Properties

Label 1638.2.m.h.289.3
Level $1638$
Weight $2$
Character 1638.289
Analytic conductor $13.079$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(289,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.m (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,0,8,-2,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.447703281.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 2x^{6} + 2x^{5} + 3x^{4} + 4x^{3} - 8x^{2} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.3
Root \(-0.571299 + 1.29368i\) of defining polynomial
Character \(\chi\) \(=\) 1638.289
Dual form 1638.2.m.h.1621.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +(0.441221 - 0.764218i) q^{5} +(0.369922 + 2.61976i) q^{7} -1.00000 q^{8} +(-0.441221 + 0.764218i) q^{10} +(0.775934 - 1.34396i) q^{11} +(2.13422 + 2.90605i) q^{13} +(-0.369922 - 2.61976i) q^{14} +1.00000 q^{16} +7.17592 q^{17} +(-2.37080 - 4.10635i) q^{19} +(0.441221 - 0.764218i) q^{20} +(-0.775934 + 1.34396i) q^{22} -5.29348 q^{23} +(2.11065 + 3.65575i) q^{25} +(-2.13422 - 2.90605i) q^{26} +(0.369922 + 2.61976i) q^{28} +(-3.87494 - 6.71160i) q^{29} +(3.24911 + 5.62762i) q^{31} -1.00000 q^{32} -7.17592 q^{34} +(2.16529 + 0.873194i) q^{35} +0.330574 q^{37} +(2.37080 + 4.10635i) q^{38} +(-0.441221 + 0.764218i) q^{40} +(3.02918 + 5.24669i) q^{41} +(3.35975 - 5.81927i) q^{43} +(0.775934 - 1.34396i) q^{44} +5.29348 q^{46} +(-0.976430 + 1.69123i) q^{47} +(-6.72632 + 1.93822i) q^{49} +(-2.11065 - 3.65575i) q^{50} +(2.13422 + 2.90605i) q^{52} +(6.74308 + 11.6794i) q^{53} +(-0.684718 - 1.18597i) q^{55} +(-0.369922 - 2.61976i) q^{56} +(3.87494 + 6.71160i) q^{58} -5.27138 q^{59} +(7.17592 + 12.4291i) q^{61} +(-3.24911 - 5.62762i) q^{62} +1.00000 q^{64} +(3.16252 - 0.348796i) q^{65} +(3.75236 - 6.49929i) q^{67} +7.17592 q^{68} +(-2.16529 - 0.873194i) q^{70} +(-5.00985 + 8.67732i) q^{71} +(-1.93284 - 3.34778i) q^{73} -0.330574 q^{74} +(-2.37080 - 4.10635i) q^{76} +(3.80789 + 1.53560i) q^{77} +(6.67928 - 11.5689i) q^{79} +(0.441221 - 0.764218i) q^{80} +(-3.02918 - 5.24669i) q^{82} +10.5519 q^{83} +(3.16617 - 5.48396i) q^{85} +(-3.35975 + 5.81927i) q^{86} +(-0.775934 + 1.34396i) q^{88} -14.8167 q^{89} +(-6.82366 + 6.66615i) q^{91} -5.29348 q^{92} +(0.976430 - 1.69123i) q^{94} -4.18420 q^{95} +(5.79259 - 10.0331i) q^{97} +(6.72632 - 1.93822i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{4} - 2 q^{5} + 3 q^{7} - 8 q^{8} + 2 q^{10} - 4 q^{11} + 3 q^{13} - 3 q^{14} + 8 q^{16} - 4 q^{17} - 4 q^{19} - 2 q^{20} + 4 q^{22} + 8 q^{23} + 2 q^{25} - 3 q^{26} + 3 q^{28} - 2 q^{29}+ \cdots - 5 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0.441221 0.764218i 0.197320 0.341769i −0.750338 0.661054i \(-0.770109\pi\)
0.947659 + 0.319285i \(0.103443\pi\)
\(6\) 0 0
\(7\) 0.369922 + 2.61976i 0.139817 + 0.990177i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −0.441221 + 0.764218i −0.139526 + 0.241667i
\(11\) 0.775934 1.34396i 0.233953 0.405219i −0.725015 0.688733i \(-0.758167\pi\)
0.958968 + 0.283515i \(0.0915005\pi\)
\(12\) 0 0
\(13\) 2.13422 + 2.90605i 0.591925 + 0.805993i
\(14\) −0.369922 2.61976i −0.0988658 0.700161i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 7.17592 1.74042 0.870208 0.492685i \(-0.163984\pi\)
0.870208 + 0.492685i \(0.163984\pi\)
\(18\) 0 0
\(19\) −2.37080 4.10635i −0.543900 0.942062i −0.998675 0.0514558i \(-0.983614\pi\)
0.454776 0.890606i \(-0.349719\pi\)
\(20\) 0.441221 0.764218i 0.0986601 0.170884i
\(21\) 0 0
\(22\) −0.775934 + 1.34396i −0.165430 + 0.286533i
\(23\) −5.29348 −1.10377 −0.551883 0.833922i \(-0.686091\pi\)
−0.551883 + 0.833922i \(0.686091\pi\)
\(24\) 0 0
\(25\) 2.11065 + 3.65575i 0.422129 + 0.731150i
\(26\) −2.13422 2.90605i −0.418554 0.569923i
\(27\) 0 0
\(28\) 0.369922 + 2.61976i 0.0699087 + 0.495089i
\(29\) −3.87494 6.71160i −0.719559 1.24631i −0.961175 0.275940i \(-0.911011\pi\)
0.241616 0.970372i \(-0.422323\pi\)
\(30\) 0 0
\(31\) 3.24911 + 5.62762i 0.583557 + 1.01075i 0.995054 + 0.0993390i \(0.0316728\pi\)
−0.411497 + 0.911411i \(0.634994\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −7.17592 −1.23066
\(35\) 2.16529 + 0.873194i 0.366000 + 0.147597i
\(36\) 0 0
\(37\) 0.330574 0.0543460 0.0271730 0.999631i \(-0.491349\pi\)
0.0271730 + 0.999631i \(0.491349\pi\)
\(38\) 2.37080 + 4.10635i 0.384595 + 0.666138i
\(39\) 0 0
\(40\) −0.441221 + 0.764218i −0.0697632 + 0.120833i
\(41\) 3.02918 + 5.24669i 0.473079 + 0.819396i 0.999525 0.0308121i \(-0.00980934\pi\)
−0.526447 + 0.850208i \(0.676476\pi\)
\(42\) 0 0
\(43\) 3.35975 5.81927i 0.512358 0.887430i −0.487540 0.873101i \(-0.662106\pi\)
0.999897 0.0143288i \(-0.00456116\pi\)
\(44\) 0.775934 1.34396i 0.116977 0.202609i
\(45\) 0 0
\(46\) 5.29348 0.780480
\(47\) −0.976430 + 1.69123i −0.142427 + 0.246691i −0.928410 0.371557i \(-0.878824\pi\)
0.785983 + 0.618248i \(0.212157\pi\)
\(48\) 0 0
\(49\) −6.72632 + 1.93822i −0.960902 + 0.276888i
\(50\) −2.11065 3.65575i −0.298491 0.517001i
\(51\) 0 0
\(52\) 2.13422 + 2.90605i 0.295963 + 0.402996i
\(53\) 6.74308 + 11.6794i 0.926233 + 1.60428i 0.789566 + 0.613666i \(0.210306\pi\)
0.136667 + 0.990617i \(0.456361\pi\)
\(54\) 0 0
\(55\) −0.684718 1.18597i −0.0923273 0.159916i
\(56\) −0.369922 2.61976i −0.0494329 0.350081i
\(57\) 0 0
\(58\) 3.87494 + 6.71160i 0.508805 + 0.881276i
\(59\) −5.27138 −0.686275 −0.343137 0.939285i \(-0.611490\pi\)
−0.343137 + 0.939285i \(0.611490\pi\)
\(60\) 0 0
\(61\) 7.17592 + 12.4291i 0.918782 + 1.59138i 0.801267 + 0.598306i \(0.204159\pi\)
0.117515 + 0.993071i \(0.462507\pi\)
\(62\) −3.24911 5.62762i −0.412637 0.714708i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 3.16252 0.348796i 0.392262 0.0432628i
\(66\) 0 0
\(67\) 3.75236 6.49929i 0.458424 0.794014i −0.540454 0.841374i \(-0.681747\pi\)
0.998878 + 0.0473596i \(0.0150807\pi\)
\(68\) 7.17592 0.870208
\(69\) 0 0
\(70\) −2.16529 0.873194i −0.258801 0.104367i
\(71\) −5.00985 + 8.67732i −0.594560 + 1.02981i 0.399049 + 0.916930i \(0.369340\pi\)
−0.993609 + 0.112879i \(0.963993\pi\)
\(72\) 0 0
\(73\) −1.93284 3.34778i −0.226222 0.391828i 0.730464 0.682952i \(-0.239304\pi\)
−0.956685 + 0.291124i \(0.905971\pi\)
\(74\) −0.330574 −0.0384284
\(75\) 0 0
\(76\) −2.37080 4.10635i −0.271950 0.471031i
\(77\) 3.80789 + 1.53560i 0.433949 + 0.174998i
\(78\) 0 0
\(79\) 6.67928 11.5689i 0.751478 1.30160i −0.195629 0.980678i \(-0.562675\pi\)
0.947106 0.320920i \(-0.103992\pi\)
\(80\) 0.441221 0.764218i 0.0493300 0.0854422i
\(81\) 0 0
\(82\) −3.02918 5.24669i −0.334517 0.579401i
\(83\) 10.5519 1.15822 0.579109 0.815250i \(-0.303401\pi\)
0.579109 + 0.815250i \(0.303401\pi\)
\(84\) 0 0
\(85\) 3.16617 5.48396i 0.343419 0.594820i
\(86\) −3.35975 + 5.81927i −0.362292 + 0.627508i
\(87\) 0 0
\(88\) −0.775934 + 1.34396i −0.0827149 + 0.143266i
\(89\) −14.8167 −1.57057 −0.785285 0.619134i \(-0.787484\pi\)
−0.785285 + 0.619134i \(0.787484\pi\)
\(90\) 0 0
\(91\) −6.82366 + 6.66615i −0.715314 + 0.698803i
\(92\) −5.29348 −0.551883
\(93\) 0 0
\(94\) 0.976430 1.69123i 0.100711 0.174437i
\(95\) −4.18420 −0.429290
\(96\) 0 0
\(97\) 5.79259 10.0331i 0.588149 1.01870i −0.406326 0.913728i \(-0.633190\pi\)
0.994475 0.104975i \(-0.0334764\pi\)
\(98\) 6.72632 1.93822i 0.679460 0.195789i
\(99\) 0 0
\(100\) 2.11065 + 3.65575i 0.211065 + 0.365575i
\(101\) 3.91439 6.77993i 0.389497 0.674628i −0.602885 0.797828i \(-0.705982\pi\)
0.992382 + 0.123200i \(0.0393156\pi\)
\(102\) 0 0
\(103\) 0.430172 0.745081i 0.0423862 0.0734150i −0.844054 0.536258i \(-0.819837\pi\)
0.886440 + 0.462843i \(0.153171\pi\)
\(104\) −2.13422 2.90605i −0.209277 0.284961i
\(105\) 0 0
\(106\) −6.74308 11.6794i −0.654946 1.13440i
\(107\) 8.14260 0.787175 0.393587 0.919287i \(-0.371234\pi\)
0.393587 + 0.919287i \(0.371234\pi\)
\(108\) 0 0
\(109\) 4.73806 + 8.20656i 0.453824 + 0.786046i 0.998620 0.0525229i \(-0.0167263\pi\)
−0.544796 + 0.838569i \(0.683393\pi\)
\(110\) 0.684718 + 1.18597i 0.0652853 + 0.113077i
\(111\) 0 0
\(112\) 0.369922 + 2.61976i 0.0349543 + 0.247544i
\(113\) −5.71537 + 9.89931i −0.537657 + 0.931249i 0.461373 + 0.887206i \(0.347357\pi\)
−0.999030 + 0.0440426i \(0.985976\pi\)
\(114\) 0 0
\(115\) −2.33559 + 4.04537i −0.217795 + 0.377233i
\(116\) −3.87494 6.71160i −0.359779 0.623156i
\(117\) 0 0
\(118\) 5.27138 0.485270
\(119\) 2.65453 + 18.7992i 0.243340 + 1.72332i
\(120\) 0 0
\(121\) 4.29585 + 7.44063i 0.390532 + 0.676421i
\(122\) −7.17592 12.4291i −0.649677 1.12527i
\(123\) 0 0
\(124\) 3.24911 + 5.62762i 0.291778 + 0.505375i
\(125\) 8.13726 0.727819
\(126\) 0 0
\(127\) 3.02592 + 5.24105i 0.268507 + 0.465068i 0.968477 0.249105i \(-0.0801363\pi\)
−0.699969 + 0.714173i \(0.746803\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −3.16252 + 0.348796i −0.277371 + 0.0305914i
\(131\) 2.66045 4.60804i 0.232445 0.402606i −0.726082 0.687608i \(-0.758661\pi\)
0.958527 + 0.285002i \(0.0919941\pi\)
\(132\) 0 0
\(133\) 9.88066 7.72997i 0.856762 0.670274i
\(134\) −3.75236 + 6.49929i −0.324155 + 0.561453i
\(135\) 0 0
\(136\) −7.17592 −0.615330
\(137\) 8.01122 0.684445 0.342222 0.939619i \(-0.388820\pi\)
0.342222 + 0.939619i \(0.388820\pi\)
\(138\) 0 0
\(139\) 8.87582 15.3734i 0.752838 1.30395i −0.193605 0.981080i \(-0.562018\pi\)
0.946442 0.322873i \(-0.104649\pi\)
\(140\) 2.16529 + 0.873194i 0.183000 + 0.0737984i
\(141\) 0 0
\(142\) 5.00985 8.67732i 0.420418 0.728185i
\(143\) 5.56162 0.613395i 0.465086 0.0512947i
\(144\) 0 0
\(145\) −6.83883 −0.567934
\(146\) 1.93284 + 3.34778i 0.159963 + 0.277064i
\(147\) 0 0
\(148\) 0.330574 0.0271730
\(149\) 8.66161 + 15.0024i 0.709587 + 1.22904i 0.965010 + 0.262211i \(0.0844518\pi\)
−0.255424 + 0.966829i \(0.582215\pi\)
\(150\) 0 0
\(151\) −1.40927 2.44093i −0.114685 0.198640i 0.802969 0.596021i \(-0.203252\pi\)
−0.917654 + 0.397381i \(0.869919\pi\)
\(152\) 2.37080 + 4.10635i 0.192298 + 0.333069i
\(153\) 0 0
\(154\) −3.80789 1.53560i −0.306848 0.123743i
\(155\) 5.73430 0.460590
\(156\) 0 0
\(157\) 6.39822 + 11.0820i 0.510634 + 0.884443i 0.999924 + 0.0123225i \(0.00392247\pi\)
−0.489290 + 0.872121i \(0.662744\pi\)
\(158\) −6.67928 + 11.5689i −0.531375 + 0.920368i
\(159\) 0 0
\(160\) −0.441221 + 0.764218i −0.0348816 + 0.0604167i
\(161\) −1.95817 13.8677i −0.154326 1.09292i
\(162\) 0 0
\(163\) 5.34387 + 9.25586i 0.418564 + 0.724975i 0.995795 0.0916061i \(-0.0292001\pi\)
−0.577231 + 0.816581i \(0.695867\pi\)
\(164\) 3.02918 + 5.24669i 0.236539 + 0.409698i
\(165\) 0 0
\(166\) −10.5519 −0.818984
\(167\) 9.90412 + 17.1544i 0.766404 + 1.32745i 0.939501 + 0.342546i \(0.111289\pi\)
−0.173097 + 0.984905i \(0.555377\pi\)
\(168\) 0 0
\(169\) −3.89023 + 12.4043i −0.299249 + 0.954175i
\(170\) −3.16617 + 5.48396i −0.242834 + 0.420601i
\(171\) 0 0
\(172\) 3.35975 5.81927i 0.256179 0.443715i
\(173\) −0.869332 1.50573i −0.0660941 0.114478i 0.831085 0.556146i \(-0.187720\pi\)
−0.897179 + 0.441668i \(0.854387\pi\)
\(174\) 0 0
\(175\) −8.79642 + 6.88174i −0.664947 + 0.520210i
\(176\) 0.775934 1.34396i 0.0584883 0.101305i
\(177\) 0 0
\(178\) 14.8167 1.11056
\(179\) 4.89644 8.48088i 0.365977 0.633890i −0.622956 0.782257i \(-0.714068\pi\)
0.988932 + 0.148367i \(0.0474016\pi\)
\(180\) 0 0
\(181\) −11.5901 −0.861486 −0.430743 0.902475i \(-0.641748\pi\)
−0.430743 + 0.902475i \(0.641748\pi\)
\(182\) 6.82366 6.66615i 0.505804 0.494128i
\(183\) 0 0
\(184\) 5.29348 0.390240
\(185\) 0.145856 0.252631i 0.0107236 0.0185738i
\(186\) 0 0
\(187\) 5.56804 9.64413i 0.407176 0.705249i
\(188\) −0.976430 + 1.69123i −0.0712135 + 0.123345i
\(189\) 0 0
\(190\) 4.18420 0.303554
\(191\) −0.631864 1.09442i −0.0457200 0.0791894i 0.842260 0.539072i \(-0.181225\pi\)
−0.887980 + 0.459882i \(0.847892\pi\)
\(192\) 0 0
\(193\) −9.49130 + 16.4394i −0.683199 + 1.18334i 0.290800 + 0.956784i \(0.406079\pi\)
−0.973999 + 0.226552i \(0.927255\pi\)
\(194\) −5.79259 + 10.0331i −0.415884 + 0.720332i
\(195\) 0 0
\(196\) −6.72632 + 1.93822i −0.480451 + 0.138444i
\(197\) −12.1786 21.0939i −0.867688 1.50288i −0.864353 0.502886i \(-0.832272\pi\)
−0.00333546 0.999994i \(-0.501062\pi\)
\(198\) 0 0
\(199\) 21.5059 1.52451 0.762255 0.647277i \(-0.224092\pi\)
0.762255 + 0.647277i \(0.224092\pi\)
\(200\) −2.11065 3.65575i −0.149245 0.258500i
\(201\) 0 0
\(202\) −3.91439 + 6.77993i −0.275416 + 0.477034i
\(203\) 16.1494 12.6342i 1.13346 0.886747i
\(204\) 0 0
\(205\) 5.34616 0.373392
\(206\) −0.430172 + 0.745081i −0.0299715 + 0.0519122i
\(207\) 0 0
\(208\) 2.13422 + 2.90605i 0.147981 + 0.201498i
\(209\) −7.35835 −0.508988
\(210\) 0 0
\(211\) 3.56775 + 6.17953i 0.245614 + 0.425416i 0.962304 0.271976i \(-0.0876771\pi\)
−0.716690 + 0.697392i \(0.754344\pi\)
\(212\) 6.74308 + 11.6794i 0.463117 + 0.802141i
\(213\) 0 0
\(214\) −8.14260 −0.556617
\(215\) −2.96479 5.13517i −0.202197 0.350216i
\(216\) 0 0
\(217\) −13.5411 + 10.5937i −0.919231 + 0.719145i
\(218\) −4.73806 8.20656i −0.320902 0.555818i
\(219\) 0 0
\(220\) −0.684718 1.18597i −0.0461637 0.0799578i
\(221\) 15.3150 + 20.8536i 1.03020 + 1.40276i
\(222\) 0 0
\(223\) −12.1673 21.0744i −0.814784 1.41125i −0.909483 0.415742i \(-0.863522\pi\)
0.0946981 0.995506i \(-0.469811\pi\)
\(224\) −0.369922 2.61976i −0.0247164 0.175040i
\(225\) 0 0
\(226\) 5.71537 9.89931i 0.380181 0.658492i
\(227\) −9.56035 −0.634543 −0.317271 0.948335i \(-0.602767\pi\)
−0.317271 + 0.948335i \(0.602767\pi\)
\(228\) 0 0
\(229\) −5.40570 + 9.36295i −0.357219 + 0.618721i −0.987495 0.157650i \(-0.949608\pi\)
0.630276 + 0.776371i \(0.282942\pi\)
\(230\) 2.33559 4.04537i 0.154005 0.266744i
\(231\) 0 0
\(232\) 3.87494 + 6.71160i 0.254402 + 0.440638i
\(233\) 5.15806 8.93403i 0.337916 0.585288i −0.646125 0.763232i \(-0.723611\pi\)
0.984041 + 0.177944i \(0.0569447\pi\)
\(234\) 0 0
\(235\) 0.861644 + 1.49241i 0.0562074 + 0.0973541i
\(236\) −5.27138 −0.343137
\(237\) 0 0
\(238\) −2.65453 18.7992i −0.172068 1.21857i
\(239\) −11.0866 −0.717130 −0.358565 0.933505i \(-0.616734\pi\)
−0.358565 + 0.933505i \(0.616734\pi\)
\(240\) 0 0
\(241\) −18.6739 −1.20289 −0.601447 0.798913i \(-0.705409\pi\)
−0.601447 + 0.798913i \(0.705409\pi\)
\(242\) −4.29585 7.44063i −0.276148 0.478302i
\(243\) 0 0
\(244\) 7.17592 + 12.4291i 0.459391 + 0.795689i
\(245\) −1.48658 + 5.99555i −0.0949738 + 0.383042i
\(246\) 0 0
\(247\) 6.87345 15.6535i 0.437347 0.996009i
\(248\) −3.24911 5.62762i −0.206319 0.357354i
\(249\) 0 0
\(250\) −8.13726 −0.514646
\(251\) −0.00354883 + 0.00614676i −0.000224000 + 0.000387980i −0.866137 0.499806i \(-0.833405\pi\)
0.865913 + 0.500194i \(0.166738\pi\)
\(252\) 0 0
\(253\) −4.10739 + 7.11421i −0.258229 + 0.447266i
\(254\) −3.02592 5.24105i −0.189863 0.328853i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −12.6759 −0.790701 −0.395350 0.918530i \(-0.629377\pi\)
−0.395350 + 0.918530i \(0.629377\pi\)
\(258\) 0 0
\(259\) 0.122287 + 0.866025i 0.00759852 + 0.0538122i
\(260\) 3.16252 0.348796i 0.196131 0.0216314i
\(261\) 0 0
\(262\) −2.66045 + 4.60804i −0.164363 + 0.284686i
\(263\) −2.59901 + 4.50161i −0.160262 + 0.277581i −0.934963 0.354747i \(-0.884567\pi\)
0.774701 + 0.632328i \(0.217900\pi\)
\(264\) 0 0
\(265\) 11.9008 0.731058
\(266\) −9.88066 + 7.72997i −0.605822 + 0.473955i
\(267\) 0 0
\(268\) 3.75236 6.49929i 0.229212 0.397007i
\(269\) 0.685009 0.0417657 0.0208829 0.999782i \(-0.493352\pi\)
0.0208829 + 0.999782i \(0.493352\pi\)
\(270\) 0 0
\(271\) −5.05126 −0.306842 −0.153421 0.988161i \(-0.549029\pi\)
−0.153421 + 0.988161i \(0.549029\pi\)
\(272\) 7.17592 0.435104
\(273\) 0 0
\(274\) −8.01122 −0.483976
\(275\) 6.55090 0.395034
\(276\) 0 0
\(277\) −12.4497 −0.748029 −0.374015 0.927423i \(-0.622019\pi\)
−0.374015 + 0.927423i \(0.622019\pi\)
\(278\) −8.87582 + 15.3734i −0.532337 + 0.922034i
\(279\) 0 0
\(280\) −2.16529 0.873194i −0.129401 0.0521834i
\(281\) 23.5917 1.40736 0.703680 0.710517i \(-0.251539\pi\)
0.703680 + 0.710517i \(0.251539\pi\)
\(282\) 0 0
\(283\) −10.5148 + 18.2121i −0.625038 + 1.08260i 0.363495 + 0.931596i \(0.381583\pi\)
−0.988533 + 0.151002i \(0.951750\pi\)
\(284\) −5.00985 + 8.67732i −0.297280 + 0.514904i
\(285\) 0 0
\(286\) −5.56162 + 0.613395i −0.328865 + 0.0362708i
\(287\) −12.6245 + 9.87660i −0.745203 + 0.582997i
\(288\) 0 0
\(289\) 34.4938 2.02905
\(290\) 6.83883 0.401590
\(291\) 0 0
\(292\) −1.93284 3.34778i −0.113111 0.195914i
\(293\) 6.41251 11.1068i 0.374623 0.648865i −0.615648 0.788021i \(-0.711106\pi\)
0.990270 + 0.139156i \(0.0444390\pi\)
\(294\) 0 0
\(295\) −2.32584 + 4.02848i −0.135416 + 0.234547i
\(296\) −0.330574 −0.0192142
\(297\) 0 0
\(298\) −8.66161 15.0024i −0.501754 0.869063i
\(299\) −11.2974 15.3831i −0.653347 0.889627i
\(300\) 0 0
\(301\) 16.4879 + 6.64909i 0.950349 + 0.383247i
\(302\) 1.40927 + 2.44093i 0.0810944 + 0.140460i
\(303\) 0 0
\(304\) −2.37080 4.10635i −0.135975 0.235515i
\(305\) 12.6647 0.725177
\(306\) 0 0
\(307\) −20.4988 −1.16993 −0.584963 0.811060i \(-0.698891\pi\)
−0.584963 + 0.811060i \(0.698891\pi\)
\(308\) 3.80789 + 1.53560i 0.216974 + 0.0874992i
\(309\) 0 0
\(310\) −5.73430 −0.325686
\(311\) −7.06023 12.2287i −0.400349 0.693425i 0.593419 0.804894i \(-0.297778\pi\)
−0.993768 + 0.111469i \(0.964444\pi\)
\(312\) 0 0
\(313\) 14.5296 25.1661i 0.821264 1.42247i −0.0834772 0.996510i \(-0.526603\pi\)
0.904741 0.425961i \(-0.140064\pi\)
\(314\) −6.39822 11.0820i −0.361072 0.625396i
\(315\) 0 0
\(316\) 6.67928 11.5689i 0.375739 0.650799i
\(317\) 6.08027 10.5313i 0.341502 0.591499i −0.643210 0.765690i \(-0.722398\pi\)
0.984712 + 0.174191i \(0.0557310\pi\)
\(318\) 0 0
\(319\) −12.0268 −0.673372
\(320\) 0.441221 0.764218i 0.0246650 0.0427211i
\(321\) 0 0
\(322\) 1.95817 + 13.8677i 0.109125 + 0.772814i
\(323\) −17.0127 29.4669i −0.946612 1.63958i
\(324\) 0 0
\(325\) −6.11920 + 13.9358i −0.339432 + 0.773019i
\(326\) −5.34387 9.25586i −0.295970 0.512635i
\(327\) 0 0
\(328\) −3.02918 5.24669i −0.167259 0.289700i
\(329\) −4.79182 1.93239i −0.264181 0.106536i
\(330\) 0 0
\(331\) −4.96685 8.60284i −0.273003 0.472855i 0.696626 0.717434i \(-0.254684\pi\)
−0.969629 + 0.244579i \(0.921350\pi\)
\(332\) 10.5519 0.579109
\(333\) 0 0
\(334\) −9.90412 17.1544i −0.541930 0.938649i
\(335\) −3.31125 5.73525i −0.180913 0.313350i
\(336\) 0 0
\(337\) −3.38360 −0.184316 −0.0921582 0.995744i \(-0.529377\pi\)
−0.0921582 + 0.995744i \(0.529377\pi\)
\(338\) 3.89023 12.4043i 0.211601 0.674704i
\(339\) 0 0
\(340\) 3.16617 5.48396i 0.171710 0.297410i
\(341\) 10.0844 0.546100
\(342\) 0 0
\(343\) −7.56588 16.9044i −0.408519 0.912750i
\(344\) −3.35975 + 5.81927i −0.181146 + 0.313754i
\(345\) 0 0
\(346\) 0.869332 + 1.50573i 0.0467356 + 0.0809484i
\(347\) −22.2544 −1.19468 −0.597340 0.801988i \(-0.703776\pi\)
−0.597340 + 0.801988i \(0.703776\pi\)
\(348\) 0 0
\(349\) −5.16027 8.93784i −0.276223 0.478432i 0.694220 0.719763i \(-0.255749\pi\)
−0.970443 + 0.241331i \(0.922416\pi\)
\(350\) 8.79642 6.88174i 0.470188 0.367844i
\(351\) 0 0
\(352\) −0.775934 + 1.34396i −0.0413574 + 0.0716332i
\(353\) −0.485103 + 0.840224i −0.0258195 + 0.0447206i −0.878646 0.477473i \(-0.841553\pi\)
0.852827 + 0.522194i \(0.174886\pi\)
\(354\) 0 0
\(355\) 4.42091 + 7.65724i 0.234637 + 0.406404i
\(356\) −14.8167 −0.785285
\(357\) 0 0
\(358\) −4.89644 + 8.48088i −0.258785 + 0.448228i
\(359\) 1.03017 1.78430i 0.0543701 0.0941717i −0.837559 0.546346i \(-0.816018\pi\)
0.891929 + 0.452175i \(0.149352\pi\)
\(360\) 0 0
\(361\) −1.74142 + 3.01623i −0.0916537 + 0.158749i
\(362\) 11.5901 0.609162
\(363\) 0 0
\(364\) −6.82366 + 6.66615i −0.357657 + 0.349401i
\(365\) −3.41124 −0.178552
\(366\) 0 0
\(367\) 4.63538 8.02871i 0.241965 0.419095i −0.719309 0.694690i \(-0.755542\pi\)
0.961274 + 0.275595i \(0.0888749\pi\)
\(368\) −5.29348 −0.275942
\(369\) 0 0
\(370\) −0.145856 + 0.252631i −0.00758271 + 0.0131336i
\(371\) −28.1027 + 21.9857i −1.45902 + 1.14144i
\(372\) 0 0
\(373\) 3.76618 + 6.52322i 0.195006 + 0.337760i 0.946902 0.321521i \(-0.104194\pi\)
−0.751897 + 0.659281i \(0.770861\pi\)
\(374\) −5.56804 + 9.64413i −0.287917 + 0.498686i
\(375\) 0 0
\(376\) 0.976430 1.69123i 0.0503555 0.0872184i
\(377\) 11.2343 25.5848i 0.578594 1.31768i
\(378\) 0 0
\(379\) −8.94169 15.4875i −0.459304 0.795537i 0.539621 0.841908i \(-0.318568\pi\)
−0.998924 + 0.0463711i \(0.985234\pi\)
\(380\) −4.18420 −0.214645
\(381\) 0 0
\(382\) 0.631864 + 1.09442i 0.0323290 + 0.0559954i
\(383\) −9.09536 15.7536i −0.464751 0.804972i 0.534439 0.845207i \(-0.320523\pi\)
−0.999190 + 0.0402346i \(0.987189\pi\)
\(384\) 0 0
\(385\) 2.85366 2.23251i 0.145436 0.113779i
\(386\) 9.49130 16.4394i 0.483095 0.836745i
\(387\) 0 0
\(388\) 5.79259 10.0331i 0.294074 0.509352i
\(389\) −8.54918 14.8076i −0.433461 0.750776i 0.563708 0.825974i \(-0.309374\pi\)
−0.997169 + 0.0751984i \(0.976041\pi\)
\(390\) 0 0
\(391\) −37.9856 −1.92101
\(392\) 6.72632 1.93822i 0.339730 0.0978947i
\(393\) 0 0
\(394\) 12.1786 + 21.0939i 0.613548 + 1.06270i
\(395\) −5.89408 10.2088i −0.296563 0.513663i
\(396\) 0 0
\(397\) −13.8385 23.9691i −0.694536 1.20297i −0.970337 0.241757i \(-0.922276\pi\)
0.275800 0.961215i \(-0.411057\pi\)
\(398\) −21.5059 −1.07799
\(399\) 0 0
\(400\) 2.11065 + 3.65575i 0.105532 + 0.182787i
\(401\) 0.784039 0.0391531 0.0195765 0.999808i \(-0.493768\pi\)
0.0195765 + 0.999808i \(0.493768\pi\)
\(402\) 0 0
\(403\) −9.41983 + 21.4526i −0.469235 + 1.06863i
\(404\) 3.91439 6.77993i 0.194748 0.337314i
\(405\) 0 0
\(406\) −16.1494 + 12.6342i −0.801480 + 0.627025i
\(407\) 0.256504 0.444277i 0.0127144 0.0220220i
\(408\) 0 0
\(409\) 25.9739 1.28433 0.642164 0.766567i \(-0.278037\pi\)
0.642164 + 0.766567i \(0.278037\pi\)
\(410\) −5.34616 −0.264028
\(411\) 0 0
\(412\) 0.430172 0.745081i 0.0211931 0.0367075i
\(413\) −1.95000 13.8098i −0.0959531 0.679534i
\(414\) 0 0
\(415\) 4.65571 8.06393i 0.228540 0.395843i
\(416\) −2.13422 2.90605i −0.104639 0.142481i
\(417\) 0 0
\(418\) 7.35835 0.359909
\(419\) −0.207579 0.359537i −0.0101409 0.0175645i 0.860910 0.508757i \(-0.169895\pi\)
−0.871051 + 0.491192i \(0.836561\pi\)
\(420\) 0 0
\(421\) −8.45284 −0.411966 −0.205983 0.978556i \(-0.566039\pi\)
−0.205983 + 0.978556i \(0.566039\pi\)
\(422\) −3.56775 6.17953i −0.173675 0.300815i
\(423\) 0 0
\(424\) −6.74308 11.6794i −0.327473 0.567200i
\(425\) 15.1458 + 26.2334i 0.734681 + 1.27250i
\(426\) 0 0
\(427\) −29.9067 + 23.3970i −1.44728 + 1.13226i
\(428\) 8.14260 0.393587
\(429\) 0 0
\(430\) 2.96479 + 5.13517i 0.142975 + 0.247640i
\(431\) −12.3935 + 21.4662i −0.596973 + 1.03399i 0.396292 + 0.918125i \(0.370297\pi\)
−0.993265 + 0.115864i \(0.963036\pi\)
\(432\) 0 0
\(433\) 18.5723 32.1682i 0.892529 1.54591i 0.0556964 0.998448i \(-0.482262\pi\)
0.836833 0.547458i \(-0.184405\pi\)
\(434\) 13.5411 10.5937i 0.649994 0.508512i
\(435\) 0 0
\(436\) 4.73806 + 8.20656i 0.226912 + 0.393023i
\(437\) 12.5498 + 21.7369i 0.600338 + 1.03982i
\(438\) 0 0
\(439\) −8.75366 −0.417790 −0.208895 0.977938i \(-0.566987\pi\)
−0.208895 + 0.977938i \(0.566987\pi\)
\(440\) 0.684718 + 1.18597i 0.0326426 + 0.0565387i
\(441\) 0 0
\(442\) −15.3150 20.8536i −0.728459 0.991903i
\(443\) −1.48601 + 2.57384i −0.0706023 + 0.122287i −0.899165 0.437609i \(-0.855825\pi\)
0.828563 + 0.559896i \(0.189159\pi\)
\(444\) 0 0
\(445\) −6.53746 + 11.3232i −0.309905 + 0.536772i
\(446\) 12.1673 + 21.0744i 0.576140 + 0.997903i
\(447\) 0 0
\(448\) 0.369922 + 2.61976i 0.0174772 + 0.123772i
\(449\) −2.95700 + 5.12167i −0.139549 + 0.241707i −0.927326 0.374254i \(-0.877899\pi\)
0.787777 + 0.615961i \(0.211232\pi\)
\(450\) 0 0
\(451\) 9.40178 0.442713
\(452\) −5.71537 + 9.89931i −0.268828 + 0.465624i
\(453\) 0 0
\(454\) 9.56035 0.448690
\(455\) 2.08365 + 8.15602i 0.0976829 + 0.382360i
\(456\) 0 0
\(457\) −14.1933 −0.663935 −0.331968 0.943291i \(-0.607712\pi\)
−0.331968 + 0.943291i \(0.607712\pi\)
\(458\) 5.40570 9.36295i 0.252592 0.437502i
\(459\) 0 0
\(460\) −2.33559 + 4.04537i −0.108898 + 0.188616i
\(461\) −15.1395 + 26.2224i −0.705117 + 1.22130i 0.261532 + 0.965195i \(0.415772\pi\)
−0.966649 + 0.256104i \(0.917561\pi\)
\(462\) 0 0
\(463\) −32.8167 −1.52512 −0.762561 0.646916i \(-0.776059\pi\)
−0.762561 + 0.646916i \(0.776059\pi\)
\(464\) −3.87494 6.71160i −0.179890 0.311578i
\(465\) 0 0
\(466\) −5.15806 + 8.93403i −0.238943 + 0.413861i
\(467\) 10.4247 18.0562i 0.482399 0.835540i −0.517397 0.855746i \(-0.673099\pi\)
0.999796 + 0.0202058i \(0.00643214\pi\)
\(468\) 0 0
\(469\) 18.4147 + 7.42608i 0.850310 + 0.342904i
\(470\) −0.861644 1.49241i −0.0397447 0.0688398i
\(471\) 0 0
\(472\) 5.27138 0.242635
\(473\) −5.21390 9.03074i −0.239735 0.415234i
\(474\) 0 0
\(475\) 10.0079 17.3341i 0.459192 0.795344i
\(476\) 2.65453 + 18.7992i 0.121670 + 0.861660i
\(477\) 0 0
\(478\) 11.0866 0.507087
\(479\) −12.0950 + 20.9492i −0.552637 + 0.957195i 0.445447 + 0.895308i \(0.353045\pi\)
−0.998083 + 0.0618862i \(0.980288\pi\)
\(480\) 0 0
\(481\) 0.705517 + 0.960664i 0.0321688 + 0.0438025i
\(482\) 18.6739 0.850574
\(483\) 0 0
\(484\) 4.29585 + 7.44063i 0.195266 + 0.338211i
\(485\) −5.11163 8.85361i −0.232107 0.402022i
\(486\) 0 0
\(487\) −40.3065 −1.82646 −0.913230 0.407444i \(-0.866420\pi\)
−0.913230 + 0.407444i \(0.866420\pi\)
\(488\) −7.17592 12.4291i −0.324839 0.562637i
\(489\) 0 0
\(490\) 1.48658 5.99555i 0.0671566 0.270851i
\(491\) 3.58602 + 6.21117i 0.161835 + 0.280306i 0.935527 0.353256i \(-0.114925\pi\)
−0.773692 + 0.633562i \(0.781592\pi\)
\(492\) 0 0
\(493\) −27.8063 48.1619i −1.25233 2.16910i
\(494\) −6.87345 + 15.6535i −0.309251 + 0.704285i
\(495\) 0 0
\(496\) 3.24911 + 5.62762i 0.145889 + 0.252688i
\(497\) −24.5858 9.91470i −1.10282 0.444735i
\(498\) 0 0
\(499\) 8.24802 14.2860i 0.369232 0.639528i −0.620214 0.784433i \(-0.712954\pi\)
0.989446 + 0.144904i \(0.0462875\pi\)
\(500\) 8.13726 0.363910
\(501\) 0 0
\(502\) 0.00354883 0.00614676i 0.000158392 0.000274343i
\(503\) −0.187093 + 0.324055i −0.00834208 + 0.0144489i −0.870166 0.492758i \(-0.835989\pi\)
0.861824 + 0.507207i \(0.169322\pi\)
\(504\) 0 0
\(505\) −3.45423 5.98290i −0.153711 0.266236i
\(506\) 4.10739 7.11421i 0.182596 0.316265i
\(507\) 0 0
\(508\) 3.02592 + 5.24105i 0.134254 + 0.232534i
\(509\) −5.26899 −0.233544 −0.116772 0.993159i \(-0.537255\pi\)
−0.116772 + 0.993159i \(0.537255\pi\)
\(510\) 0 0
\(511\) 8.05538 6.30200i 0.356349 0.278784i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 12.6759 0.559110
\(515\) −0.379603 0.657491i −0.0167273 0.0289725i
\(516\) 0 0
\(517\) 1.51529 + 2.62456i 0.0666424 + 0.115428i
\(518\) −0.122287 0.866025i −0.00537296 0.0380510i
\(519\) 0 0
\(520\) −3.16252 + 0.348796i −0.138686 + 0.0152957i
\(521\) −3.43343 5.94687i −0.150421 0.260537i 0.780961 0.624580i \(-0.214730\pi\)
−0.931382 + 0.364042i \(0.881396\pi\)
\(522\) 0 0
\(523\) −2.18445 −0.0955193 −0.0477596 0.998859i \(-0.515208\pi\)
−0.0477596 + 0.998859i \(0.515208\pi\)
\(524\) 2.66045 4.60804i 0.116222 0.201303i
\(525\) 0 0
\(526\) 2.59901 4.50161i 0.113322 0.196280i
\(527\) 23.3153 + 40.3833i 1.01563 + 1.75913i
\(528\) 0 0
\(529\) 5.02089 0.218299
\(530\) −11.9008 −0.516936
\(531\) 0 0
\(532\) 9.88066 7.72997i 0.428381 0.335137i
\(533\) −8.78222 + 20.0005i −0.380400 + 0.866319i
\(534\) 0 0
\(535\) 3.59269 6.22272i 0.155325 0.269032i
\(536\) −3.75236 + 6.49929i −0.162077 + 0.280726i
\(537\) 0 0
\(538\) −0.685009 −0.0295328
\(539\) −2.61430 + 10.5438i −0.112606 + 0.454154i
\(540\) 0 0
\(541\) −18.7629 + 32.4982i −0.806679 + 1.39721i 0.108473 + 0.994099i \(0.465404\pi\)
−0.915152 + 0.403109i \(0.867929\pi\)
\(542\) 5.05126 0.216970
\(543\) 0 0
\(544\) −7.17592 −0.307665
\(545\) 8.36213 0.358194
\(546\) 0 0
\(547\) 26.8987 1.15011 0.575054 0.818116i \(-0.304981\pi\)
0.575054 + 0.818116i \(0.304981\pi\)
\(548\) 8.01122 0.342222
\(549\) 0 0
\(550\) −6.55090 −0.279331
\(551\) −18.3735 + 31.8238i −0.782736 + 1.35574i
\(552\) 0 0
\(553\) 32.7785 + 13.2186i 1.39388 + 0.562110i
\(554\) 12.4497 0.528937
\(555\) 0 0
\(556\) 8.87582 15.3734i 0.376419 0.651976i
\(557\) 1.58336 2.74245i 0.0670889 0.116201i −0.830530 0.556974i \(-0.811962\pi\)
0.897619 + 0.440773i \(0.145296\pi\)
\(558\) 0 0
\(559\) 24.0815 2.65597i 1.01854 0.112335i
\(560\) 2.16529 + 0.873194i 0.0915001 + 0.0368992i
\(561\) 0 0
\(562\) −23.5917 −0.995154
\(563\) −30.8984 −1.30221 −0.651106 0.758987i \(-0.725694\pi\)
−0.651106 + 0.758987i \(0.725694\pi\)
\(564\) 0 0
\(565\) 5.04349 + 8.73558i 0.212181 + 0.367508i
\(566\) 10.5148 18.2121i 0.441969 0.765512i
\(567\) 0 0
\(568\) 5.00985 8.67732i 0.210209 0.364092i
\(569\) −11.7828 −0.493962 −0.246981 0.969020i \(-0.579439\pi\)
−0.246981 + 0.969020i \(0.579439\pi\)
\(570\) 0 0
\(571\) −11.9777 20.7459i −0.501250 0.868190i −0.999999 0.00144398i \(-0.999540\pi\)
0.498749 0.866746i \(-0.333793\pi\)
\(572\) 5.56162 0.613395i 0.232543 0.0256473i
\(573\) 0 0
\(574\) 12.6245 9.87660i 0.526938 0.412241i
\(575\) −11.1727 19.3516i −0.465932 0.807018i
\(576\) 0 0
\(577\) −13.2068 22.8748i −0.549805 0.952291i −0.998287 0.0584990i \(-0.981369\pi\)
0.448482 0.893792i \(-0.351965\pi\)
\(578\) −34.4938 −1.43475
\(579\) 0 0
\(580\) −6.83883 −0.283967
\(581\) 3.90337 + 27.6434i 0.161939 + 1.14684i
\(582\) 0 0
\(583\) 20.9287 0.866780
\(584\) 1.93284 + 3.34778i 0.0799815 + 0.138532i
\(585\) 0 0
\(586\) −6.41251 + 11.1068i −0.264898 + 0.458817i
\(587\) −15.3403 26.5702i −0.633162 1.09667i −0.986901 0.161325i \(-0.948423\pi\)
0.353739 0.935344i \(-0.384910\pi\)
\(588\) 0 0
\(589\) 15.4060 26.6840i 0.634793 1.09949i
\(590\) 2.32584 4.02848i 0.0957535 0.165850i
\(591\) 0 0
\(592\) 0.330574 0.0135865
\(593\) −6.14941 + 10.6511i −0.252526 + 0.437388i −0.964221 0.265101i \(-0.914595\pi\)
0.711695 + 0.702489i \(0.247928\pi\)
\(594\) 0 0
\(595\) 15.5379 + 6.26597i 0.636993 + 0.256880i
\(596\) 8.66161 + 15.0024i 0.354793 + 0.614520i
\(597\) 0 0
\(598\) 11.2974 + 15.3831i 0.461986 + 0.629062i
\(599\) 3.22732 + 5.58989i 0.131865 + 0.228397i 0.924395 0.381436i \(-0.124570\pi\)
−0.792531 + 0.609832i \(0.791237\pi\)
\(600\) 0 0
\(601\) −1.05552 1.82822i −0.0430556 0.0745745i 0.843695 0.536824i \(-0.180376\pi\)
−0.886750 + 0.462249i \(0.847043\pi\)
\(602\) −16.4879 6.64909i −0.671998 0.270997i
\(603\) 0 0
\(604\) −1.40927 2.44093i −0.0573424 0.0993199i
\(605\) 7.58169 0.308239
\(606\) 0 0
\(607\) −12.5828 21.7941i −0.510722 0.884596i −0.999923 0.0124247i \(-0.996045\pi\)
0.489201 0.872171i \(-0.337288\pi\)
\(608\) 2.37080 + 4.10635i 0.0961488 + 0.166535i
\(609\) 0 0
\(610\) −12.6647 −0.512778
\(611\) −6.99870 + 0.771892i −0.283137 + 0.0312274i
\(612\) 0 0
\(613\) 12.7273 22.0444i 0.514052 0.890364i −0.485815 0.874061i \(-0.661477\pi\)
0.999867 0.0163023i \(-0.00518940\pi\)
\(614\) 20.4988 0.827263
\(615\) 0 0
\(616\) −3.80789 1.53560i −0.153424 0.0618713i
\(617\) −16.4252 + 28.4493i −0.661254 + 1.14532i 0.319033 + 0.947744i \(0.396642\pi\)
−0.980287 + 0.197581i \(0.936691\pi\)
\(618\) 0 0
\(619\) 0.180058 + 0.311869i 0.00723713 + 0.0125351i 0.869621 0.493719i \(-0.164363\pi\)
−0.862384 + 0.506254i \(0.831030\pi\)
\(620\) 5.73430 0.230295
\(621\) 0 0
\(622\) 7.06023 + 12.2287i 0.283089 + 0.490325i
\(623\) −5.48103 38.8163i −0.219593 1.55514i
\(624\) 0 0
\(625\) −6.96290 + 12.0601i −0.278516 + 0.482404i
\(626\) −14.5296 + 25.1661i −0.580721 + 1.00584i
\(627\) 0 0
\(628\) 6.39822 + 11.0820i 0.255317 + 0.442222i
\(629\) 2.37217 0.0945847
\(630\) 0 0
\(631\) −7.36478 + 12.7562i −0.293187 + 0.507815i −0.974562 0.224120i \(-0.928049\pi\)
0.681374 + 0.731935i \(0.261383\pi\)
\(632\) −6.67928 + 11.5689i −0.265687 + 0.460184i
\(633\) 0 0
\(634\) −6.08027 + 10.5313i −0.241478 + 0.418253i
\(635\) 5.34041 0.211928
\(636\) 0 0
\(637\) −19.9880 15.4104i −0.791952 0.610583i
\(638\) 12.0268 0.476146
\(639\) 0 0
\(640\) −0.441221 + 0.764218i −0.0174408 + 0.0302084i
\(641\) 48.3368 1.90919 0.954595 0.297906i \(-0.0962883\pi\)
0.954595 + 0.297906i \(0.0962883\pi\)
\(642\) 0 0
\(643\) −0.0861739 + 0.149258i −0.00339837 + 0.00588614i −0.867720 0.497054i \(-0.834415\pi\)
0.864321 + 0.502940i \(0.167748\pi\)
\(644\) −1.95817 13.8677i −0.0771628 0.546462i
\(645\) 0 0
\(646\) 17.0127 + 29.4669i 0.669355 + 1.15936i
\(647\) 13.9682 24.1937i 0.549147 0.951151i −0.449186 0.893438i \(-0.648286\pi\)
0.998333 0.0577129i \(-0.0183808\pi\)
\(648\) 0 0
\(649\) −4.09024 + 7.08451i −0.160556 + 0.278091i
\(650\) 6.11920 13.9358i 0.240015 0.546607i
\(651\) 0 0
\(652\) 5.34387 + 9.25586i 0.209282 + 0.362487i
\(653\) 41.8489 1.63767 0.818836 0.574027i \(-0.194620\pi\)
0.818836 + 0.574027i \(0.194620\pi\)
\(654\) 0 0
\(655\) −2.34770 4.06633i −0.0917322 0.158885i
\(656\) 3.02918 + 5.24669i 0.118270 + 0.204849i
\(657\) 0 0
\(658\) 4.79182 + 1.93239i 0.186804 + 0.0753326i
\(659\) −3.26341 + 5.65240i −0.127125 + 0.220186i −0.922561 0.385850i \(-0.873908\pi\)
0.795437 + 0.606036i \(0.207241\pi\)
\(660\) 0 0
\(661\) −0.526326 + 0.911623i −0.0204717 + 0.0354580i −0.876080 0.482166i \(-0.839850\pi\)
0.855608 + 0.517624i \(0.173183\pi\)
\(662\) 4.96685 + 8.60284i 0.193042 + 0.334359i
\(663\) 0 0
\(664\) −10.5519 −0.409492
\(665\) −1.54783 10.9616i −0.0600221 0.425073i
\(666\) 0 0
\(667\) 20.5119 + 35.5277i 0.794225 + 1.37564i
\(668\) 9.90412 + 17.1544i 0.383202 + 0.663725i
\(669\) 0 0
\(670\) 3.31125 + 5.73525i 0.127925 + 0.221572i
\(671\) 22.2722 0.859808
\(672\) 0 0
\(673\) −13.1957 22.8556i −0.508655 0.881017i −0.999950 0.0100234i \(-0.996809\pi\)
0.491294 0.870994i \(-0.336524\pi\)
\(674\) 3.38360 0.130331
\(675\) 0 0
\(676\) −3.89023 + 12.4043i −0.149624 + 0.477088i
\(677\) 10.3481 17.9235i 0.397711 0.688856i −0.595732 0.803183i \(-0.703138\pi\)
0.993443 + 0.114327i \(0.0364713\pi\)
\(678\) 0 0
\(679\) 28.4271 + 11.4638i 1.09093 + 0.439939i
\(680\) −3.16617 + 5.48396i −0.121417 + 0.210300i
\(681\) 0 0
\(682\) −10.0844 −0.386151
\(683\) 36.9788 1.41495 0.707477 0.706736i \(-0.249833\pi\)
0.707477 + 0.706736i \(0.249833\pi\)
\(684\) 0 0
\(685\) 3.53472 6.12232i 0.135055 0.233922i
\(686\) 7.56588 + 16.9044i 0.288866 + 0.645412i
\(687\) 0 0
\(688\) 3.35975 5.81927i 0.128089 0.221857i
\(689\) −19.5496 + 44.5220i −0.744780 + 1.69615i
\(690\) 0 0
\(691\) 3.51208 0.133606 0.0668029 0.997766i \(-0.478720\pi\)
0.0668029 + 0.997766i \(0.478720\pi\)
\(692\) −0.869332 1.50573i −0.0330470 0.0572391i
\(693\) 0 0
\(694\) 22.2544 0.844766
\(695\) −7.83241 13.5661i −0.297100 0.514593i
\(696\) 0 0
\(697\) 21.7372 + 37.6499i 0.823353 + 1.42609i
\(698\) 5.16027 + 8.93784i 0.195319 + 0.338302i
\(699\) 0 0
\(700\) −8.79642 + 6.88174i −0.332473 + 0.260105i
\(701\) 9.53390 0.360090 0.180045 0.983658i \(-0.442376\pi\)
0.180045 + 0.983658i \(0.442376\pi\)
\(702\) 0 0
\(703\) −0.783726 1.35745i −0.0295588 0.0511973i
\(704\) 0.775934 1.34396i 0.0292441 0.0506523i
\(705\) 0 0
\(706\) 0.485103 0.840224i 0.0182571 0.0316222i
\(707\) 19.2098 + 7.74674i 0.722460 + 0.291346i
\(708\) 0 0
\(709\) −9.56380 16.5650i −0.359176 0.622111i 0.628647 0.777690i \(-0.283609\pi\)
−0.987823 + 0.155579i \(0.950276\pi\)
\(710\) −4.42091 7.65724i −0.165914 0.287371i
\(711\) 0 0
\(712\) 14.8167 0.555281
\(713\) −17.1991 29.7897i −0.644110 1.11563i
\(714\) 0 0
\(715\) 1.98514 4.52093i 0.0742399 0.169073i
\(716\) 4.89644 8.48088i 0.182988 0.316945i
\(717\) 0 0
\(718\) −1.03017 + 1.78430i −0.0384455 + 0.0665895i
\(719\) −13.8837 24.0473i −0.517775 0.896812i −0.999787 0.0206477i \(-0.993427\pi\)
0.482012 0.876165i \(-0.339906\pi\)
\(720\) 0 0
\(721\) 2.11106 + 0.851328i 0.0786202 + 0.0317051i
\(722\) 1.74142 3.01623i 0.0648089 0.112252i
\(723\) 0 0
\(724\) −11.5901 −0.430743
\(725\) 16.3573 28.3316i 0.607494 1.05221i
\(726\) 0 0
\(727\) 27.4082 1.01651 0.508257 0.861205i \(-0.330290\pi\)
0.508257 + 0.861205i \(0.330290\pi\)
\(728\) 6.82366 6.66615i 0.252902 0.247064i
\(729\) 0 0
\(730\) 3.41124 0.126256
\(731\) 24.1093 41.7586i 0.891716 1.54450i
\(732\) 0 0
\(733\) 9.70789 16.8146i 0.358569 0.621060i −0.629153 0.777282i \(-0.716598\pi\)
0.987722 + 0.156222i \(0.0499314\pi\)
\(734\) −4.63538 + 8.02871i −0.171095 + 0.296345i
\(735\) 0 0
\(736\) 5.29348 0.195120
\(737\) −5.82318 10.0860i −0.214500 0.371524i
\(738\) 0 0
\(739\) −7.58084 + 13.1304i −0.278866 + 0.483010i −0.971103 0.238660i \(-0.923292\pi\)
0.692237 + 0.721670i \(0.256625\pi\)
\(740\) 0.145856 0.252631i 0.00536178 0.00928688i
\(741\) 0 0
\(742\) 28.1027 21.9857i 1.03168 0.807121i
\(743\) 5.85184 + 10.1357i 0.214683 + 0.371842i 0.953174 0.302421i \(-0.0977948\pi\)
−0.738491 + 0.674263i \(0.764461\pi\)
\(744\) 0 0
\(745\) 15.2868 0.560063
\(746\) −3.76618 6.52322i −0.137890 0.238832i
\(747\) 0 0
\(748\) 5.56804 9.64413i 0.203588 0.352624i
\(749\) 3.01213 + 21.3317i 0.110061 + 0.779443i
\(750\) 0 0
\(751\) 36.7832 1.34224 0.671119 0.741350i \(-0.265814\pi\)
0.671119 + 0.741350i \(0.265814\pi\)
\(752\) −0.976430 + 1.69123i −0.0356067 + 0.0616727i
\(753\) 0 0
\(754\) −11.2343 + 25.5848i −0.409128 + 0.931743i
\(755\) −2.48720 −0.0905185
\(756\) 0 0
\(757\) 0.469542 + 0.813271i 0.0170658 + 0.0295589i 0.874432 0.485148i \(-0.161234\pi\)
−0.857366 + 0.514707i \(0.827901\pi\)
\(758\) 8.94169 + 15.4875i 0.324777 + 0.562530i
\(759\) 0 0
\(760\) 4.18420 0.151777
\(761\) −2.83559 4.91139i −0.102790 0.178038i 0.810043 0.586370i \(-0.199444\pi\)
−0.912833 + 0.408333i \(0.866110\pi\)
\(762\) 0 0
\(763\) −19.7465 + 15.4484i −0.714872 + 0.559269i
\(764\) −0.631864 1.09442i −0.0228600 0.0395947i
\(765\) 0 0
\(766\) 9.09536 + 15.7536i 0.328629 + 0.569201i
\(767\) −11.2503 15.3189i −0.406224 0.553133i
\(768\) 0 0
\(769\) 0.775934 + 1.34396i 0.0279809 + 0.0484644i 0.879677 0.475572i \(-0.157759\pi\)
−0.851696 + 0.524036i \(0.824426\pi\)
\(770\) −2.85366 + 2.23251i −0.102839 + 0.0804542i
\(771\) 0 0
\(772\) −9.49130 + 16.4394i −0.341600 + 0.591668i
\(773\) 29.3595 1.05599 0.527994 0.849248i \(-0.322944\pi\)
0.527994 + 0.849248i \(0.322944\pi\)
\(774\) 0 0
\(775\) −13.7154 + 23.7558i −0.492673 + 0.853335i
\(776\) −5.79259 + 10.0331i −0.207942 + 0.360166i
\(777\) 0 0
\(778\) 8.54918 + 14.8076i 0.306503 + 0.530879i
\(779\) 14.3632 24.8778i 0.514615 0.891338i
\(780\) 0 0
\(781\) 7.77464 + 13.4661i 0.278198 + 0.481854i
\(782\) 37.9856 1.35836
\(783\) 0 0
\(784\) −6.72632 + 1.93822i −0.240226 + 0.0692220i
\(785\) 11.2921 0.403033
\(786\) 0 0
\(787\) −18.3264 −0.653265 −0.326632 0.945151i \(-0.605914\pi\)
−0.326632 + 0.945151i \(0.605914\pi\)
\(788\) −12.1786 21.0939i −0.433844 0.751440i
\(789\) 0 0
\(790\) 5.89408 + 10.2088i 0.209702 + 0.363215i
\(791\) −28.0481 11.3109i −0.997275 0.402171i
\(792\) 0 0
\(793\) −20.8045 + 47.3799i −0.738788 + 1.68251i
\(794\) 13.8385 + 23.9691i 0.491111 + 0.850630i
\(795\) 0 0
\(796\) 21.5059 0.762255
\(797\) −6.67504 + 11.5615i −0.236442 + 0.409529i −0.959691 0.281058i \(-0.909315\pi\)
0.723249 + 0.690588i \(0.242648\pi\)
\(798\) 0 0
\(799\) −7.00678 + 12.1361i −0.247882 + 0.429345i
\(800\) −2.11065 3.65575i −0.0746227 0.129250i
\(801\) 0 0
\(802\) −0.784039 −0.0276854
\(803\) −5.99903 −0.211701
\(804\) 0 0
\(805\) −11.4619 4.62223i −0.403979 0.162912i
\(806\) 9.41983 21.4526i 0.331799 0.755636i
\(807\) 0 0
\(808\) −3.91439 + 6.77993i −0.137708 + 0.238517i
\(809\) −16.1928 + 28.0467i −0.569307 + 0.986069i 0.427327 + 0.904097i \(0.359455\pi\)
−0.996635 + 0.0819722i \(0.973878\pi\)
\(810\) 0 0
\(811\) −11.1640 −0.392022 −0.196011 0.980602i \(-0.562799\pi\)
−0.196011 + 0.980602i \(0.562799\pi\)
\(812\) 16.1494 12.6342i 0.566732 0.443373i
\(813\) 0 0
\(814\) −0.256504 + 0.444277i −0.00899045 + 0.0155719i
\(815\) 9.43132 0.330365
\(816\) 0 0
\(817\) −31.8613 −1.11468
\(818\) −25.9739 −0.908157
\(819\) 0 0
\(820\) 5.34616 0.186696
\(821\) 31.7025 1.10643 0.553213 0.833040i \(-0.313402\pi\)
0.553213 + 0.833040i \(0.313402\pi\)
\(822\) 0 0
\(823\) 52.5002 1.83004 0.915022 0.403405i \(-0.132173\pi\)
0.915022 + 0.403405i \(0.132173\pi\)
\(824\) −0.430172 + 0.745081i −0.0149858 + 0.0259561i
\(825\) 0 0
\(826\) 1.95000 + 13.8098i 0.0678491 + 0.480503i
\(827\) −33.4939 −1.16470 −0.582348 0.812939i \(-0.697866\pi\)
−0.582348 + 0.812939i \(0.697866\pi\)
\(828\) 0 0
\(829\) 19.0624 33.0170i 0.662064 1.14673i −0.318008 0.948088i \(-0.603014\pi\)
0.980072 0.198641i \(-0.0636528\pi\)
\(830\) −4.65571 + 8.06393i −0.161602 + 0.279903i
\(831\) 0 0
\(832\) 2.13422 + 2.90605i 0.0739907 + 0.100749i
\(833\) −48.2675 + 13.9085i −1.67237 + 0.481900i
\(834\) 0 0
\(835\) 17.4796 0.604908
\(836\) −7.35835 −0.254494
\(837\) 0 0
\(838\) 0.207579 + 0.359537i 0.00717069 + 0.0124200i
\(839\) −12.6246 + 21.8665i −0.435851 + 0.754916i −0.997365 0.0725514i \(-0.976886\pi\)
0.561514 + 0.827467i \(0.310219\pi\)
\(840\) 0 0
\(841\) −15.5304 + 26.8994i −0.535530 + 0.927565i
\(842\) 8.45284 0.291304
\(843\) 0 0
\(844\) 3.56775 + 6.17953i 0.122807 + 0.212708i
\(845\) 7.76311 + 8.44602i 0.267059 + 0.290552i
\(846\) 0 0
\(847\) −17.9036 + 14.0066i −0.615174 + 0.481271i
\(848\) 6.74308 + 11.6794i 0.231558 + 0.401071i
\(849\) 0 0
\(850\) −15.1458 26.2334i −0.519498 0.899797i
\(851\) −1.74989 −0.0599853
\(852\) 0 0
\(853\) 30.1001 1.03061 0.515304 0.857007i \(-0.327679\pi\)
0.515304 + 0.857007i \(0.327679\pi\)
\(854\) 29.9067 23.3970i 1.02338 0.800628i
\(855\) 0 0
\(856\) −8.14260 −0.278308
\(857\) 11.8157 + 20.4655i 0.403618 + 0.699087i 0.994160 0.107920i \(-0.0344191\pi\)
−0.590541 + 0.807007i \(0.701086\pi\)
\(858\) 0 0
\(859\) −17.7282 + 30.7061i −0.604878 + 1.04768i 0.387193 + 0.921999i \(0.373445\pi\)
−0.992071 + 0.125680i \(0.959889\pi\)
\(860\) −2.96479 5.13517i −0.101099 0.175108i
\(861\) 0 0
\(862\) 12.3935 21.4662i 0.422124 0.731140i
\(863\) −0.0283138 + 0.0490410i −0.000963813 + 0.00166937i −0.866507 0.499165i \(-0.833640\pi\)
0.865543 + 0.500834i \(0.166973\pi\)
\(864\) 0 0
\(865\) −1.53427 −0.0521668
\(866\) −18.5723 + 32.1682i −0.631114 + 1.09312i
\(867\) 0 0
\(868\) −13.5411 + 10.5937i −0.459615 + 0.359573i
\(869\) −10.3654 17.9533i −0.351621 0.609025i
\(870\) 0 0
\(871\) 26.8956 2.96633i 0.911323 0.100510i
\(872\) −4.73806 8.20656i −0.160451 0.277909i
\(873\) 0 0
\(874\) −12.5498 21.7369i −0.424503 0.735261i
\(875\) 3.01015 + 21.3177i 0.101762 + 0.720670i
\(876\) 0 0
\(877\) −17.0082 29.4590i −0.574324 0.994759i −0.996115 0.0880657i \(-0.971931\pi\)
0.421790 0.906693i \(-0.361402\pi\)
\(878\) 8.75366 0.295422
\(879\) 0 0
\(880\) −0.684718 1.18597i −0.0230818 0.0399789i
\(881\) −19.0164 32.9374i −0.640680 1.10969i −0.985281 0.170941i \(-0.945319\pi\)
0.344601 0.938749i \(-0.388014\pi\)
\(882\) 0 0
\(883\) 22.6536 0.762356 0.381178 0.924502i \(-0.375519\pi\)
0.381178 + 0.924502i \(0.375519\pi\)
\(884\) 15.3150 + 20.8536i 0.515098 + 0.701381i
\(885\) 0 0
\(886\) 1.48601 2.57384i 0.0499234 0.0864698i
\(887\) −21.3076 −0.715441 −0.357720 0.933829i \(-0.616446\pi\)
−0.357720 + 0.933829i \(0.616446\pi\)
\(888\) 0 0
\(889\) −12.6110 + 9.86598i −0.422958 + 0.330894i
\(890\) 6.53746 11.3232i 0.219136 0.379555i
\(891\) 0 0
\(892\) −12.1673 21.0744i −0.407392 0.705624i
\(893\) 9.25970 0.309864
\(894\) 0 0
\(895\) −4.32082 7.48389i −0.144429 0.250159i
\(896\) −0.369922 2.61976i −0.0123582 0.0875201i
\(897\) 0 0
\(898\) 2.95700 5.12167i 0.0986764 0.170912i
\(899\) 25.1802 43.6134i 0.839807 1.45459i
\(900\) 0 0
\(901\) 48.3878 + 83.8101i 1.61203 + 2.79212i
\(902\) −9.40178 −0.313045
\(903\) 0 0
\(904\) 5.71537 9.89931i 0.190090 0.329246i
\(905\) −5.11380 + 8.85736i −0.169989 + 0.294429i
\(906\) 0 0
\(907\) −26.7022 + 46.2496i −0.886632 + 1.53569i −0.0428006 + 0.999084i \(0.513628\pi\)
−0.843832 + 0.536608i \(0.819705\pi\)
\(908\) −9.56035 −0.317271
\(909\) 0 0
\(910\) −2.08365 8.15602i −0.0690722 0.270369i
\(911\) −5.96942 −0.197776 −0.0988878 0.995099i \(-0.531528\pi\)
−0.0988878 + 0.995099i \(0.531528\pi\)
\(912\) 0 0
\(913\) 8.18756 14.1813i 0.270969 0.469331i
\(914\) 14.1933 0.469473
\(915\) 0 0
\(916\) −5.40570 + 9.36295i −0.178609 + 0.309360i
\(917\) 13.0561 + 5.26514i 0.431152 + 0.173870i
\(918\) 0 0
\(919\) 13.4203 + 23.2446i 0.442695 + 0.766770i 0.997888 0.0649513i \(-0.0206892\pi\)
−0.555194 + 0.831721i \(0.687356\pi\)
\(920\) 2.33559 4.04537i 0.0770023 0.133372i
\(921\) 0 0
\(922\) 15.1395 26.2224i 0.498593 0.863589i
\(923\) −35.9088 + 3.96041i −1.18195 + 0.130358i
\(924\) 0 0
\(925\) 0.697725 + 1.20850i 0.0229411 + 0.0397351i
\(926\) 32.8167 1.07842
\(927\) 0 0
\(928\) 3.87494 + 6.71160i 0.127201 + 0.220319i
\(929\) −4.10661 7.11286i −0.134734 0.233365i 0.790762 0.612124i \(-0.209685\pi\)
−0.925496 + 0.378758i \(0.876351\pi\)
\(930\) 0 0
\(931\) 23.9058 + 23.0255i 0.783480 + 0.754630i
\(932\) 5.15806 8.93403i 0.168958 0.292644i
\(933\) 0 0
\(934\) −10.4247 + 18.0562i −0.341108 + 0.590816i
\(935\) −4.91348 8.51039i −0.160688 0.278320i
\(936\) 0 0
\(937\) −22.5249 −0.735855 −0.367927 0.929854i \(-0.619933\pi\)
−0.367927 + 0.929854i \(0.619933\pi\)
\(938\) −18.4147 7.42608i −0.601260 0.242470i
\(939\) 0 0
\(940\) 0.861644 + 1.49241i 0.0281037 + 0.0486771i
\(941\) 7.98410 + 13.8289i 0.260274 + 0.450808i 0.966315 0.257363i \(-0.0828537\pi\)
−0.706040 + 0.708172i \(0.749520\pi\)
\(942\) 0 0
\(943\) −16.0349 27.7733i −0.522168 0.904422i
\(944\) −5.27138 −0.171569
\(945\) 0 0
\(946\) 5.21390 + 9.03074i 0.169518 + 0.293615i
\(947\) 1.35007 0.0438715 0.0219358 0.999759i \(-0.493017\pi\)
0.0219358 + 0.999759i \(0.493017\pi\)
\(948\) 0 0
\(949\) 5.60370 12.7618i 0.181904 0.414266i
\(950\) −10.0079 + 17.3341i −0.324698 + 0.562393i
\(951\) 0 0
\(952\) −2.65453 18.7992i −0.0860338 0.609286i
\(953\) 21.1684 36.6647i 0.685711 1.18769i −0.287502 0.957780i \(-0.592825\pi\)
0.973213 0.229906i \(-0.0738420\pi\)
\(954\) 0 0
\(955\) −1.11517 −0.0360860
\(956\) −11.0866 −0.358565
\(957\) 0 0
\(958\) 12.0950 20.9492i 0.390773 0.676839i
\(959\) 2.96353 + 20.9875i 0.0956973 + 0.677722i
\(960\) 0 0
\(961\) −5.61340 + 9.72269i −0.181077 + 0.313635i
\(962\) −0.705517 0.960664i −0.0227468 0.0309730i
\(963\) 0 0
\(964\) −18.6739 −0.601447
\(965\) 8.37553 + 14.5068i 0.269618 + 0.466992i
\(966\) 0 0
\(967\) −24.2814 −0.780838 −0.390419 0.920637i \(-0.627670\pi\)
−0.390419 + 0.920637i \(0.627670\pi\)
\(968\) −4.29585 7.44063i −0.138074 0.239151i
\(969\) 0 0
\(970\) 5.11163 + 8.85361i 0.164125 + 0.284272i
\(971\) −12.3692 21.4241i −0.396946 0.687531i 0.596401 0.802686i \(-0.296597\pi\)
−0.993347 + 0.115155i \(0.963263\pi\)
\(972\) 0 0
\(973\) 43.5580 + 17.5656i 1.39640 + 0.563127i
\(974\) 40.3065 1.29150
\(975\) 0 0
\(976\) 7.17592 + 12.4291i 0.229696 + 0.397844i
\(977\) −2.83780 + 4.91521i −0.0907892 + 0.157251i −0.907843 0.419309i \(-0.862272\pi\)
0.817054 + 0.576561i \(0.195606\pi\)
\(978\) 0 0
\(979\) −11.4968 + 19.9131i −0.367440 + 0.636424i
\(980\) −1.48658 + 5.99555i −0.0474869 + 0.191521i
\(981\) 0 0
\(982\) −3.58602 6.21117i −0.114435 0.198207i
\(983\) 14.6863 + 25.4374i 0.468419 + 0.811326i 0.999349 0.0360900i \(-0.0114903\pi\)
−0.530929 + 0.847416i \(0.678157\pi\)
\(984\) 0 0
\(985\) −21.4938 −0.684850
\(986\) 27.8063 + 48.1619i 0.885532 + 1.53379i
\(987\) 0 0
\(988\) 6.87345 15.6535i 0.218674 0.498005i
\(989\) −17.7848 + 30.8041i −0.565523 + 0.979515i
\(990\) 0 0
\(991\) −2.80304 + 4.85500i −0.0890414 + 0.154224i −0.907106 0.420902i \(-0.861714\pi\)
0.818065 + 0.575126i \(0.195047\pi\)
\(992\) −3.24911 5.62762i −0.103159 0.178677i
\(993\) 0 0
\(994\) 24.5858 + 9.91470i 0.779814 + 0.314475i
\(995\) 9.48885 16.4352i 0.300817 0.521030i
\(996\) 0 0
\(997\) 52.0689 1.64904 0.824520 0.565833i \(-0.191445\pi\)
0.824520 + 0.565833i \(0.191445\pi\)
\(998\) −8.24802 + 14.2860i −0.261086 + 0.452215i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.m.h.289.3 8
3.2 odd 2 546.2.j.c.289.2 8
7.4 even 3 1638.2.p.h.991.3 8
13.9 even 3 1638.2.p.h.919.3 8
21.11 odd 6 546.2.k.c.445.2 yes 8
39.35 odd 6 546.2.k.c.373.2 yes 8
91.74 even 3 inner 1638.2.m.h.1621.3 8
273.74 odd 6 546.2.j.c.529.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.j.c.289.2 8 3.2 odd 2
546.2.j.c.529.2 yes 8 273.74 odd 6
546.2.k.c.373.2 yes 8 39.35 odd 6
546.2.k.c.445.2 yes 8 21.11 odd 6
1638.2.m.h.289.3 8 1.1 even 1 trivial
1638.2.m.h.1621.3 8 91.74 even 3 inner
1638.2.p.h.919.3 8 13.9 even 3
1638.2.p.h.991.3 8 7.4 even 3