Properties

Label 1638.2.y.c.827.1
Level $1638$
Weight $2$
Character 1638.827
Analytic conductor $13.079$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(827,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.827"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 20 x^{14} - 12 x^{13} + 40 x^{12} + 40 x^{11} + 82 x^{10} + 104 x^{9} + 537 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 827.1
Root \(-0.777611 + 1.87732i\) of defining polynomial
Character \(\chi\) \(=\) 1638.827
Dual form 1638.2.y.c.1331.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-3.00337 + 3.00337i) q^{5} +(0.707107 - 0.707107i) q^{7} +(0.707107 + 0.707107i) q^{8} -4.24741i q^{10} +(2.53473 + 2.53473i) q^{11} +(2.84530 + 2.21455i) q^{13} +1.00000i q^{14} -1.00000 q^{16} -7.16415 q^{17} +(4.75928 + 4.75928i) q^{19} +(3.00337 + 3.00337i) q^{20} -3.58464 q^{22} +5.70954 q^{23} -13.0405i q^{25} +(-3.57786 + 0.446008i) q^{26} +(-0.707107 - 0.707107i) q^{28} +3.76120i q^{29} +(0.0835445 + 0.0835445i) q^{31} +(0.707107 - 0.707107i) q^{32} +(5.06582 - 5.06582i) q^{34} +4.24741i q^{35} +(-1.86236 + 1.86236i) q^{37} -6.73064 q^{38} -4.24741 q^{40} +(3.47354 - 3.47354i) q^{41} +7.91560i q^{43} +(2.53473 - 2.53473i) q^{44} +(-4.03725 + 4.03725i) q^{46} +(1.55421 + 1.55421i) q^{47} -1.00000i q^{49} +(9.22102 + 9.22102i) q^{50} +(2.21455 - 2.84530i) q^{52} +5.22095i q^{53} -15.2255 q^{55} +1.00000 q^{56} +(-2.65957 - 2.65957i) q^{58} +(-4.33095 - 4.33095i) q^{59} -12.2542 q^{61} -0.118150 q^{62} +1.00000i q^{64} +(-15.1966 + 1.89438i) q^{65} +(0.568664 + 0.568664i) q^{67} +7.16415i q^{68} +(-3.00337 - 3.00337i) q^{70} +(8.61297 - 8.61297i) q^{71} +(-3.94683 + 3.94683i) q^{73} -2.63378i q^{74} +(4.75928 - 4.75928i) q^{76} +3.58464 q^{77} -9.08222 q^{79} +(3.00337 - 3.00337i) q^{80} +4.91233i q^{82} +(-8.23786 + 8.23786i) q^{83} +(21.5166 - 21.5166i) q^{85} +(-5.59717 - 5.59717i) q^{86} +3.58464i q^{88} +(-8.69652 - 8.69652i) q^{89} +(3.57786 - 0.446008i) q^{91} -5.70954i q^{92} -2.19799 q^{94} -28.5878 q^{95} +(-9.42542 - 9.42542i) q^{97} +(0.707107 + 0.707107i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{5} + 8 q^{11} + 4 q^{13} - 16 q^{16} + 8 q^{17} + 16 q^{19} + 4 q^{20} - 8 q^{22} - 24 q^{23} - 8 q^{26} - 8 q^{31} + 4 q^{34} - 4 q^{37} - 16 q^{38} + 16 q^{41} + 8 q^{44} - 4 q^{47} + 16 q^{50}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −3.00337 + 3.00337i −1.34315 + 1.34315i −0.450243 + 0.892906i \(0.648663\pi\)
−0.892906 + 0.450243i \(0.851337\pi\)
\(6\) 0 0
\(7\) 0.707107 0.707107i 0.267261 0.267261i
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 4.24741i 1.34315i
\(11\) 2.53473 + 2.53473i 0.764249 + 0.764249i 0.977087 0.212839i \(-0.0682708\pi\)
−0.212839 + 0.977087i \(0.568271\pi\)
\(12\) 0 0
\(13\) 2.84530 + 2.21455i 0.789145 + 0.614207i
\(14\) 1.00000i 0.267261i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −7.16415 −1.73756 −0.868781 0.495196i \(-0.835096\pi\)
−0.868781 + 0.495196i \(0.835096\pi\)
\(18\) 0 0
\(19\) 4.75928 + 4.75928i 1.09185 + 1.09185i 0.995331 + 0.0965227i \(0.0307720\pi\)
0.0965227 + 0.995331i \(0.469228\pi\)
\(20\) 3.00337 + 3.00337i 0.671575 + 0.671575i
\(21\) 0 0
\(22\) −3.58464 −0.764249
\(23\) 5.70954 1.19052 0.595261 0.803533i \(-0.297049\pi\)
0.595261 + 0.803533i \(0.297049\pi\)
\(24\) 0 0
\(25\) 13.0405i 2.60810i
\(26\) −3.57786 + 0.446008i −0.701676 + 0.0874694i
\(27\) 0 0
\(28\) −0.707107 0.707107i −0.133631 0.133631i
\(29\) 3.76120i 0.698438i 0.937041 + 0.349219i \(0.113553\pi\)
−0.937041 + 0.349219i \(0.886447\pi\)
\(30\) 0 0
\(31\) 0.0835445 + 0.0835445i 0.0150050 + 0.0150050i 0.714569 0.699564i \(-0.246623\pi\)
−0.699564 + 0.714569i \(0.746623\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 5.06582 5.06582i 0.868781 0.868781i
\(35\) 4.24741i 0.717943i
\(36\) 0 0
\(37\) −1.86236 + 1.86236i −0.306171 + 0.306171i −0.843422 0.537251i \(-0.819463\pi\)
0.537251 + 0.843422i \(0.319463\pi\)
\(38\) −6.73064 −1.09185
\(39\) 0 0
\(40\) −4.24741 −0.671575
\(41\) 3.47354 3.47354i 0.542476 0.542476i −0.381778 0.924254i \(-0.624688\pi\)
0.924254 + 0.381778i \(0.124688\pi\)
\(42\) 0 0
\(43\) 7.91560i 1.20712i 0.797318 + 0.603559i \(0.206251\pi\)
−0.797318 + 0.603559i \(0.793749\pi\)
\(44\) 2.53473 2.53473i 0.382124 0.382124i
\(45\) 0 0
\(46\) −4.03725 + 4.03725i −0.595261 + 0.595261i
\(47\) 1.55421 + 1.55421i 0.226705 + 0.226705i 0.811315 0.584610i \(-0.198752\pi\)
−0.584610 + 0.811315i \(0.698752\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 9.22102 + 9.22102i 1.30405 + 1.30405i
\(51\) 0 0
\(52\) 2.21455 2.84530i 0.307103 0.394573i
\(53\) 5.22095i 0.717153i 0.933500 + 0.358576i \(0.116738\pi\)
−0.933500 + 0.358576i \(0.883262\pi\)
\(54\) 0 0
\(55\) −15.2255 −2.05300
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) −2.65957 2.65957i −0.349219 0.349219i
\(59\) −4.33095 4.33095i −0.563842 0.563842i 0.366554 0.930397i \(-0.380537\pi\)
−0.930397 + 0.366554i \(0.880537\pi\)
\(60\) 0 0
\(61\) −12.2542 −1.56898 −0.784492 0.620139i \(-0.787076\pi\)
−0.784492 + 0.620139i \(0.787076\pi\)
\(62\) −0.118150 −0.0150050
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −15.1966 + 1.89438i −1.88491 + 0.234969i
\(66\) 0 0
\(67\) 0.568664 + 0.568664i 0.0694734 + 0.0694734i 0.740990 0.671516i \(-0.234357\pi\)
−0.671516 + 0.740990i \(0.734357\pi\)
\(68\) 7.16415i 0.868781i
\(69\) 0 0
\(70\) −3.00337 3.00337i −0.358972 0.358972i
\(71\) 8.61297 8.61297i 1.02217 1.02217i 0.0224230 0.999749i \(-0.492862\pi\)
0.999749 0.0224230i \(-0.00713805\pi\)
\(72\) 0 0
\(73\) −3.94683 + 3.94683i −0.461942 + 0.461942i −0.899292 0.437350i \(-0.855917\pi\)
0.437350 + 0.899292i \(0.355917\pi\)
\(74\) 2.63378i 0.306171i
\(75\) 0 0
\(76\) 4.75928 4.75928i 0.545927 0.545927i
\(77\) 3.58464 0.408508
\(78\) 0 0
\(79\) −9.08222 −1.02183 −0.510915 0.859631i \(-0.670693\pi\)
−0.510915 + 0.859631i \(0.670693\pi\)
\(80\) 3.00337 3.00337i 0.335787 0.335787i
\(81\) 0 0
\(82\) 4.91233i 0.542476i
\(83\) −8.23786 + 8.23786i −0.904223 + 0.904223i −0.995798 0.0915751i \(-0.970810\pi\)
0.0915751 + 0.995798i \(0.470810\pi\)
\(84\) 0 0
\(85\) 21.5166 21.5166i 2.33380 2.33380i
\(86\) −5.59717 5.59717i −0.603559 0.603559i
\(87\) 0 0
\(88\) 3.58464i 0.382124i
\(89\) −8.69652 8.69652i −0.921829 0.921829i 0.0753299 0.997159i \(-0.475999\pi\)
−0.997159 + 0.0753299i \(0.975999\pi\)
\(90\) 0 0
\(91\) 3.57786 0.446008i 0.375062 0.0467544i
\(92\) 5.70954i 0.595261i
\(93\) 0 0
\(94\) −2.19799 −0.226705
\(95\) −28.5878 −2.93304
\(96\) 0 0
\(97\) −9.42542 9.42542i −0.957006 0.957006i 0.0421070 0.999113i \(-0.486593\pi\)
−0.999113 + 0.0421070i \(0.986593\pi\)
\(98\) 0.707107 + 0.707107i 0.0714286 + 0.0714286i
\(99\) 0 0
\(100\) −13.0405 −1.30405
\(101\) −8.94096 −0.889658 −0.444829 0.895615i \(-0.646736\pi\)
−0.444829 + 0.895615i \(0.646736\pi\)
\(102\) 0 0
\(103\) 17.4234i 1.71678i 0.512995 + 0.858392i \(0.328536\pi\)
−0.512995 + 0.858392i \(0.671464\pi\)
\(104\) 0.446008 + 3.57786i 0.0437347 + 0.350838i
\(105\) 0 0
\(106\) −3.69177 3.69177i −0.358576 0.358576i
\(107\) 6.36508i 0.615335i −0.951494 0.307668i \(-0.900452\pi\)
0.951494 0.307668i \(-0.0995485\pi\)
\(108\) 0 0
\(109\) 2.46859 + 2.46859i 0.236448 + 0.236448i 0.815378 0.578930i \(-0.196529\pi\)
−0.578930 + 0.815378i \(0.696529\pi\)
\(110\) 10.7660 10.7660i 1.02650 1.02650i
\(111\) 0 0
\(112\) −0.707107 + 0.707107i −0.0668153 + 0.0668153i
\(113\) 4.11099i 0.386729i −0.981127 0.193365i \(-0.938060\pi\)
0.981127 0.193365i \(-0.0619401\pi\)
\(114\) 0 0
\(115\) −17.1479 + 17.1479i −1.59905 + 1.59905i
\(116\) 3.76120 0.349219
\(117\) 0 0
\(118\) 6.12490 0.563842
\(119\) −5.06582 + 5.06582i −0.464383 + 0.464383i
\(120\) 0 0
\(121\) 1.84968i 0.168153i
\(122\) 8.66500 8.66500i 0.784492 0.784492i
\(123\) 0 0
\(124\) 0.0835445 0.0835445i 0.00750252 0.00750252i
\(125\) 24.1486 + 24.1486i 2.15992 + 2.15992i
\(126\) 0 0
\(127\) 19.7825i 1.75541i −0.479201 0.877705i \(-0.659073\pi\)
0.479201 0.877705i \(-0.340927\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) 9.40612 12.0852i 0.824971 1.05994i
\(131\) 12.9454i 1.13104i 0.824733 + 0.565522i \(0.191325\pi\)
−0.824733 + 0.565522i \(0.808675\pi\)
\(132\) 0 0
\(133\) 6.73064 0.583620
\(134\) −0.804213 −0.0694734
\(135\) 0 0
\(136\) −5.06582 5.06582i −0.434391 0.434391i
\(137\) 6.35706 + 6.35706i 0.543120 + 0.543120i 0.924442 0.381322i \(-0.124531\pi\)
−0.381322 + 0.924442i \(0.624531\pi\)
\(138\) 0 0
\(139\) −1.45054 −0.123033 −0.0615165 0.998106i \(-0.519594\pi\)
−0.0615165 + 0.998106i \(0.519594\pi\)
\(140\) 4.24741 0.358972
\(141\) 0 0
\(142\) 12.1806i 1.02217i
\(143\) 1.59878 + 12.8254i 0.133697 + 1.07251i
\(144\) 0 0
\(145\) −11.2963 11.2963i −0.938106 0.938106i
\(146\) 5.58166i 0.461942i
\(147\) 0 0
\(148\) 1.86236 + 1.86236i 0.153085 + 0.153085i
\(149\) −5.20091 + 5.20091i −0.426075 + 0.426075i −0.887289 0.461214i \(-0.847414\pi\)
0.461214 + 0.887289i \(0.347414\pi\)
\(150\) 0 0
\(151\) −7.76020 + 7.76020i −0.631516 + 0.631516i −0.948448 0.316932i \(-0.897347\pi\)
0.316932 + 0.948448i \(0.397347\pi\)
\(152\) 6.73064i 0.545927i
\(153\) 0 0
\(154\) −2.53473 + 2.53473i −0.204254 + 0.204254i
\(155\) −0.501831 −0.0403080
\(156\) 0 0
\(157\) 11.7086 0.934446 0.467223 0.884139i \(-0.345254\pi\)
0.467223 + 0.884139i \(0.345254\pi\)
\(158\) 6.42210 6.42210i 0.510915 0.510915i
\(159\) 0 0
\(160\) 4.24741i 0.335787i
\(161\) 4.03725 4.03725i 0.318180 0.318180i
\(162\) 0 0
\(163\) 2.18476 2.18476i 0.171124 0.171124i −0.616349 0.787473i \(-0.711389\pi\)
0.787473 + 0.616349i \(0.211389\pi\)
\(164\) −3.47354 3.47354i −0.271238 0.271238i
\(165\) 0 0
\(166\) 11.6501i 0.904223i
\(167\) 2.11815 + 2.11815i 0.163908 + 0.163908i 0.784295 0.620388i \(-0.213025\pi\)
−0.620388 + 0.784295i \(0.713025\pi\)
\(168\) 0 0
\(169\) 3.19151 + 12.6022i 0.245501 + 0.969396i
\(170\) 30.4291i 2.33380i
\(171\) 0 0
\(172\) 7.91560 0.603559
\(173\) −5.06663 −0.385209 −0.192604 0.981276i \(-0.561693\pi\)
−0.192604 + 0.981276i \(0.561693\pi\)
\(174\) 0 0
\(175\) −9.22102 9.22102i −0.697044 0.697044i
\(176\) −2.53473 2.53473i −0.191062 0.191062i
\(177\) 0 0
\(178\) 12.2987 0.921829
\(179\) −0.961445 −0.0718618 −0.0359309 0.999354i \(-0.511440\pi\)
−0.0359309 + 0.999354i \(0.511440\pi\)
\(180\) 0 0
\(181\) 14.9714i 1.11282i 0.830909 + 0.556408i \(0.187821\pi\)
−0.830909 + 0.556408i \(0.812179\pi\)
\(182\) −2.21455 + 2.84530i −0.164154 + 0.210908i
\(183\) 0 0
\(184\) 4.03725 + 4.03725i 0.297630 + 0.297630i
\(185\) 11.1868i 0.822466i
\(186\) 0 0
\(187\) −18.1592 18.1592i −1.32793 1.32793i
\(188\) 1.55421 1.55421i 0.113353 0.113353i
\(189\) 0 0
\(190\) 20.2146 20.2146i 1.46652 1.46652i
\(191\) 19.5793i 1.41671i −0.705856 0.708356i \(-0.749437\pi\)
0.705856 0.708356i \(-0.250563\pi\)
\(192\) 0 0
\(193\) −4.06219 + 4.06219i −0.292403 + 0.292403i −0.838029 0.545626i \(-0.816292\pi\)
0.545626 + 0.838029i \(0.316292\pi\)
\(194\) 13.3296 0.957006
\(195\) 0 0
\(196\) −1.00000 −0.0714286
\(197\) 4.34520 4.34520i 0.309583 0.309583i −0.535165 0.844748i \(-0.679751\pi\)
0.844748 + 0.535165i \(0.179751\pi\)
\(198\) 0 0
\(199\) 0.564211i 0.0399959i 0.999800 + 0.0199979i \(0.00636596\pi\)
−0.999800 + 0.0199979i \(0.993634\pi\)
\(200\) 9.22102 9.22102i 0.652025 0.652025i
\(201\) 0 0
\(202\) 6.32221 6.32221i 0.444829 0.444829i
\(203\) 2.65957 + 2.65957i 0.186665 + 0.186665i
\(204\) 0 0
\(205\) 20.8647i 1.45725i
\(206\) −12.3202 12.3202i −0.858392 0.858392i
\(207\) 0 0
\(208\) −2.84530 2.21455i −0.197286 0.153552i
\(209\) 24.1269i 1.66890i
\(210\) 0 0
\(211\) 13.3542 0.919342 0.459671 0.888089i \(-0.347967\pi\)
0.459671 + 0.888089i \(0.347967\pi\)
\(212\) 5.22095 0.358576
\(213\) 0 0
\(214\) 4.50079 + 4.50079i 0.307668 + 0.307668i
\(215\) −23.7735 23.7735i −1.62134 1.62134i
\(216\) 0 0
\(217\) 0.118150 0.00802053
\(218\) −3.49111 −0.236448
\(219\) 0 0
\(220\) 15.2255i 1.02650i
\(221\) −20.3842 15.8654i −1.37119 1.06722i
\(222\) 0 0
\(223\) 3.80927 + 3.80927i 0.255087 + 0.255087i 0.823053 0.567965i \(-0.192269\pi\)
−0.567965 + 0.823053i \(0.692269\pi\)
\(224\) 1.00000i 0.0668153i
\(225\) 0 0
\(226\) 2.90691 + 2.90691i 0.193365 + 0.193365i
\(227\) −9.92499 + 9.92499i −0.658744 + 0.658744i −0.955083 0.296339i \(-0.904234\pi\)
0.296339 + 0.955083i \(0.404234\pi\)
\(228\) 0 0
\(229\) 6.50911 6.50911i 0.430134 0.430134i −0.458540 0.888674i \(-0.651627\pi\)
0.888674 + 0.458540i \(0.151627\pi\)
\(230\) 24.2508i 1.59905i
\(231\) 0 0
\(232\) −2.65957 + 2.65957i −0.174609 + 0.174609i
\(233\) −17.0947 −1.11991 −0.559955 0.828523i \(-0.689181\pi\)
−0.559955 + 0.828523i \(0.689181\pi\)
\(234\) 0 0
\(235\) −9.33576 −0.608998
\(236\) −4.33095 + 4.33095i −0.281921 + 0.281921i
\(237\) 0 0
\(238\) 7.16415i 0.464383i
\(239\) 5.78149 5.78149i 0.373974 0.373974i −0.494949 0.868922i \(-0.664813\pi\)
0.868922 + 0.494949i \(0.164813\pi\)
\(240\) 0 0
\(241\) 14.4471 14.4471i 0.930622 0.930622i −0.0671225 0.997745i \(-0.521382\pi\)
0.997745 + 0.0671225i \(0.0213818\pi\)
\(242\) −1.30792 1.30792i −0.0840763 0.0840763i
\(243\) 0 0
\(244\) 12.2542i 0.784492i
\(245\) 3.00337 + 3.00337i 0.191878 + 0.191878i
\(246\) 0 0
\(247\) 3.00192 + 24.0813i 0.191008 + 1.53225i
\(248\) 0.118150i 0.00750252i
\(249\) 0 0
\(250\) −34.1513 −2.15992
\(251\) 17.0939 1.07896 0.539479 0.841999i \(-0.318621\pi\)
0.539479 + 0.841999i \(0.318621\pi\)
\(252\) 0 0
\(253\) 14.4721 + 14.4721i 0.909855 + 0.909855i
\(254\) 13.9883 + 13.9883i 0.877705 + 0.877705i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −25.8713 −1.61381 −0.806903 0.590684i \(-0.798858\pi\)
−0.806903 + 0.590684i \(0.798858\pi\)
\(258\) 0 0
\(259\) 2.63378i 0.163655i
\(260\) 1.89438 + 15.1966i 0.117484 + 0.942455i
\(261\) 0 0
\(262\) −9.15378 9.15378i −0.565522 0.565522i
\(263\) 4.09575i 0.252555i 0.991995 + 0.126277i \(0.0403029\pi\)
−0.991995 + 0.126277i \(0.959697\pi\)
\(264\) 0 0
\(265\) −15.6805 15.6805i −0.963243 0.963243i
\(266\) −4.75928 + 4.75928i −0.291810 + 0.291810i
\(267\) 0 0
\(268\) 0.568664 0.568664i 0.0347367 0.0347367i
\(269\) 22.4500i 1.36880i −0.729106 0.684400i \(-0.760064\pi\)
0.729106 0.684400i \(-0.239936\pi\)
\(270\) 0 0
\(271\) 15.1392 15.1392i 0.919643 0.919643i −0.0773603 0.997003i \(-0.524649\pi\)
0.997003 + 0.0773603i \(0.0246492\pi\)
\(272\) 7.16415 0.434391
\(273\) 0 0
\(274\) −8.99023 −0.543120
\(275\) 33.0541 33.0541i 1.99324 1.99324i
\(276\) 0 0
\(277\) 24.5278i 1.47373i 0.676037 + 0.736867i \(0.263696\pi\)
−0.676037 + 0.736867i \(0.736304\pi\)
\(278\) 1.02569 1.02569i 0.0615165 0.0615165i
\(279\) 0 0
\(280\) −3.00337 + 3.00337i −0.179486 + 0.179486i
\(281\) 5.13979 + 5.13979i 0.306614 + 0.306614i 0.843595 0.536981i \(-0.180435\pi\)
−0.536981 + 0.843595i \(0.680435\pi\)
\(282\) 0 0
\(283\) 2.58173i 0.153468i −0.997052 0.0767340i \(-0.975551\pi\)
0.997052 0.0767340i \(-0.0244492\pi\)
\(284\) −8.61297 8.61297i −0.511086 0.511086i
\(285\) 0 0
\(286\) −10.1994 7.93839i −0.603103 0.469407i
\(287\) 4.91233i 0.289966i
\(288\) 0 0
\(289\) 34.3251 2.01912
\(290\) 15.9754 0.938106
\(291\) 0 0
\(292\) 3.94683 + 3.94683i 0.230971 + 0.230971i
\(293\) −3.60392 3.60392i −0.210543 0.210543i 0.593955 0.804498i \(-0.297566\pi\)
−0.804498 + 0.593955i \(0.797566\pi\)
\(294\) 0 0
\(295\) 26.0149 1.51465
\(296\) −2.63378 −0.153085
\(297\) 0 0
\(298\) 7.35520i 0.426075i
\(299\) 16.2454 + 12.6441i 0.939494 + 0.731226i
\(300\) 0 0
\(301\) 5.59717 + 5.59717i 0.322616 + 0.322616i
\(302\) 10.9746i 0.631516i
\(303\) 0 0
\(304\) −4.75928 4.75928i −0.272963 0.272963i
\(305\) 36.8038 36.8038i 2.10738 2.10738i
\(306\) 0 0
\(307\) −14.0322 + 14.0322i −0.800858 + 0.800858i −0.983230 0.182371i \(-0.941623\pi\)
0.182371 + 0.983230i \(0.441623\pi\)
\(308\) 3.58464i 0.204254i
\(309\) 0 0
\(310\) 0.354848 0.354848i 0.0201540 0.0201540i
\(311\) 22.4477 1.27289 0.636445 0.771322i \(-0.280404\pi\)
0.636445 + 0.771322i \(0.280404\pi\)
\(312\) 0 0
\(313\) 23.3587 1.32031 0.660156 0.751128i \(-0.270490\pi\)
0.660156 + 0.751128i \(0.270490\pi\)
\(314\) −8.27922 + 8.27922i −0.467223 + 0.467223i
\(315\) 0 0
\(316\) 9.08222i 0.510915i
\(317\) −1.86545 + 1.86545i −0.104774 + 0.104774i −0.757551 0.652777i \(-0.773604\pi\)
0.652777 + 0.757551i \(0.273604\pi\)
\(318\) 0 0
\(319\) −9.53362 + 9.53362i −0.533780 + 0.533780i
\(320\) −3.00337 3.00337i −0.167894 0.167894i
\(321\) 0 0
\(322\) 5.70954i 0.318180i
\(323\) −34.0962 34.0962i −1.89716 1.89716i
\(324\) 0 0
\(325\) 28.8789 37.1042i 1.60191 2.05817i
\(326\) 3.08972i 0.171124i
\(327\) 0 0
\(328\) 4.91233 0.271238
\(329\) 2.19799 0.121179
\(330\) 0 0
\(331\) −15.6984 15.6984i −0.862862 0.862862i 0.128808 0.991670i \(-0.458885\pi\)
−0.991670 + 0.128808i \(0.958885\pi\)
\(332\) 8.23786 + 8.23786i 0.452112 + 0.452112i
\(333\) 0 0
\(334\) −2.99552 −0.163908
\(335\) −3.41582 −0.186626
\(336\) 0 0
\(337\) 5.07534i 0.276471i 0.990399 + 0.138236i \(0.0441431\pi\)
−0.990399 + 0.138236i \(0.955857\pi\)
\(338\) −11.1678 6.65433i −0.607449 0.361948i
\(339\) 0 0
\(340\) −21.5166 21.5166i −1.16690 1.16690i
\(341\) 0.423525i 0.0229352i
\(342\) 0 0
\(343\) −0.707107 0.707107i −0.0381802 0.0381802i
\(344\) −5.59717 + 5.59717i −0.301779 + 0.301779i
\(345\) 0 0
\(346\) 3.58265 3.58265i 0.192604 0.192604i
\(347\) 14.2741i 0.766276i 0.923691 + 0.383138i \(0.125157\pi\)
−0.923691 + 0.383138i \(0.874843\pi\)
\(348\) 0 0
\(349\) −6.17873 + 6.17873i −0.330740 + 0.330740i −0.852867 0.522127i \(-0.825139\pi\)
0.522127 + 0.852867i \(0.325139\pi\)
\(350\) 13.0405 0.697044
\(351\) 0 0
\(352\) 3.58464 0.191062
\(353\) −18.3126 + 18.3126i −0.974679 + 0.974679i −0.999687 0.0250078i \(-0.992039\pi\)
0.0250078 + 0.999687i \(0.492039\pi\)
\(354\) 0 0
\(355\) 51.7359i 2.74586i
\(356\) −8.69652 + 8.69652i −0.460914 + 0.460914i
\(357\) 0 0
\(358\) 0.679845 0.679845i 0.0359309 0.0359309i
\(359\) −0.831801 0.831801i −0.0439008 0.0439008i 0.684816 0.728716i \(-0.259883\pi\)
−0.728716 + 0.684816i \(0.759883\pi\)
\(360\) 0 0
\(361\) 26.3015i 1.38429i
\(362\) −10.5864 10.5864i −0.556408 0.556408i
\(363\) 0 0
\(364\) −0.446008 3.57786i −0.0233772 0.187531i
\(365\) 23.7076i 1.24091i
\(366\) 0 0
\(367\) 33.1794 1.73195 0.865975 0.500088i \(-0.166699\pi\)
0.865975 + 0.500088i \(0.166699\pi\)
\(368\) −5.70954 −0.297630
\(369\) 0 0
\(370\) 7.91023 + 7.91023i 0.411233 + 0.411233i
\(371\) 3.69177 + 3.69177i 0.191667 + 0.191667i
\(372\) 0 0
\(373\) −30.4259 −1.57539 −0.787697 0.616063i \(-0.788727\pi\)
−0.787697 + 0.616063i \(0.788727\pi\)
\(374\) 25.6809 1.32793
\(375\) 0 0
\(376\) 2.19799i 0.113353i
\(377\) −8.32938 + 10.7018i −0.428985 + 0.551169i
\(378\) 0 0
\(379\) 12.1657 + 12.1657i 0.624911 + 0.624911i 0.946783 0.321873i \(-0.104312\pi\)
−0.321873 + 0.946783i \(0.604312\pi\)
\(380\) 28.5878i 1.46652i
\(381\) 0 0
\(382\) 13.8447 + 13.8447i 0.708356 + 0.708356i
\(383\) 26.5124 26.5124i 1.35472 1.35472i 0.474425 0.880296i \(-0.342656\pi\)
0.880296 0.474425i \(-0.157344\pi\)
\(384\) 0 0
\(385\) −10.7660 + 10.7660i −0.548687 + 0.548687i
\(386\) 5.74480i 0.292403i
\(387\) 0 0
\(388\) −9.42542 + 9.42542i −0.478503 + 0.478503i
\(389\) 3.73757 0.189502 0.0947512 0.995501i \(-0.469794\pi\)
0.0947512 + 0.995501i \(0.469794\pi\)
\(390\) 0 0
\(391\) −40.9040 −2.06860
\(392\) 0.707107 0.707107i 0.0357143 0.0357143i
\(393\) 0 0
\(394\) 6.14504i 0.309583i
\(395\) 27.2773 27.2773i 1.37247 1.37247i
\(396\) 0 0
\(397\) −22.9598 + 22.9598i −1.15232 + 1.15232i −0.166231 + 0.986087i \(0.553160\pi\)
−0.986087 + 0.166231i \(0.946840\pi\)
\(398\) −0.398958 0.398958i −0.0199979 0.0199979i
\(399\) 0 0
\(400\) 13.0405i 0.652025i
\(401\) 15.6263 + 15.6263i 0.780341 + 0.780341i 0.979888 0.199547i \(-0.0639472\pi\)
−0.199547 + 0.979888i \(0.563947\pi\)
\(402\) 0 0
\(403\) 0.0526958 + 0.422723i 0.00262496 + 0.0210573i
\(404\) 8.94096i 0.444829i
\(405\) 0 0
\(406\) −3.76120 −0.186665
\(407\) −9.44117 −0.467982
\(408\) 0 0
\(409\) 19.4055 + 19.4055i 0.959539 + 0.959539i 0.999213 0.0396740i \(-0.0126319\pi\)
−0.0396740 + 0.999213i \(0.512632\pi\)
\(410\) −14.7536 14.7536i −0.728627 0.728627i
\(411\) 0 0
\(412\) 17.4234 0.858392
\(413\) −6.12490 −0.301386
\(414\) 0 0
\(415\) 49.4828i 2.42901i
\(416\) 3.57786 0.446008i 0.175419 0.0218673i
\(417\) 0 0
\(418\) −17.0603 17.0603i −0.834448 0.834448i
\(419\) 8.84076i 0.431899i −0.976404 0.215950i \(-0.930715\pi\)
0.976404 0.215950i \(-0.0692847\pi\)
\(420\) 0 0
\(421\) 7.59479 + 7.59479i 0.370147 + 0.370147i 0.867531 0.497383i \(-0.165706\pi\)
−0.497383 + 0.867531i \(0.665706\pi\)
\(422\) −9.44285 + 9.44285i −0.459671 + 0.459671i
\(423\) 0 0
\(424\) −3.69177 + 3.69177i −0.179288 + 0.179288i
\(425\) 93.4241i 4.53173i
\(426\) 0 0
\(427\) −8.66500 + 8.66500i −0.419329 + 0.419329i
\(428\) −6.36508 −0.307668
\(429\) 0 0
\(430\) 33.6208 1.62134
\(431\) −2.99857 + 2.99857i −0.144436 + 0.144436i −0.775627 0.631191i \(-0.782566\pi\)
0.631191 + 0.775627i \(0.282566\pi\)
\(432\) 0 0
\(433\) 10.4330i 0.501380i 0.968067 + 0.250690i \(0.0806574\pi\)
−0.968067 + 0.250690i \(0.919343\pi\)
\(434\) −0.0835445 + 0.0835445i −0.00401026 + 0.00401026i
\(435\) 0 0
\(436\) 2.46859 2.46859i 0.118224 0.118224i
\(437\) 27.1733 + 27.1733i 1.29987 + 1.29987i
\(438\) 0 0
\(439\) 11.5804i 0.552703i 0.961057 + 0.276352i \(0.0891255\pi\)
−0.961057 + 0.276352i \(0.910875\pi\)
\(440\) −10.7660 10.7660i −0.513250 0.513250i
\(441\) 0 0
\(442\) 25.6323 3.19527i 1.21921 0.151983i
\(443\) 11.7229i 0.556971i 0.960440 + 0.278486i \(0.0898325\pi\)
−0.960440 + 0.278486i \(0.910168\pi\)
\(444\) 0 0
\(445\) 52.2378 2.47631
\(446\) −5.38712 −0.255087
\(447\) 0 0
\(448\) 0.707107 + 0.707107i 0.0334077 + 0.0334077i
\(449\) 19.0283 + 19.0283i 0.898000 + 0.898000i 0.995259 0.0972590i \(-0.0310075\pi\)
−0.0972590 + 0.995259i \(0.531008\pi\)
\(450\) 0 0
\(451\) 17.6090 0.829174
\(452\) −4.11099 −0.193365
\(453\) 0 0
\(454\) 14.0360i 0.658744i
\(455\) −9.40612 + 12.0852i −0.440966 + 0.566562i
\(456\) 0 0
\(457\) −25.1280 25.1280i −1.17544 1.17544i −0.980894 0.194544i \(-0.937677\pi\)
−0.194544 0.980894i \(-0.562323\pi\)
\(458\) 9.20528i 0.430134i
\(459\) 0 0
\(460\) 17.1479 + 17.1479i 0.799524 + 0.799524i
\(461\) 21.5174 21.5174i 1.00216 1.00216i 0.00216692 0.999998i \(-0.499310\pi\)
0.999998 0.00216692i \(-0.000689754\pi\)
\(462\) 0 0
\(463\) 12.6794 12.6794i 0.589263 0.589263i −0.348169 0.937432i \(-0.613196\pi\)
0.937432 + 0.348169i \(0.113196\pi\)
\(464\) 3.76120i 0.174609i
\(465\) 0 0
\(466\) 12.0878 12.0878i 0.559955 0.559955i
\(467\) 12.6572 0.585706 0.292853 0.956157i \(-0.405395\pi\)
0.292853 + 0.956157i \(0.405395\pi\)
\(468\) 0 0
\(469\) 0.804213 0.0371351
\(470\) 6.60138 6.60138i 0.304499 0.304499i
\(471\) 0 0
\(472\) 6.12490i 0.281921i
\(473\) −20.0639 + 20.0639i −0.922538 + 0.922538i
\(474\) 0 0
\(475\) 62.0634 62.0634i 2.84766 2.84766i
\(476\) 5.06582 + 5.06582i 0.232191 + 0.232191i
\(477\) 0 0
\(478\) 8.17627i 0.373974i
\(479\) 6.81265 + 6.81265i 0.311278 + 0.311278i 0.845405 0.534127i \(-0.179359\pi\)
−0.534127 + 0.845405i \(0.679359\pi\)
\(480\) 0 0
\(481\) −9.42330 + 1.17469i −0.429665 + 0.0535612i
\(482\) 20.4313i 0.930622i
\(483\) 0 0
\(484\) 1.84968 0.0840763
\(485\) 56.6161 2.57080
\(486\) 0 0
\(487\) 20.4577 + 20.4577i 0.927026 + 0.927026i 0.997513 0.0704871i \(-0.0224554\pi\)
−0.0704871 + 0.997513i \(0.522455\pi\)
\(488\) −8.66500 8.66500i −0.392246 0.392246i
\(489\) 0 0
\(490\) −4.24741 −0.191878
\(491\) −40.9998 −1.85030 −0.925148 0.379606i \(-0.876059\pi\)
−0.925148 + 0.379606i \(0.876059\pi\)
\(492\) 0 0
\(493\) 26.9458i 1.21358i
\(494\) −19.1507 14.9054i −0.861631 0.670624i
\(495\) 0 0
\(496\) −0.0835445 0.0835445i −0.00375126 0.00375126i
\(497\) 12.1806i 0.546374i
\(498\) 0 0
\(499\) 3.12135 + 3.12135i 0.139731 + 0.139731i 0.773512 0.633781i \(-0.218498\pi\)
−0.633781 + 0.773512i \(0.718498\pi\)
\(500\) 24.1486 24.1486i 1.07996 1.07996i
\(501\) 0 0
\(502\) −12.0872 + 12.0872i −0.539479 + 0.539479i
\(503\) 0.981307i 0.0437543i −0.999761 0.0218771i \(-0.993036\pi\)
0.999761 0.0218771i \(-0.00696427\pi\)
\(504\) 0 0
\(505\) 26.8530 26.8530i 1.19494 1.19494i
\(506\) −20.4667 −0.909855
\(507\) 0 0
\(508\) −19.7825 −0.877705
\(509\) 16.9483 16.9483i 0.751219 0.751219i −0.223488 0.974707i \(-0.571744\pi\)
0.974707 + 0.223488i \(0.0717443\pi\)
\(510\) 0 0
\(511\) 5.58166i 0.246918i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 18.2938 18.2938i 0.806903 0.806903i
\(515\) −52.3291 52.3291i −2.30590 2.30590i
\(516\) 0 0
\(517\) 7.87901i 0.346518i
\(518\) −1.86236 1.86236i −0.0818276 0.0818276i
\(519\) 0 0
\(520\) −12.0852 9.40612i −0.529970 0.412485i
\(521\) 44.4621i 1.94792i 0.226723 + 0.973959i \(0.427199\pi\)
−0.226723 + 0.973959i \(0.572801\pi\)
\(522\) 0 0
\(523\) 1.28397 0.0561441 0.0280720 0.999606i \(-0.491063\pi\)
0.0280720 + 0.999606i \(0.491063\pi\)
\(524\) 12.9454 0.565522
\(525\) 0 0
\(526\) −2.89613 2.89613i −0.126277 0.126277i
\(527\) −0.598526 0.598526i −0.0260722 0.0260722i
\(528\) 0 0
\(529\) 9.59885 0.417341
\(530\) 22.1755 0.963243
\(531\) 0 0
\(532\) 6.73064i 0.291810i
\(533\) 17.5756 2.19094i 0.761285 0.0949002i
\(534\) 0 0
\(535\) 19.1167 + 19.1167i 0.826487 + 0.826487i
\(536\) 0.804213i 0.0347367i
\(537\) 0 0
\(538\) 15.8745 + 15.8745i 0.684400 + 0.684400i
\(539\) 2.53473 2.53473i 0.109178 0.109178i
\(540\) 0 0
\(541\) 24.2007 24.2007i 1.04047 1.04047i 0.0413221 0.999146i \(-0.486843\pi\)
0.999146 0.0413221i \(-0.0131570\pi\)
\(542\) 21.4101i 0.919643i
\(543\) 0 0
\(544\) −5.06582 + 5.06582i −0.217195 + 0.217195i
\(545\) −14.8282 −0.635170
\(546\) 0 0
\(547\) −23.8487 −1.01970 −0.509849 0.860264i \(-0.670299\pi\)
−0.509849 + 0.860264i \(0.670299\pi\)
\(548\) 6.35706 6.35706i 0.271560 0.271560i
\(549\) 0 0
\(550\) 46.7455i 1.99324i
\(551\) −17.9006 + 17.9006i −0.762592 + 0.762592i
\(552\) 0 0
\(553\) −6.42210 + 6.42210i −0.273095 + 0.273095i
\(554\) −17.3438 17.3438i −0.736867 0.736867i
\(555\) 0 0
\(556\) 1.45054i 0.0615165i
\(557\) 26.4867 + 26.4867i 1.12228 + 1.12228i 0.991398 + 0.130881i \(0.0417805\pi\)
0.130881 + 0.991398i \(0.458220\pi\)
\(558\) 0 0
\(559\) −17.5295 + 22.5223i −0.741420 + 0.952591i
\(560\) 4.24741i 0.179486i
\(561\) 0 0
\(562\) −7.26876 −0.306614
\(563\) 19.0628 0.803401 0.401701 0.915771i \(-0.368419\pi\)
0.401701 + 0.915771i \(0.368419\pi\)
\(564\) 0 0
\(565\) 12.3468 + 12.3468i 0.519435 + 0.519435i
\(566\) 1.82556 + 1.82556i 0.0767340 + 0.0767340i
\(567\) 0 0
\(568\) 12.1806 0.511086
\(569\) −6.65003 −0.278784 −0.139392 0.990237i \(-0.544515\pi\)
−0.139392 + 0.990237i \(0.544515\pi\)
\(570\) 0 0
\(571\) 29.8722i 1.25011i −0.780579 0.625057i \(-0.785076\pi\)
0.780579 0.625057i \(-0.214924\pi\)
\(572\) 12.8254 1.59878i 0.536255 0.0668484i
\(573\) 0 0
\(574\) 3.47354 + 3.47354i 0.144983 + 0.144983i
\(575\) 74.4552i 3.10500i
\(576\) 0 0
\(577\) −8.74494 8.74494i −0.364057 0.364057i 0.501247 0.865304i \(-0.332875\pi\)
−0.865304 + 0.501247i \(0.832875\pi\)
\(578\) −24.2715 + 24.2715i −1.00956 + 1.00956i
\(579\) 0 0
\(580\) −11.2963 + 11.2963i −0.469053 + 0.469053i
\(581\) 11.6501i 0.483328i
\(582\) 0 0
\(583\) −13.2337 + 13.2337i −0.548083 + 0.548083i
\(584\) −5.58166 −0.230971
\(585\) 0 0
\(586\) 5.09672 0.210543
\(587\) −24.7147 + 24.7147i −1.02009 + 1.02009i −0.0202912 + 0.999794i \(0.506459\pi\)
−0.999794 + 0.0202912i \(0.993541\pi\)
\(588\) 0 0
\(589\) 0.795223i 0.0327666i
\(590\) −18.3953 + 18.3953i −0.757324 + 0.757324i
\(591\) 0 0
\(592\) 1.86236 1.86236i 0.0765427 0.0765427i
\(593\) 17.5245 + 17.5245i 0.719645 + 0.719645i 0.968532 0.248888i \(-0.0800650\pi\)
−0.248888 + 0.968532i \(0.580065\pi\)
\(594\) 0 0
\(595\) 30.4291i 1.24747i
\(596\) 5.20091 + 5.20091i 0.213038 + 0.213038i
\(597\) 0 0
\(598\) −20.4279 + 2.54650i −0.835360 + 0.104134i
\(599\) 12.1383i 0.495958i −0.968765 0.247979i \(-0.920234\pi\)
0.968765 0.247979i \(-0.0797664\pi\)
\(600\) 0 0
\(601\) −37.5161 −1.53031 −0.765156 0.643845i \(-0.777338\pi\)
−0.765156 + 0.643845i \(0.777338\pi\)
\(602\) −7.91560 −0.322616
\(603\) 0 0
\(604\) 7.76020 + 7.76020i 0.315758 + 0.315758i
\(605\) −5.55527 5.55527i −0.225854 0.225854i
\(606\) 0 0
\(607\) −11.2703 −0.457448 −0.228724 0.973491i \(-0.573455\pi\)
−0.228724 + 0.973491i \(0.573455\pi\)
\(608\) 6.73064 0.272963
\(609\) 0 0
\(610\) 52.0484i 2.10738i
\(611\) 0.980320 + 7.86409i 0.0396595 + 0.318147i
\(612\) 0 0
\(613\) −15.9175 15.9175i −0.642902 0.642902i 0.308366 0.951268i \(-0.400218\pi\)
−0.951268 + 0.308366i \(0.900218\pi\)
\(614\) 19.8445i 0.800858i
\(615\) 0 0
\(616\) 2.53473 + 2.53473i 0.102127 + 0.102127i
\(617\) 24.0948 24.0948i 0.970021 0.970021i −0.0295423 0.999564i \(-0.509405\pi\)
0.999564 + 0.0295423i \(0.00940499\pi\)
\(618\) 0 0
\(619\) −31.9301 + 31.9301i −1.28338 + 1.28338i −0.344648 + 0.938732i \(0.612002\pi\)
−0.938732 + 0.344648i \(0.887998\pi\)
\(620\) 0.501831i 0.0201540i
\(621\) 0 0
\(622\) −15.8729 + 15.8729i −0.636445 + 0.636445i
\(623\) −12.2987 −0.492738
\(624\) 0 0
\(625\) −79.8520 −3.19408
\(626\) −16.5171 + 16.5171i −0.660156 + 0.660156i
\(627\) 0 0
\(628\) 11.7086i 0.467223i
\(629\) 13.3423 13.3423i 0.531991 0.531991i
\(630\) 0 0
\(631\) 32.0392 32.0392i 1.27546 1.27546i 0.332277 0.943182i \(-0.392183\pi\)
0.943182 0.332277i \(-0.107817\pi\)
\(632\) −6.42210 6.42210i −0.255457 0.255457i
\(633\) 0 0
\(634\) 2.63814i 0.104774i
\(635\) 59.4141 + 59.4141i 2.35778 + 2.35778i
\(636\) 0 0
\(637\) 2.21455 2.84530i 0.0877438 0.112735i
\(638\) 13.4826i 0.533780i
\(639\) 0 0
\(640\) 4.24741 0.167894
\(641\) −45.8530 −1.81108 −0.905542 0.424256i \(-0.860536\pi\)
−0.905542 + 0.424256i \(0.860536\pi\)
\(642\) 0 0
\(643\) −23.0966 23.0966i −0.910841 0.910841i 0.0854970 0.996338i \(-0.472752\pi\)
−0.996338 + 0.0854970i \(0.972752\pi\)
\(644\) −4.03725 4.03725i −0.159090 0.159090i
\(645\) 0 0
\(646\) 48.2193 1.89716
\(647\) −22.8866 −0.899765 −0.449882 0.893088i \(-0.648534\pi\)
−0.449882 + 0.893088i \(0.648534\pi\)
\(648\) 0 0
\(649\) 21.9556i 0.861832i
\(650\) 5.81617 + 46.6571i 0.228129 + 1.83004i
\(651\) 0 0
\(652\) −2.18476 2.18476i −0.0855618 0.0855618i
\(653\) 6.65079i 0.260266i −0.991497 0.130133i \(-0.958460\pi\)
0.991497 0.130133i \(-0.0415404\pi\)
\(654\) 0 0
\(655\) −38.8799 38.8799i −1.51916 1.51916i
\(656\) −3.47354 + 3.47354i −0.135619 + 0.135619i
\(657\) 0 0
\(658\) −1.55421 + 1.55421i −0.0605895 + 0.0605895i
\(659\) 26.9997i 1.05176i −0.850559 0.525880i \(-0.823736\pi\)
0.850559 0.525880i \(-0.176264\pi\)
\(660\) 0 0
\(661\) 23.4722 23.4722i 0.912962 0.912962i −0.0835420 0.996504i \(-0.526623\pi\)
0.996504 + 0.0835420i \(0.0266233\pi\)
\(662\) 22.2009 0.862862
\(663\) 0 0
\(664\) −11.6501 −0.452112
\(665\) −20.2146 + 20.2146i −0.783889 + 0.783889i
\(666\) 0 0
\(667\) 21.4747i 0.831505i
\(668\) 2.11815 2.11815i 0.0819538 0.0819538i
\(669\) 0 0
\(670\) 2.41535 2.41535i 0.0933132 0.0933132i
\(671\) −31.0609 31.0609i −1.19909 1.19909i
\(672\) 0 0
\(673\) 23.1428i 0.892090i 0.895011 + 0.446045i \(0.147168\pi\)
−0.895011 + 0.446045i \(0.852832\pi\)
\(674\) −3.58880 3.58880i −0.138236 0.138236i
\(675\) 0 0
\(676\) 12.6022 3.19151i 0.484698 0.122750i
\(677\) 30.5270i 1.17325i −0.809859 0.586625i \(-0.800456\pi\)
0.809859 0.586625i \(-0.199544\pi\)
\(678\) 0 0
\(679\) −13.3296 −0.511541
\(680\) 30.4291 1.16690
\(681\) 0 0
\(682\) −0.299477 0.299477i −0.0114676 0.0114676i
\(683\) −28.1274 28.1274i −1.07627 1.07627i −0.996841 0.0794250i \(-0.974692\pi\)
−0.0794250 0.996841i \(-0.525308\pi\)
\(684\) 0 0
\(685\) −38.1852 −1.45898
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) 7.91560i 0.301779i
\(689\) −11.5621 + 14.8552i −0.440480 + 0.565938i
\(690\) 0 0
\(691\) −33.4816 33.4816i −1.27370 1.27370i −0.944132 0.329569i \(-0.893097\pi\)
−0.329569 0.944132i \(-0.606903\pi\)
\(692\) 5.06663i 0.192604i
\(693\) 0 0
\(694\) −10.0933 10.0933i −0.383138 0.383138i
\(695\) 4.35651 4.35651i 0.165252 0.165252i
\(696\) 0 0
\(697\) −24.8850 + 24.8850i −0.942586 + 0.942586i
\(698\) 8.73805i 0.330740i
\(699\) 0 0
\(700\) −9.22102 + 9.22102i −0.348522 + 0.348522i
\(701\) 10.1952 0.385067 0.192534 0.981290i \(-0.438330\pi\)
0.192534 + 0.981290i \(0.438330\pi\)
\(702\) 0 0
\(703\) −17.7270 −0.668588
\(704\) −2.53473 + 2.53473i −0.0955311 + 0.0955311i
\(705\) 0 0
\(706\) 25.8979i 0.974679i
\(707\) −6.32221 + 6.32221i −0.237771 + 0.237771i
\(708\) 0 0
\(709\) 2.94732 2.94732i 0.110689 0.110689i −0.649593 0.760282i \(-0.725061\pi\)
0.760282 + 0.649593i \(0.225061\pi\)
\(710\) −36.5828 36.5828i −1.37293 1.37293i
\(711\) 0 0
\(712\) 12.2987i 0.460914i
\(713\) 0.477001 + 0.477001i 0.0178638 + 0.0178638i
\(714\) 0 0
\(715\) −43.3211 33.7176i −1.62012 1.26097i
\(716\) 0.961445i 0.0359309i
\(717\) 0 0
\(718\) 1.17634 0.0439008
\(719\) −9.34789 −0.348618 −0.174309 0.984691i \(-0.555769\pi\)
−0.174309 + 0.984691i \(0.555769\pi\)
\(720\) 0 0
\(721\) 12.3202 + 12.3202i 0.458830 + 0.458830i
\(722\) −18.5980 18.5980i −0.692144 0.692144i
\(723\) 0 0
\(724\) 14.9714 0.556408
\(725\) 49.0479 1.82159
\(726\) 0 0
\(727\) 8.92965i 0.331182i 0.986194 + 0.165591i \(0.0529532\pi\)
−0.986194 + 0.165591i \(0.947047\pi\)
\(728\) 2.84530 + 2.21455i 0.105454 + 0.0820768i
\(729\) 0 0
\(730\) 16.7638 + 16.7638i 0.620457 + 0.620457i
\(731\) 56.7086i 2.09744i
\(732\) 0 0
\(733\) 20.3409 + 20.3409i 0.751309 + 0.751309i 0.974724 0.223414i \(-0.0717202\pi\)
−0.223414 + 0.974724i \(0.571720\pi\)
\(734\) −23.4614 + 23.4614i −0.865975 + 0.865975i
\(735\) 0 0
\(736\) 4.03725 4.03725i 0.148815 0.148815i
\(737\) 2.88282i 0.106190i
\(738\) 0 0
\(739\) 12.0731 12.0731i 0.444118 0.444118i −0.449276 0.893393i \(-0.648318\pi\)
0.893393 + 0.449276i \(0.148318\pi\)
\(740\) −11.1868 −0.411233
\(741\) 0 0
\(742\) −5.22095 −0.191667
\(743\) −8.18690 + 8.18690i −0.300348 + 0.300348i −0.841150 0.540802i \(-0.818121\pi\)
0.540802 + 0.841150i \(0.318121\pi\)
\(744\) 0 0
\(745\) 31.2406i 1.14457i
\(746\) 21.5144 21.5144i 0.787697 0.787697i
\(747\) 0 0
\(748\) −18.1592 + 18.1592i −0.663965 + 0.663965i
\(749\) −4.50079 4.50079i −0.164455 0.164455i
\(750\) 0 0
\(751\) 10.8054i 0.394294i −0.980374 0.197147i \(-0.936832\pi\)
0.980374 0.197147i \(-0.0631676\pi\)
\(752\) −1.55421 1.55421i −0.0566763 0.0566763i
\(753\) 0 0
\(754\) −1.67753 13.4571i −0.0610919 0.490077i
\(755\) 46.6135i 1.69644i
\(756\) 0 0
\(757\) −11.4815 −0.417304 −0.208652 0.977990i \(-0.566908\pi\)
−0.208652 + 0.977990i \(0.566908\pi\)
\(758\) −17.2049 −0.624911
\(759\) 0 0
\(760\) −20.2146 20.2146i −0.733261 0.733261i
\(761\) 10.1139 + 10.1139i 0.366629 + 0.366629i 0.866246 0.499617i \(-0.166526\pi\)
−0.499617 + 0.866246i \(0.666526\pi\)
\(762\) 0 0
\(763\) 3.49111 0.126387
\(764\) −19.5793 −0.708356
\(765\) 0 0
\(766\) 37.4942i 1.35472i
\(767\) −2.73175 21.9140i −0.0986379 0.791269i
\(768\) 0 0
\(769\) 20.2565 + 20.2565i 0.730468 + 0.730468i 0.970712 0.240245i \(-0.0772276\pi\)
−0.240245 + 0.970712i \(0.577228\pi\)
\(770\) 15.2255i 0.548687i
\(771\) 0 0
\(772\) 4.06219 + 4.06219i 0.146201 + 0.146201i
\(773\) −24.7776 + 24.7776i −0.891189 + 0.891189i −0.994635 0.103446i \(-0.967013\pi\)
0.103446 + 0.994635i \(0.467013\pi\)
\(774\) 0 0
\(775\) 1.08946 1.08946i 0.0391346 0.0391346i
\(776\) 13.3296i 0.478503i
\(777\) 0 0
\(778\) −2.64286 + 2.64286i −0.0947512 + 0.0947512i
\(779\) 33.0631 1.18461
\(780\) 0 0
\(781\) 43.6631 1.56239
\(782\) 28.9235 28.9235i 1.03430 1.03430i
\(783\) 0 0
\(784\) 1.00000i 0.0357143i
\(785\) −35.1652 + 35.1652i −1.25510 + 1.25510i
\(786\) 0 0
\(787\) 9.17773 9.17773i 0.327151 0.327151i −0.524351 0.851502i \(-0.675692\pi\)
0.851502 + 0.524351i \(0.175692\pi\)
\(788\) −4.34520 4.34520i −0.154791 0.154791i
\(789\) 0 0
\(790\) 38.5759i 1.37247i
\(791\) −2.90691 2.90691i −0.103358 0.103358i
\(792\) 0 0
\(793\) −34.8668 27.1375i −1.23816 0.963680i
\(794\) 32.4700i 1.15232i
\(795\) 0 0
\(796\) 0.564211 0.0199979
\(797\) 46.2995 1.64001 0.820006 0.572355i \(-0.193970\pi\)
0.820006 + 0.572355i \(0.193970\pi\)
\(798\) 0 0
\(799\) −11.1346 11.1346i −0.393914 0.393914i
\(800\) −9.22102 9.22102i −0.326012 0.326012i
\(801\) 0 0
\(802\) −22.0989 −0.780341
\(803\) −20.0083 −0.706077
\(804\) 0 0
\(805\) 24.2508i 0.854727i
\(806\) −0.336172 0.261649i −0.0118412 0.00921619i
\(807\) 0 0
\(808\) −6.32221 6.32221i −0.222415 0.222415i
\(809\) 45.9996i 1.61726i 0.588317 + 0.808630i \(0.299791\pi\)
−0.588317 + 0.808630i \(0.700209\pi\)
\(810\) 0 0
\(811\) −2.08788 2.08788i −0.0733153 0.0733153i 0.669498 0.742814i \(-0.266509\pi\)
−0.742814 + 0.669498i \(0.766509\pi\)
\(812\) 2.65957 2.65957i 0.0933327 0.0933327i
\(813\) 0 0
\(814\) 6.67592 6.67592i 0.233991 0.233991i
\(815\) 13.1233i 0.459689i
\(816\) 0 0
\(817\) −37.6725 + 37.6725i −1.31800 + 1.31800i
\(818\) −27.4435 −0.959539
\(819\) 0 0
\(820\) 20.8647 0.728627
\(821\) −2.68463 + 2.68463i −0.0936941 + 0.0936941i −0.752400 0.658706i \(-0.771104\pi\)
0.658706 + 0.752400i \(0.271104\pi\)
\(822\) 0 0
\(823\) 3.92051i 0.136660i 0.997663 + 0.0683301i \(0.0217671\pi\)
−0.997663 + 0.0683301i \(0.978233\pi\)
\(824\) −12.3202 + 12.3202i −0.429196 + 0.429196i
\(825\) 0 0
\(826\) 4.33095 4.33095i 0.150693 0.150693i
\(827\) 14.9222 + 14.9222i 0.518896 + 0.518896i 0.917237 0.398341i \(-0.130414\pi\)
−0.398341 + 0.917237i \(0.630414\pi\)
\(828\) 0 0
\(829\) 14.0509i 0.488007i 0.969774 + 0.244003i \(0.0784608\pi\)
−0.969774 + 0.244003i \(0.921539\pi\)
\(830\) 34.9896 + 34.9896i 1.21451 + 1.21451i
\(831\) 0 0
\(832\) −2.21455 + 2.84530i −0.0767758 + 0.0986432i
\(833\) 7.16415i 0.248223i
\(834\) 0 0
\(835\) −12.7232 −0.440304
\(836\) 24.1269 0.834448
\(837\) 0 0
\(838\) 6.25136 + 6.25136i 0.215950 + 0.215950i
\(839\) 23.9852 + 23.9852i 0.828061 + 0.828061i 0.987248 0.159187i \(-0.0508873\pi\)
−0.159187 + 0.987248i \(0.550887\pi\)
\(840\) 0 0
\(841\) 14.8534 0.512185
\(842\) −10.7407 −0.370147
\(843\) 0 0
\(844\) 13.3542i 0.459671i
\(845\) −47.4343 28.2637i −1.63179 0.972300i
\(846\) 0 0
\(847\) 1.30792 + 1.30792i 0.0449407 + 0.0449407i
\(848\) 5.22095i 0.179288i
\(849\) 0 0
\(850\) −66.0608 66.0608i −2.26587 2.26587i
\(851\) −10.6332 + 10.6332i −0.364503 + 0.364503i
\(852\) 0 0
\(853\) 22.4555 22.4555i 0.768860 0.768860i −0.209046 0.977906i \(-0.567036\pi\)
0.977906 + 0.209046i \(0.0670357\pi\)
\(854\) 12.2542i 0.419329i
\(855\) 0 0
\(856\) 4.50079 4.50079i 0.153834 0.153834i
\(857\) 22.3940 0.764966 0.382483 0.923963i \(-0.375069\pi\)
0.382483 + 0.923963i \(0.375069\pi\)
\(858\) 0 0
\(859\) −49.2514 −1.68044 −0.840219 0.542247i \(-0.817574\pi\)
−0.840219 + 0.542247i \(0.817574\pi\)
\(860\) −23.7735 + 23.7735i −0.810669 + 0.810669i
\(861\) 0 0
\(862\) 4.24061i 0.144436i
\(863\) −25.4860 + 25.4860i −0.867552 + 0.867552i −0.992201 0.124649i \(-0.960220\pi\)
0.124649 + 0.992201i \(0.460220\pi\)
\(864\) 0 0
\(865\) 15.2170 15.2170i 0.517393 0.517393i
\(866\) −7.37727 7.37727i −0.250690 0.250690i
\(867\) 0 0
\(868\) 0.118150i 0.00401026i
\(869\) −23.0209 23.0209i −0.780932 0.780932i
\(870\) 0 0
\(871\) 0.358686 + 2.87736i 0.0121536 + 0.0974956i
\(872\) 3.49111i 0.118224i
\(873\) 0 0
\(874\) −38.4288 −1.29987
\(875\) 34.1513 1.15452
\(876\) 0 0
\(877\) 5.47083 + 5.47083i 0.184737 + 0.184737i 0.793416 0.608679i \(-0.208300\pi\)
−0.608679 + 0.793416i \(0.708300\pi\)
\(878\) −8.18860 8.18860i −0.276352 0.276352i
\(879\) 0 0
\(880\) 15.2255 0.513250
\(881\) −5.90254 −0.198862 −0.0994308 0.995044i \(-0.531702\pi\)
−0.0994308 + 0.995044i \(0.531702\pi\)
\(882\) 0 0
\(883\) 9.29205i 0.312702i 0.987702 + 0.156351i \(0.0499732\pi\)
−0.987702 + 0.156351i \(0.950027\pi\)
\(884\) −15.8654 + 20.3842i −0.533611 + 0.685594i
\(885\) 0 0
\(886\) −8.28934 8.28934i −0.278486 0.278486i
\(887\) 32.2058i 1.08137i −0.841226 0.540683i \(-0.818166\pi\)
0.841226 0.540683i \(-0.181834\pi\)
\(888\) 0 0
\(889\) −13.9883 13.9883i −0.469153 0.469153i
\(890\) −36.9377 + 36.9377i −1.23815 + 1.23815i
\(891\) 0 0
\(892\) 3.80927 3.80927i 0.127544 0.127544i
\(893\) 14.7939i 0.495058i
\(894\) 0 0
\(895\) 2.88758 2.88758i 0.0965211 0.0965211i
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −26.9101 −0.898000
\(899\) −0.314228 + 0.314228i −0.0104801 + 0.0104801i
\(900\) 0 0
\(901\) 37.4037i 1.24610i
\(902\) −12.4514 + 12.4514i −0.414587 + 0.414587i
\(903\) 0 0
\(904\) 2.90691 2.90691i 0.0966824 0.0966824i
\(905\) −44.9647 44.9647i −1.49468 1.49468i
\(906\) 0 0
\(907\) 9.25441i 0.307288i −0.988126 0.153644i \(-0.950899\pi\)
0.988126 0.153644i \(-0.0491009\pi\)
\(908\) 9.92499 + 9.92499i 0.329372 + 0.329372i
\(909\) 0 0
\(910\) −1.89438 15.1966i −0.0627981 0.503764i
\(911\) 43.8510i 1.45285i 0.687246 + 0.726425i \(0.258819\pi\)
−0.687246 + 0.726425i \(0.741181\pi\)
\(912\) 0 0
\(913\) −41.7615 −1.38210
\(914\) 35.5363 1.17544
\(915\) 0 0
\(916\) −6.50911 6.50911i −0.215067 0.215067i
\(917\) 9.15378 + 9.15378i 0.302284 + 0.302284i
\(918\) 0 0
\(919\) 20.2837 0.669099 0.334549 0.942378i \(-0.391416\pi\)
0.334549 + 0.942378i \(0.391416\pi\)
\(920\) −24.2508 −0.799524
\(921\) 0 0
\(922\) 30.4302i 1.00216i
\(923\) 43.5804 5.43264i 1.43447 0.178817i
\(924\) 0 0
\(925\) 24.2862 + 24.2862i 0.798524 + 0.798524i
\(926\) 17.9314i 0.589263i
\(927\) 0 0
\(928\) 2.65957 + 2.65957i 0.0873047 + 0.0873047i
\(929\) −25.3806 + 25.3806i −0.832712 + 0.832712i −0.987887 0.155175i \(-0.950406\pi\)
0.155175 + 0.987887i \(0.450406\pi\)
\(930\) 0 0
\(931\) 4.75928 4.75928i 0.155979 0.155979i
\(932\) 17.0947i 0.559955i
\(933\) 0 0
\(934\) −8.95001 + 8.95001i −0.292853 + 0.292853i
\(935\) 109.077 3.56722
\(936\) 0 0
\(937\) −23.5723 −0.770072 −0.385036 0.922901i \(-0.625811\pi\)
−0.385036 + 0.922901i \(0.625811\pi\)
\(938\) −0.568664 + 0.568664i −0.0185676 + 0.0185676i
\(939\) 0 0
\(940\) 9.33576i 0.304499i
\(941\) 10.3997 10.3997i 0.339020 0.339020i −0.516979 0.855998i \(-0.672943\pi\)
0.855998 + 0.516979i \(0.172943\pi\)
\(942\) 0 0
\(943\) 19.8323 19.8323i 0.645830 0.645830i
\(944\) 4.33095 + 4.33095i 0.140961 + 0.140961i
\(945\) 0 0
\(946\) 28.3746i 0.922538i
\(947\) 8.62956 + 8.62956i 0.280423 + 0.280423i 0.833278 0.552855i \(-0.186462\pi\)
−0.552855 + 0.833278i \(0.686462\pi\)
\(948\) 0 0
\(949\) −19.9704 + 2.48947i −0.648267 + 0.0808115i
\(950\) 87.7708i 2.84766i
\(951\) 0 0
\(952\) −7.16415 −0.232191
\(953\) 25.6873 0.832094 0.416047 0.909343i \(-0.363415\pi\)
0.416047 + 0.909343i \(0.363415\pi\)
\(954\) 0 0
\(955\) 58.8041 + 58.8041i 1.90285 + 1.90285i
\(956\) −5.78149 5.78149i −0.186987 0.186987i
\(957\) 0 0
\(958\) −9.63454 −0.311278
\(959\) 8.99023 0.290310
\(960\) 0 0
\(961\) 30.9860i 0.999550i
\(962\) 5.83265 7.49391i 0.188052 0.241613i
\(963\) 0 0
\(964\) −14.4471 14.4471i −0.465311 0.465311i
\(965\) 24.4005i 0.785481i
\(966\) 0 0
\(967\) 7.91958 + 7.91958i 0.254677 + 0.254677i 0.822885 0.568208i \(-0.192363\pi\)
−0.568208 + 0.822885i \(0.692363\pi\)
\(968\) −1.30792 + 1.30792i −0.0420382 + 0.0420382i
\(969\) 0 0
\(970\) −40.0336 + 40.0336i −1.28540 + 1.28540i
\(971\) 15.3284i 0.491912i 0.969281 + 0.245956i \(0.0791019\pi\)
−0.969281 + 0.245956i \(0.920898\pi\)
\(972\) 0 0
\(973\) −1.02569 + 1.02569i −0.0328820 + 0.0328820i
\(974\) −28.9315 −0.927026
\(975\) 0 0
\(976\) 12.2542 0.392246
\(977\) 29.0548 29.0548i 0.929546 0.929546i −0.0681300 0.997676i \(-0.521703\pi\)
0.997676 + 0.0681300i \(0.0217033\pi\)
\(978\) 0 0
\(979\) 44.0866i 1.40901i
\(980\) 3.00337 3.00337i 0.0959392 0.0959392i
\(981\) 0 0
\(982\) 28.9913 28.9913i 0.925148 0.925148i
\(983\) 36.0946 + 36.0946i 1.15124 + 1.15124i 0.986305 + 0.164934i \(0.0527410\pi\)
0.164934 + 0.986305i \(0.447259\pi\)
\(984\) 0 0
\(985\) 26.1005i 0.831632i
\(986\) 19.0536 + 19.0536i 0.606790 + 0.606790i
\(987\) 0 0
\(988\) 24.0813 3.00192i 0.766127 0.0955038i
\(989\) 45.1944i 1.43710i
\(990\) 0 0
\(991\) −25.4375 −0.808047 −0.404024 0.914748i \(-0.632389\pi\)
−0.404024 + 0.914748i \(0.632389\pi\)
\(992\) 0.118150 0.00375126
\(993\) 0 0
\(994\) 8.61297 + 8.61297i 0.273187 + 0.273187i
\(995\) −1.69454 1.69454i −0.0537204 0.0537204i
\(996\) 0 0
\(997\) −9.63659 −0.305194 −0.152597 0.988289i \(-0.548764\pi\)
−0.152597 + 0.988289i \(0.548764\pi\)
\(998\) −4.41426 −0.139731
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.y.c.827.1 16
3.2 odd 2 1638.2.y.d.827.8 yes 16
13.5 odd 4 1638.2.y.d.1331.8 yes 16
39.5 even 4 inner 1638.2.y.c.1331.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1638.2.y.c.827.1 16 1.1 even 1 trivial
1638.2.y.c.1331.1 yes 16 39.5 even 4 inner
1638.2.y.d.827.8 yes 16 3.2 odd 2
1638.2.y.d.1331.8 yes 16 13.5 odd 4