540\) 0 0
\(541\) 36.5066i 1.56954i −0.619786 0.784771i \(-0.712781\pi\)
0.619786 0.784771i \(-0.287219\pi\)
\(542\) 24.1263i 1.03631i
\(543\) 7.02067 + 12.6756i 0.301286 + 0.543962i
\(544\) 6.34310 0.271958
\(545\) 0 0
\(546\) −6.00891 10.8489i −0.257157 0.464289i
\(547\) 2.95047i 0.126153i 0.998009 + 0.0630765i \(0.0200912\pi\)
−0.998009 + 0.0630765i \(0.979909\pi\)
\(548\) 11.5671i 0.494120i
\(549\) 25.0665 + 15.6865i 1.06981 + 0.669483i
\(550\) 0 0
\(551\) 23.9503i 1.02032i
\(552\) 6.34310 3.51327i 0.269980 0.149535i
\(553\) −3.48575 −0.148229
\(554\) 6.11412i 0.259764i
\(555\) 0 0
\(556\) 16.7456i 0.710173i
\(557\) 5.05201 0.214061 0.107030 0.994256i \(-0.465866\pi\)
0.107030 + 0.994256i \(0.465866\pi\)
\(558\) −1.88254 + 3.00823i −0.0796943 + 0.127349i
\(559\) 14.3204 0.605688
\(560\) 0 0
\(561\) −28.9389 + 22.1426i −1.22180 + 0.934861i
\(562\) −23.2401 −0.980323
\(563\) 7.84639 0.330686 0.165343 0.986236i \(-0.447127\pi\)
0.165343 + 0.986236i \(0.447127\pi\)
\(564\) 1.16019 0.642601i 0.0488530 0.0270584i
\(565\) 0 0
\(566\) 12.3878i 0.520699i
\(567\) 28.4378 13.8232i 1.19428 0.580518i
\(568\) 7.12421i 0.298925i
\(569\) 8.12323 0.340543 0.170272 0.985397i \(-0.445535\pi\)
0.170272 + 0.985397i \(0.445535\pi\)
\(570\) 0 0
\(571\) 27.0465i 1.13186i 0.824453 + 0.565931i \(0.191483\pi\)
−0.824453 + 0.565931i \(0.808517\pi\)
\(572\) −6.68620 + 0.992165i −0.279564 + 0.0414845i
\(573\) −7.85436 + 4.35032i −0.328120 + 0.181737i
\(574\) 23.1341i 0.965599i
\(575\) 0 0
\(576\) −1.59145 + 2.54308i −0.0663106 + 0.105962i
\(577\) 33.7194 1.40376 0.701879 0.712296i \(-0.252345\pi\)
0.701879 + 0.712296i \(0.252345\pi\)
\(578\) −23.2349 −0.966445
\(579\) −23.5280 + 13.0315i −0.977790 + 0.541572i
\(580\) 0 0
\(581\) 44.5701i 1.84908i
\(582\) 12.3431 + 22.2851i 0.511638 + 0.923745i
\(583\) −33.0798 + 4.90871i −1.37003 + 0.203298i
\(584\) 9.70719i 0.401686i
\(585\) 0 0
\(586\) 7.63419 0.315365
\(587\) 24.3052i 1.00318i 0.865105 + 0.501591i \(0.167252\pi\)
−0.865105 + 0.501591i \(0.832748\pi\)
\(588\) −4.48398 8.09568i −0.184916 0.333860i
\(589\) 2.92895i 0.120685i
\(590\) 0 0
\(591\) −23.0093 41.5425i −0.946477 1.70883i
\(592\) 3.08797 0.126915
\(593\) −2.79438 −0.114751 −0.0573757 0.998353i \(-0.518273\pi\)
−0.0573757 + 0.998353i \(0.518273\pi\)
\(594\) −1.61681 17.1577i −0.0663387 0.703988i
\(595\) 0 0
\(596\) 17.7960 0.728951
\(597\) −2.94000 5.30807i −0.120326 0.217245i
\(598\) −8.53206 −0.348902
\(599\) 7.66387i 0.313137i 0.987667 + 0.156569i \(0.0500432\pi\)
−0.987667 + 0.156569i \(0.949957\pi\)
\(600\) 0 0
\(601\) 34.9276i 1.42473i 0.701811 + 0.712364i \(0.252375\pi\)
−0.701811 + 0.712364i \(0.747625\pi\)
\(602\) 24.6862 1.00613
\(603\) 1.54951 2.47606i 0.0631010 0.100833i
\(604\) 10.8013i 0.439500i
\(605\) 0 0
\(606\) −6.00000 10.8328i −0.243733 0.440052i
\(607\) 3.51327i 0.142599i 0.997455 + 0.0712997i \(0.0227147\pi\)
−0.997455 + 0.0712997i \(0.977285\pi\)
\(608\) 2.47606i 0.100418i
\(609\) 51.4899 28.5189i 2.08647 1.15564i
\(610\) 0 0
\(611\) −1.56057 −0.0631339
\(612\) 10.0947 16.1310i 0.408056 0.652059i
\(613\) 17.2167i 0.695378i 0.937610 + 0.347689i \(0.113033\pi\)
−0.937610 + 0.347689i \(0.886967\pi\)
\(614\) 19.4144i 0.783501i
\(615\) 0 0
\(616\) −11.5260 + 1.71034i −0.464396 + 0.0689117i
\(617\) 24.8920i 1.00211i −0.865414 0.501057i \(-0.832945\pi\)
0.865414 0.501057i \(-0.167055\pi\)
\(618\) 13.9773 + 25.2355i 0.562249 + 1.01512i
\(619\) −30.0586 −1.20816 −0.604079 0.796925i \(-0.706459\pi\)
−0.604079 + 0.796925i \(0.706459\pi\)
\(620\) 0 0
\(621\) 1.16019 21.7222i 0.0465570 0.871684i
\(622\) 5.99860i 0.240522i
\(623\) −17.8691 −0.715911
\(624\) 3.08797 1.71034i 0.123618 0.0684685i
\(625\) 0 0
\(626\) −10.0705 −0.402499
\(627\) −8.64348 11.2964i −0.345187 0.451137i
\(628\) −5.03526 −0.200929
\(629\) −19.5873 −0.780996
\(630\) 0 0
\(631\) −21.1829 −0.843278 −0.421639 0.906764i \(-0.638545\pi\)
−0.421639 + 0.906764i \(0.638545\pi\)
\(632\) 0.992165i 0.0394662i
\(633\) 1.43126 0.792737i 0.0568875 0.0315085i
\(634\) 13.5038i 0.536306i
\(635\) 0 0
\(636\) 15.2777 8.46189i 0.605798 0.335536i
\(637\) 10.8895i 0.431456i
\(638\) −4.70891 31.7334i −0.186428 1.25634i
\(639\) −18.1175 11.3378i −0.716716 0.448518i
\(640\) 0 0
\(641\) 31.9177i 1.26067i 0.776321 + 0.630337i \(0.217083\pi\)
−0.776321 + 0.630337i \(0.782917\pi\)
\(642\) −6.00891 10.8489i −0.237153 0.428171i
\(643\) −7.72545 −0.304662 −0.152331 0.988330i \(-0.548678\pi\)
−0.152331 + 0.988330i \(0.548678\pi\)
\(644\) −14.7080 −0.579576
\(645\) 0 0
\(646\) 15.7059i 0.617941i
\(647\) 18.9477i 0.744911i 0.928050 + 0.372456i \(0.121484\pi\)
−0.928050 + 0.372456i \(0.878516\pi\)
\(648\) 3.93455 + 8.09440i 0.154564 + 0.317978i
\(649\) 1.52601 0.226444i 0.0599010 0.00888870i
\(650\) 0 0
\(651\) 6.29684 3.48765i 0.246793 0.136692i
\(652\) −18.2048 −0.712955
\(653\) 33.6702i 1.31762i 0.752311 + 0.658808i \(0.228939\pi\)
−0.752311 + 0.658808i \(0.771061\pi\)
\(654\) 11.1829 6.19392i 0.437286 0.242201i
\(655\) 0 0
\(656\) −6.58477 −0.257092
\(657\) −24.6862 15.4485i −0.963100 0.602705i
\(658\) −2.69019 −0.104874
\(659\) −17.7960 −0.693232 −0.346616 0.938007i \(-0.612669\pi\)
−0.346616 + 0.938007i \(0.612669\pi\)
\(660\) 0 0
\(661\) −30.4698 −1.18514 −0.592570 0.805519i \(-0.701887\pi\)
−0.592570 + 0.805519i \(0.701887\pi\)
\(662\) −33.2642 −1.29285
\(663\) −19.5873 + 10.8489i −0.760707 + 0.421336i
\(664\) −12.6862 −0.492320
\(665\) 0 0
\(666\) 4.91436 7.85296i 0.190427 0.304296i
\(667\) 40.4940i 1.56794i
\(668\) 9.13748 0.353540
\(669\) −13.9773 25.2355i −0.540393 0.975662i
\(670\) 0 0
\(671\) −32.3369 + 4.79848i −1.24835 + 0.185243i
\(672\) 5.32319 2.94838i 0.205347 0.113736i
\(673\) 15.5283i 0.598573i 0.954163 + 0.299287i \(0.0967487\pi\)
−0.954163 + 0.299287i \(0.903251\pi\)
\(674\) 11.4523i 0.441124i
\(675\) 0 0
\(676\) 8.84639 0.340246
\(677\) 18.4244 0.708108 0.354054 0.935225i \(-0.384803\pi\)
0.354054 + 0.935225i \(0.384803\pi\)
\(678\) 22.7089 12.5779i 0.872131 0.483050i
\(679\) 51.6732i 1.98304i
\(680\) 0 0
\(681\) 2.69019 + 4.85704i 0.103088 + 0.186122i
\(682\) −0.575866 3.88076i −0.0220511 0.148602i
\(683\) 5.67031i 0.216968i −0.994098 0.108484i \(-0.965400\pi\)
0.994098 0.108484i \(-0.0345997\pi\)
\(684\) 6.29684 + 3.94054i 0.240766 + 0.150670i
\(685\) 0 0
\(686\) 5.82114i 0.222252i
\(687\) −10.9534 19.7760i −0.417898 0.754500i
\(688\) 7.02655i 0.267885i
\(689\) −20.5499 −0.782888
\(690\) 0 0
\(691\) 8.94799 0.340397 0.170199 0.985410i \(-0.445559\pi\)
0.170199 + 0.985410i \(0.445559\pi\)
\(692\) 6.00000 0.228086
\(693\) −13.9936 + 32.0335i −0.531571 + 1.21685i
\(694\) 1.63419 0.0620329
\(695\) 0 0
\(696\) 8.11746 + 14.6558i 0.307692 + 0.555527i
\(697\) 41.7679 1.58207
\(698\) 14.2220i 0.538312i
\(699\) −20.0312 36.1656i −0.757649 1.36791i
\(700\) 0 0
\(701\) 2.34507 0.0885722 0.0442861 0.999019i \(-0.485899\pi\)
0.0442861 + 0.999019i \(0.485899\pi\)
\(702\) 0.564809 10.5749i 0.0213173 0.399124i
\(703\) 7.64601i 0.288375i
\(704\) −0.486823 3.28070i −0.0183478 0.123646i
\(705\) 0 0
\(706\) 13.0985i 0.492969i
\(707\) 25.1184i 0.944676i
\(708\) −0.704774 + 0.390356i −0.0264870 + 0.0146705i
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) −2.52316 1.57898i −0.0946258 0.0592165i
\(712\) 5.08617i 0.190612i
\(713\) 4.95213i 0.185459i
\(714\) −33.7655 + 18.7018i −1.26364 + 0.699899i
\(715\) 0 0
\(716\) 3.41562i 0.127648i
\(717\) 0 0
\(718\) −19.3455 −0.721967
\(719\) 22.1076i 0.824474i −0.911077 0.412237i \(-0.864748\pi\)
0.911077 0.412237i \(-0.135252\pi\)
\(720\) 0 0
\(721\) 58.5146i 2.17920i
\(722\) −12.8691 −0.478939
\(723\) −32.7316 + 18.1292i −1.21730 + 0.674231i
\(724\) 8.36581 0.310913
\(725\) 0 0
\(726\) 13.6733 + 13.2680i 0.507465 + 0.492422i
\(727\) 20.8839 0.774542 0.387271 0.921966i \(-0.373418\pi\)
0.387271 + 0.921966i \(0.373418\pi\)
\(728\) −7.16019 −0.265374
\(729\) 26.8464 + 2.87596i 0.994311 + 0.106517i
\(730\) 0 0
\(731\) 44.5701i 1.64849i
\(732\) 14.9346 8.27185i 0.551997 0.305736i
\(733\) 20.1672i 0.744893i −0.928054 0.372447i \(-0.878519\pi\)
0.928054 0.372447i \(-0.121481\pi\)
\(734\) 22.8312 0.842716
\(735\) 0 0
\(736\) 4.18641i 0.154313i
\(737\) 0.473993 + 3.19424i 0.0174598 + 0.117661i
\(738\) −10.4794 + 16.7456i −0.385750 + 0.616415i
\(739\) 31.5069i 1.15900i 0.814972 + 0.579501i \(0.196752\pi\)
−0.814972 + 0.579501i \(0.803248\pi\)
\(740\) 0 0
\(741\) −4.23492 7.64601i −0.155574 0.280883i
\(742\) −35.4249 −1.30049
\(743\) −53.6073 −1.96666 −0.983331 0.181825i \(-0.941800\pi\)
−0.983331 + 0.181825i \(0.941800\pi\)
\(744\) 0.992707 + 1.79230i 0.0363944 + 0.0657089i
\(745\) 0 0
\(746\) 14.9655i 0.547927i
\(747\) −20.1895 + 32.2621i −0.738695 + 1.18041i
\(748\) 3.08797 + 20.8098i 0.112907 + 0.760882i
\(749\) 25.1557i 0.919170i
\(750\) 0 0
\(751\) 28.8757 1.05369 0.526845 0.849962i \(-0.323375\pi\)
0.526845 + 0.849962i \(0.323375\pi\)
\(752\) 0.765721i 0.0279230i
\(753\) 17.5271 9.70779i 0.638723 0.353772i
\(754\) 19.7134i 0.717921i
\(755\) 0 0
\(756\) 0.973646 18.2295i 0.0354112 0.663002i
\(757\) −37.3085 −1.35600 −0.678000 0.735062i \(-0.737153\pi\)
−0.678000 + 0.735062i \(0.737153\pi\)
\(758\) −11.8464 −0.430280
\(759\) 14.6140 + 19.0995i 0.530454 + 0.693267i
\(760\) 0 0
\(761\) −33.3106 −1.20751 −0.603754 0.797171i \(-0.706329\pi\)
−0.603754 + 0.797171i \(0.706329\pi\)
\(762\) −3.49680 + 1.93679i −0.126676 + 0.0701624i
\(763\) −25.9303 −0.938738
\(764\) 5.18383i 0.187544i
\(765\) 0 0
\(766\) 4.18641i 0.151261i
\(767\) 0.947987 0.0342298
\(768\) 0.839210 + 1.51517i 0.0302824 + 0.0546738i
\(769\) 27.0077i 0.973922i 0.873424 + 0.486961i \(0.161895\pi\)
−0.873424 + 0.486961i \(0.838105\pi\)
\(770\) 0 0
\(771\) −12.3431 + 6.83652i −0.444526 + 0.246211i
\(772\) 15.5283i 0.558877i
\(773\) 3.69467i 0.132888i −0.997790 0.0664441i \(-0.978835\pi\)
0.997790 0.0664441i \(-0.0211654\pi\)
\(774\) 17.8691 + 11.1824i 0.642292 + 0.401944i
\(775\) 0 0
\(776\) 14.7080 0.527986
\(777\) −16.4378 + 9.10449i −0.589704 + 0.326622i
\(778\) 8.40413i 0.301303i
\(779\) 16.3043i 0.584163i
\(780\) 0 0
\(781\) 23.3724 3.46823i 0.836330 0.124103i
\(782\) 26.5548i 0.949598i
\(783\) 50.1895 + 2.68064i 1.79363 + 0.0957983i
\(784\) −5.34310 −0.190825
\(785\) 0 0
\(786\) 11.0427 + 19.9373i 0.393881 + 0.711139i
\(787\) 38.0832i 1.35752i 0.734360 + 0.678760i \(0.237482\pi\)
−0.734360 + 0.678760i \(0.762518\pi\)
\(788\) −27.4178 −0.976720
\(789\) −2.97812 5.37690i −0.106024 0.191423i
\(790\) 0 0
\(791\) −52.6561 −1.87223
\(792\) −9.11786 3.98305i −0.323989 0.141532i
\(793\) −20.0884 −0.713359
\(794\) 9.83977 0.349200
\(795\) 0 0
\(796\) −3.50329 −0.124171
\(797\) 15.4319i 0.546627i −0.961925 0.273314i \(-0.911880\pi\)
0.961925 0.273314i \(-0.0881197\pi\)
\(798\) −7.30037 13.1806i −0.258430 0.466587i
\(799\) 4.85704i 0.171830i
\(800\) 0 0
\(801\) −12.9346 8.09440i −0.457020 0.286002i
\(802\) 24.3052i 0.858248i
\(803\) 31.8464 4.72568i 1.12383 0.166766i
\(804\) −0.817094 1.47524i −0.0288167 0.0520275i
\(805\) 0 0
\(806\) 2.41081i 0.0849172i
\(807\) −40.2024 + 22.2670i −1.41519 + 0.783836i
\(808\) −7.14958 −0.251521
\(809\) 32.9239 1.15754 0.578771 0.815490i \(-0.303533\pi\)
0.578771 + 0.815490i \(0.303533\pi\)
\(810\) 0 0
\(811\) 46.7600i 1.64196i −0.570954 0.820982i \(-0.693426\pi\)
0.570954 0.820982i \(-0.306574\pi\)
\(812\) 33.9830i 1.19257i
\(813\) −36.5553 + 20.2470i −1.28205 + 0.710094i
\(814\) 1.50329 + 10.1307i 0.0526904 + 0.355081i
\(815\) 0 0
\(816\) −5.32319 9.61085i −0.186349 0.336447i
\(817\) 17.3982 0.608686
\(818\) 3.42069i 0.119602i
\(819\) −11.3951 + 18.2090i −0.398177 + 0.636273i
\(820\) 0 0
\(821\) −36.5656 −1.27615 −0.638074 0.769975i \(-0.720269\pi\)
−0.638074 + 0.769975i \(0.720269\pi\)
\(822\) −17.5260 + 9.70719i −0.611290 + 0.338577i
\(823\) −24.7785 −0.863725 −0.431862 0.901939i \(-0.642143\pi\)
−0.431862 + 0.901939i \(0.642143\pi\)
\(824\) 16.6553 0.580215
\(825\) 0 0
\(826\) 1.63419 0.0568606
\(827\) −5.58876 −0.194340 −0.0971701 0.995268i \(-0.530979\pi\)
−0.0971701 + 0.995268i \(0.530979\pi\)
\(828\) −10.6464 6.66247i −0.369987 0.231537i
\(829\) −29.0974 −1.01060 −0.505298 0.862945i \(-0.668617\pi\)
−0.505298 + 0.862945i \(0.668617\pi\)
\(830\) 0 0
\(831\) 9.26390 5.13103i 0.321361 0.177993i
\(832\) 2.03804i 0.0706563i
\(833\) 33.8918 1.17428
\(834\) −25.3724 + 14.0531i −0.878574 + 0.486619i
\(835\) 0 0
\(836\) −8.12323 + 1.20541i −0.280948 + 0.0416898i
\(837\) 6.13781 + 0.327823i 0.212154 + 0.0113312i
\(838\) 18.9492i 0.654590i
\(839\) 33.6449i 1.16155i −0.814063 0.580776i \(-0.802749\pi\)
0.814063 0.580776i \(-0.197251\pi\)
\(840\) 0 0
\(841\) 64.5619 2.22627
\(842\) 18.6408 0.642404
\(843\) 19.5033 + 35.2125i 0.671729 + 1.21278i
\(844\) 0.944623i 0.0325152i
\(845\) 0 0
\(846\) −1.94729 1.21861i −0.0669493 0.0418966i
\(847\) −11.2223 36.9808i −0.385601 1.27067i
\(848\) 10.0832i 0.346257i
\(849\) −18.7696 + 10.3960i −0.644171 + 0.356789i
\(850\) 0 0
\(851\) 12.9275i 0.443149i
\(852\) −10.7944 + 5.97871i −0.369808 + 0.204827i
\(853\) 41.4065i 1.41773i −0.705344 0.708865i \(-0.749207\pi\)
0.705344 0.708865i \(-0.250793\pi\)
\(854\) −34.6293 −1.18499
\(855\) 0 0
\(856\) −7.16019 −0.244730
\(857\) 30.9665 1.05780 0.528899 0.848685i \(-0.322605\pi\)
0.528899 + 0.848685i \(0.322605\pi\)
\(858\) 7.11442 + 9.29807i 0.242882 + 0.317431i
\(859\) 34.2576 1.16886 0.584428 0.811446i \(-0.301319\pi\)
0.584428 + 0.811446i \(0.301319\pi\)
\(860\) 0 0
\(861\) 35.0520 19.4144i 1.19457 0.661640i
\(862\) −15.1168 −0.514882
\(863\) 57.3911i 1.95362i −0.214118 0.976808i \(-0.568688\pi\)
0.214118 0.976808i \(-0.431312\pi\)
\(864\) 5.18876 + 0.277134i 0.176525 + 0.00942827i
\(865\) 0 0
\(866\) −24.3918 −0.828867
\(867\) 19.4990 + 35.2047i 0.662220 + 1.19562i
\(868\) 4.15588i 0.141060i
\(869\) 3.25500 0.483009i 0.110418 0.0163849i
\(870\) 0 0
\(871\) 1.98433i 0.0672364i
\(872\) 7.38065i 0.249940i
\(873\) 23.4071 37.4037i 0.792210 1.26592i
\(874\) −10.3658 −0.350629
\(875\) 0 0
\(876\) −14.7080 + 8.14637i −0.496937 + 0.275240i
\(877\) 6.65378i 0.224682i 0.993670 + 0.112341i \(0.0358349\pi\)
−0.993670 + 0.112341i \(0.964165\pi\)
\(878\) 5.94429i 0.200610i
\(879\) −6.40669 11.5671i −0.216092 0.390147i
\(880\) 0 0
\(881\) 47.1299i 1.58785i −0.608017 0.793924i \(-0.708035\pi\)
0.608017 0.793924i \(-0.291965\pi\)
\(882\) −8.50329 + 13.5880i −0.286321 + 0.457530i
\(883\) 27.8665 0.937782 0.468891 0.883256i \(-0.344654\pi\)
0.468891 + 0.883256i \(0.344654\pi\)
\(884\) 12.9275i 0.434799i
\(885\) 0 0
\(886\) 13.5514i 0.455268i
\(887\) −43.7836 −1.47011 −0.735055 0.678007i \(-0.762844\pi\)
−0.735055 + 0.678007i \(0.762844\pi\)
\(888\) −2.59145 4.67878i −0.0869635 0.157010i
\(889\) 8.10818 0.271940
\(890\) 0 0
\(891\) −24.6399 + 16.8486i −0.825467 + 0.564451i
\(892\) −16.6553 −0.557660
\(893\) −1.89597 −0.0634463
\(894\) −14.9346 26.9638i −0.499486 0.901806i
\(895\) 0 0
\(896\) 3.51327i 0.117370i
\(897\) 7.16019 + 12.9275i 0.239072 + 0.431636i
\(898\) 25.3510i 0.845975i
\(899\) 11.4419 0.381610
\(900\) 0 0
\(901\) 63.9585i 2.13077i
\(902\) −3.20562 21.6027i −0.106735 0.719290i
\(903\) −20.7169 37.4037i −0.689415 1.24472i
\(904\) 14.9877i 0.498485i
\(905\) 0 0
\(906\) −16.3658 + 9.06459i −0.543718 + 0.301151i
\(907\) 41.0360 1.36258 0.681290 0.732014i \(-0.261419\pi\)
0.681290 + 0.732014i \(0.261419\pi\)
\(908\) 3.20562 0.106382
\(909\) −11.3782 + 18.1820i −0.377392 + 0.603058i
\(910\) 0 0
\(911\) 11.3599i 0.376370i −0.982134 0.188185i \(-0.939740\pi\)
0.982134 0.188185i \(-0.0602604\pi\)
\(912\) 3.75165 2.07794i 0.124229 0.0688074i
\(913\) −6.17594 41.6196i −0.204394 1.37741i
\(914\) 17.9391i 0.593374i
\(915\) 0 0
\(916\) −13.0520 −0.431251
\(917\) 46.2294i 1.52663i
\(918\) −32.9128 1.75789i −1.08628 0.0580189i
\(919\) 20.6105i 0.679878i −0.940447 0.339939i \(-0.889594\pi\)
0.940447 0.339939i \(-0.110406\pi\)
\(920\) 0 0
\(921\) 29.4160 16.2927i 0.969290 0.536864i
\(922\) −3.83086 −0.126163
\(923\) 14.5194 0.477912
\(924\) 12.2642 + 16.0285i 0.403462 + 0.527298i
\(925\) 0 0
\(926\) 0.408837 0.0134352
\(927\) 26.5061 42.3558i 0.870575 1.39115i
\(928\) 9.67274 0.317523
\(929\) 37.8081i 1.24044i −0.784426 0.620222i \(-0.787043\pi\)
0.784426 0.620222i \(-0.212957\pi\)
\(930\) 0 0
\(931\) 13.2299i 0.433591i
\(932\) −23.8691 −0.781859
\(933\) −9.08887 + 5.03408i −0.297556 + 0.164809i
\(934\) 0.813263i 0.0266108i
\(935\) 0 0
\(936\) −5.18291 3.24344i −0.169409 0.106015i
\(937\) 10.2468i 0.334750i −0.985893 0.167375i \(-0.946471\pi\)
0.985893 0.167375i \(-0.0535291\pi\)
\(938\) 3.42069i 0.111689i
\(939\) 8.45128 + 15.2585i 0.275797 + 0.497942i
\(940\) 0 0
\(941\) 0.731838 0.0238572 0.0119286 0.999929i \(-0.496203\pi\)
0.0119286 + 0.999929i \(0.496203\pi\)
\(942\) 4.22564 + 7.62925i 0.137679 + 0.248574i
\(943\) 27.5665i 0.897690i
\(944\) 0.465146i 0.0151392i
\(945\) 0 0
\(946\) −23.0520 + 3.42069i −0.749486 + 0.111216i
\(947\) 27.7259i 0.900970i −0.892784 0.450485i \(-0.851251\pi\)
0.892784 0.450485i \(-0.148749\pi\)
\(948\) −1.50329 + 0.832635i −0.0488247 + 0.0270427i
\(949\) 19.7836 0.642204
\(950\) 0 0
\(951\) −20.4606 + 11.3326i −0.663479 + 0.367483i
\(952\) 22.2851i 0.722263i
\(953\) −10.4967 −0.340022 −0.170011 0.985442i \(-0.554380\pi\)
−0.170011 + 0.985442i \(0.554380\pi\)
\(954\) −25.6423 16.0469i −0.830201 0.519537i
\(955\) 0 0
\(956\) 0 0
\(957\) −44.1295 + 33.7657i −1.42651 + 1.09149i
\(958\) 38.6910 1.25005
\(959\) 40.6383 1.31228
\(960\) 0 0
\(961\) −29.6007 −0.954862
\(962\) 6.29340i 0.202907i
\(963\) −11.3951 + 18.2090i −0.367202 + 0.586776i
\(964\) 21.6027i 0.695775i
\(965\) 0 0
\(966\) 12.3431 + 22.2851i 0.397133 + 0.717010i
\(967\) 51.6198i 1.65998i 0.557778 + 0.829990i \(0.311654\pi\)
−0.557778 + 0.829990i \(0.688346\pi\)
\(968\) 10.5260 3.19424i 0.338319 0.102667i
\(969\) −23.7971 + 13.1806i −0.764472 + 0.423421i
\(970\) 0 0
\(971\) 5.43579i 0.174443i −0.996189 0.0872215i \(-0.972201\pi\)
0.996189 0.0872215i \(-0.0277988\pi\)
\(972\) 8.96244 12.7544i 0.287470 0.409098i
\(973\) 58.8320 1.88607
\(974\) 14.7080 0.471275
\(975\) 0 0
\(976\) 9.85671i 0.315506i
\(977\) 29.7490i 0.951756i 0.879511 + 0.475878i \(0.157870\pi\)
−0.879511 + 0.475878i \(0.842130\pi\)
\(978\) 15.2777 + 27.5833i 0.488525 + 0.882016i
\(979\) 16.6862 2.47606i 0.533293 0.0791354i
\(980\) 0 0
\(981\) −18.7696 11.7460i −0.599268 0.375020i
\(982\) −3.83086 −0.122248
\(983\) 17.9642i 0.572970i −0.958085 0.286485i \(-0.907513\pi\)
0.958085 0.286485i \(-0.0924869\pi\)
\(984\) 5.52601 + 9.97702i 0.176163 + 0.318056i
\(985\) 0 0
\(986\) −61.3552 −1.95395
\(987\) 2.25763 + 4.07608i 0.0718612 + 0.129743i
\(988\) −5.04632 −0.160545
\(989\) −29.4160 −0.935374
\(990\) 0 0
\(991\) −11.6928 −0.371434 −0.185717 0.982603i \(-0.559461\pi\)
−0.185717 + 0.982603i \(0.559461\pi\)
\(992\) 1.18291 0.0375573
\(993\) 27.9157 + 50.4008i 0.885877 + 1.59942i
\(994\) 25.0293 0.793881
\(995\) 0 0
\(996\) 10.6464 + 19.2217i 0.337344 + 0.609063i
\(997\) 11.4754i 0.363430i −0.983351 0.181715i \(-0.941835\pi\)
0.983351 0.181715i \(-0.0581648\pi\)
\(998\) 38.2122 1.20959
\(999\) −16.0227 0.855779i −0.506936 0.0270757i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1650.2.d.i.1451.10 12
3.2 odd 2 1650.2.d.j.1451.9 12
5.2 odd 4 330.2.f.a.329.9 yes 24
5.3 odd 4 330.2.f.a.329.16 yes 24
5.4 even 2 1650.2.d.j.1451.3 12
11.10 odd 2 1650.2.d.j.1451.10 12
15.2 even 4 330.2.f.a.329.15 yes 24
15.8 even 4 330.2.f.a.329.10 yes 24
15.14 odd 2 inner 1650.2.d.i.1451.4 12
33.32 even 2 inner 1650.2.d.i.1451.9 12
55.32 even 4 330.2.f.a.329.21 yes 24
55.43 even 4 330.2.f.a.329.4 yes 24
55.54 odd 2 inner 1650.2.d.i.1451.3 12
165.32 odd 4 330.2.f.a.329.3 24
165.98 odd 4 330.2.f.a.329.22 yes 24
165.164 even 2 1650.2.d.j.1451.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
330.2.f.a.329.3 24 165.32 odd 4
330.2.f.a.329.4 yes 24 55.43 even 4
330.2.f.a.329.9 yes 24 5.2 odd 4
330.2.f.a.329.10 yes 24 15.8 even 4
330.2.f.a.329.15 yes 24 15.2 even 4
330.2.f.a.329.16 yes 24 5.3 odd 4
330.2.f.a.329.21 yes 24 55.32 even 4
330.2.f.a.329.22 yes 24 165.98 odd 4
1650.2.d.i.1451.3 12 55.54 odd 2 inner
1650.2.d.i.1451.4 12 15.14 odd 2 inner
1650.2.d.i.1451.9 12 33.32 even 2 inner
1650.2.d.i.1451.10 12 1.1 even 1 trivial
1650.2.d.j.1451.3 12 5.4 even 2
1650.2.d.j.1451.4 12 165.164 even 2
1650.2.d.j.1451.9 12 3.2 odd 2
1650.2.d.j.1451.10 12 11.10 odd 2