Properties

Label 546.2.j.c.289.2
Level $546$
Weight $2$
Character 546.289
Analytic conductor $4.360$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.447703281.1
Defining polynomial: \(x^{8} - x^{7} - 2 x^{6} + 2 x^{5} + 3 x^{4} + 4 x^{3} - 8 x^{2} - 8 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.2
Root \(-0.571299 + 1.29368i\) of defining polynomial
Character \(\chi\) \(=\) 546.289
Dual form 546.2.j.c.529.2

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-0.500000 + 0.866025i) q^{3} +1.00000 q^{4} +(-0.441221 + 0.764218i) q^{5} +(-0.500000 + 0.866025i) q^{6} +(0.369922 + 2.61976i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(-0.500000 + 0.866025i) q^{3} +1.00000 q^{4} +(-0.441221 + 0.764218i) q^{5} +(-0.500000 + 0.866025i) q^{6} +(0.369922 + 2.61976i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-0.441221 + 0.764218i) q^{10} +(-0.775934 + 1.34396i) q^{11} +(-0.500000 + 0.866025i) q^{12} +(2.13422 + 2.90605i) q^{13} +(0.369922 + 2.61976i) q^{14} +(-0.441221 - 0.764218i) q^{15} +1.00000 q^{16} -7.17592 q^{17} +(-0.500000 - 0.866025i) q^{18} +(-2.37080 - 4.10635i) q^{19} +(-0.441221 + 0.764218i) q^{20} +(-2.45374 - 0.989520i) q^{21} +(-0.775934 + 1.34396i) q^{22} +5.29348 q^{23} +(-0.500000 + 0.866025i) q^{24} +(2.11065 + 3.65575i) q^{25} +(2.13422 + 2.90605i) q^{26} +1.00000 q^{27} +(0.369922 + 2.61976i) q^{28} +(3.87494 + 6.71160i) q^{29} +(-0.441221 - 0.764218i) q^{30} +(3.24911 + 5.62762i) q^{31} +1.00000 q^{32} +(-0.775934 - 1.34396i) q^{33} -7.17592 q^{34} +(-2.16529 - 0.873194i) q^{35} +(-0.500000 - 0.866025i) q^{36} +0.330574 q^{37} +(-2.37080 - 4.10635i) q^{38} +(-3.58382 + 0.395262i) q^{39} +(-0.441221 + 0.764218i) q^{40} +(-3.02918 - 5.24669i) q^{41} +(-2.45374 - 0.989520i) q^{42} +(3.35975 - 5.81927i) q^{43} +(-0.775934 + 1.34396i) q^{44} +0.882443 q^{45} +5.29348 q^{46} +(0.976430 - 1.69123i) q^{47} +(-0.500000 + 0.866025i) q^{48} +(-6.72632 + 1.93822i) q^{49} +(2.11065 + 3.65575i) q^{50} +(3.58796 - 6.21453i) q^{51} +(2.13422 + 2.90605i) q^{52} +(-6.74308 - 11.6794i) q^{53} +1.00000 q^{54} +(-0.684718 - 1.18597i) q^{55} +(0.369922 + 2.61976i) q^{56} +4.74161 q^{57} +(3.87494 + 6.71160i) q^{58} +5.27138 q^{59} +(-0.441221 - 0.764218i) q^{60} +(7.17592 + 12.4291i) q^{61} +(3.24911 + 5.62762i) q^{62} +(2.08382 - 1.63024i) q^{63} +1.00000 q^{64} +(-3.16252 + 0.348796i) q^{65} +(-0.775934 - 1.34396i) q^{66} +(3.75236 - 6.49929i) q^{67} -7.17592 q^{68} +(-2.64674 + 4.58428i) q^{69} +(-2.16529 - 0.873194i) q^{70} +(5.00985 - 8.67732i) q^{71} +(-0.500000 - 0.866025i) q^{72} +(-1.93284 - 3.34778i) q^{73} +0.330574 q^{74} -4.22129 q^{75} +(-2.37080 - 4.10635i) q^{76} +(-3.80789 - 1.53560i) q^{77} +(-3.58382 + 0.395262i) q^{78} +(6.67928 - 11.5689i) q^{79} +(-0.441221 + 0.764218i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-3.02918 - 5.24669i) q^{82} -10.5519 q^{83} +(-2.45374 - 0.989520i) q^{84} +(3.16617 - 5.48396i) q^{85} +(3.35975 - 5.81927i) q^{86} -7.74989 q^{87} +(-0.775934 + 1.34396i) q^{88} +14.8167 q^{89} +0.882443 q^{90} +(-6.82366 + 6.66615i) q^{91} +5.29348 q^{92} -6.49821 q^{93} +(0.976430 - 1.69123i) q^{94} +4.18420 q^{95} +(-0.500000 + 0.866025i) q^{96} +(5.79259 - 10.0331i) q^{97} +(-6.72632 + 1.93822i) q^{98} +1.55187 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 8q^{2} - 4q^{3} + 8q^{4} + 2q^{5} - 4q^{6} + 3q^{7} + 8q^{8} - 4q^{9} + O(q^{10}) \) \( 8q + 8q^{2} - 4q^{3} + 8q^{4} + 2q^{5} - 4q^{6} + 3q^{7} + 8q^{8} - 4q^{9} + 2q^{10} + 4q^{11} - 4q^{12} + 3q^{13} + 3q^{14} + 2q^{15} + 8q^{16} + 4q^{17} - 4q^{18} - 4q^{19} + 2q^{20} - 3q^{21} + 4q^{22} - 8q^{23} - 4q^{24} + 2q^{25} + 3q^{26} + 8q^{27} + 3q^{28} + 2q^{29} + 2q^{30} + 14q^{31} + 8q^{32} + 4q^{33} + 4q^{34} - 22q^{35} - 4q^{36} + 12q^{37} - 4q^{38} - 12q^{39} + 2q^{40} + 12q^{41} - 3q^{42} + 4q^{44} - 4q^{45} - 8q^{46} + 7q^{47} - 4q^{48} + 5q^{49} + 2q^{50} - 2q^{51} + 3q^{52} - q^{53} + 8q^{54} - 25q^{55} + 3q^{56} + 8q^{57} + 2q^{58} - 32q^{59} + 2q^{60} - 4q^{61} + 14q^{62} + 8q^{64} + 10q^{65} + 4q^{66} + 19q^{67} + 4q^{68} + 4q^{69} - 22q^{70} + 20q^{71} - 4q^{72} - 7q^{73} + 12q^{74} - 4q^{75} - 4q^{76} - 24q^{77} - 12q^{78} + 24q^{79} + 2q^{80} - 4q^{81} + 12q^{82} - 64q^{83} - 3q^{84} + 15q^{85} - 4q^{87} + 4q^{88} + 22q^{89} - 4q^{90} - 38q^{91} - 8q^{92} - 28q^{93} + 7q^{94} - 56q^{95} - 4q^{96} + 11q^{97} + 5q^{98} - 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 1.00000 0.500000
\(5\) −0.441221 + 0.764218i −0.197320 + 0.341769i −0.947659 0.319285i \(-0.896557\pi\)
0.750338 + 0.661054i \(0.229891\pi\)
\(6\) −0.500000 + 0.866025i −0.204124 + 0.353553i
\(7\) 0.369922 + 2.61976i 0.139817 + 0.990177i
\(8\) 1.00000 0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −0.441221 + 0.764218i −0.139526 + 0.241667i
\(11\) −0.775934 + 1.34396i −0.233953 + 0.405219i −0.958968 0.283515i \(-0.908500\pi\)
0.725015 + 0.688733i \(0.241833\pi\)
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) 2.13422 + 2.90605i 0.591925 + 0.805993i
\(14\) 0.369922 + 2.61976i 0.0988658 + 0.700161i
\(15\) −0.441221 0.764218i −0.113923 0.197320i
\(16\) 1.00000 0.250000
\(17\) −7.17592 −1.74042 −0.870208 0.492685i \(-0.836016\pi\)
−0.870208 + 0.492685i \(0.836016\pi\)
\(18\) −0.500000 0.866025i −0.117851 0.204124i
\(19\) −2.37080 4.10635i −0.543900 0.942062i −0.998675 0.0514558i \(-0.983614\pi\)
0.454776 0.890606i \(-0.349719\pi\)
\(20\) −0.441221 + 0.764218i −0.0986601 + 0.170884i
\(21\) −2.45374 0.989520i −0.535450 0.215931i
\(22\) −0.775934 + 1.34396i −0.165430 + 0.286533i
\(23\) 5.29348 1.10377 0.551883 0.833922i \(-0.313909\pi\)
0.551883 + 0.833922i \(0.313909\pi\)
\(24\) −0.500000 + 0.866025i −0.102062 + 0.176777i
\(25\) 2.11065 + 3.65575i 0.422129 + 0.731150i
\(26\) 2.13422 + 2.90605i 0.418554 + 0.569923i
\(27\) 1.00000 0.192450
\(28\) 0.369922 + 2.61976i 0.0699087 + 0.495089i
\(29\) 3.87494 + 6.71160i 0.719559 + 1.24631i 0.961175 + 0.275940i \(0.0889893\pi\)
−0.241616 + 0.970372i \(0.577677\pi\)
\(30\) −0.441221 0.764218i −0.0805556 0.139526i
\(31\) 3.24911 + 5.62762i 0.583557 + 1.01075i 0.995054 + 0.0993390i \(0.0316728\pi\)
−0.411497 + 0.911411i \(0.634994\pi\)
\(32\) 1.00000 0.176777
\(33\) −0.775934 1.34396i −0.135073 0.233953i
\(34\) −7.17592 −1.23066
\(35\) −2.16529 0.873194i −0.366000 0.147597i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 0.330574 0.0543460 0.0271730 0.999631i \(-0.491349\pi\)
0.0271730 + 0.999631i \(0.491349\pi\)
\(38\) −2.37080 4.10635i −0.384595 0.666138i
\(39\) −3.58382 + 0.395262i −0.573871 + 0.0632926i
\(40\) −0.441221 + 0.764218i −0.0697632 + 0.120833i
\(41\) −3.02918 5.24669i −0.473079 0.819396i 0.526447 0.850208i \(-0.323524\pi\)
−0.999525 + 0.0308121i \(0.990191\pi\)
\(42\) −2.45374 0.989520i −0.378621 0.152686i
\(43\) 3.35975 5.81927i 0.512358 0.887430i −0.487540 0.873101i \(-0.662106\pi\)
0.999897 0.0143288i \(-0.00456116\pi\)
\(44\) −0.775934 + 1.34396i −0.116977 + 0.202609i
\(45\) 0.882443 0.131547
\(46\) 5.29348 0.780480
\(47\) 0.976430 1.69123i 0.142427 0.246691i −0.785983 0.618248i \(-0.787843\pi\)
0.928410 + 0.371557i \(0.121176\pi\)
\(48\) −0.500000 + 0.866025i −0.0721688 + 0.125000i
\(49\) −6.72632 + 1.93822i −0.960902 + 0.276888i
\(50\) 2.11065 + 3.65575i 0.298491 + 0.517001i
\(51\) 3.58796 6.21453i 0.502415 0.870208i
\(52\) 2.13422 + 2.90605i 0.295963 + 0.402996i
\(53\) −6.74308 11.6794i −0.926233 1.60428i −0.789566 0.613666i \(-0.789694\pi\)
−0.136667 0.990617i \(-0.543639\pi\)
\(54\) 1.00000 0.136083
\(55\) −0.684718 1.18597i −0.0923273 0.159916i
\(56\) 0.369922 + 2.61976i 0.0494329 + 0.350081i
\(57\) 4.74161 0.628041
\(58\) 3.87494 + 6.71160i 0.508805 + 0.881276i
\(59\) 5.27138 0.686275 0.343137 0.939285i \(-0.388510\pi\)
0.343137 + 0.939285i \(0.388510\pi\)
\(60\) −0.441221 0.764218i −0.0569614 0.0986601i
\(61\) 7.17592 + 12.4291i 0.918782 + 1.59138i 0.801267 + 0.598306i \(0.204159\pi\)
0.117515 + 0.993071i \(0.462507\pi\)
\(62\) 3.24911 + 5.62762i 0.412637 + 0.714708i
\(63\) 2.08382 1.63024i 0.262537 0.205391i
\(64\) 1.00000 0.125000
\(65\) −3.16252 + 0.348796i −0.392262 + 0.0432628i
\(66\) −0.775934 1.34396i −0.0955109 0.165430i
\(67\) 3.75236 6.49929i 0.458424 0.794014i −0.540454 0.841374i \(-0.681747\pi\)
0.998878 + 0.0473596i \(0.0150807\pi\)
\(68\) −7.17592 −0.870208
\(69\) −2.64674 + 4.58428i −0.318630 + 0.551883i
\(70\) −2.16529 0.873194i −0.258801 0.104367i
\(71\) 5.00985 8.67732i 0.594560 1.02981i −0.399049 0.916930i \(-0.630660\pi\)
0.993609 0.112879i \(-0.0360072\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) −1.93284 3.34778i −0.226222 0.391828i 0.730464 0.682952i \(-0.239304\pi\)
−0.956685 + 0.291124i \(0.905971\pi\)
\(74\) 0.330574 0.0384284
\(75\) −4.22129 −0.487433
\(76\) −2.37080 4.10635i −0.271950 0.471031i
\(77\) −3.80789 1.53560i −0.433949 0.174998i
\(78\) −3.58382 + 0.395262i −0.405788 + 0.0447546i
\(79\) 6.67928 11.5689i 0.751478 1.30160i −0.195629 0.980678i \(-0.562675\pi\)
0.947106 0.320920i \(-0.103992\pi\)
\(80\) −0.441221 + 0.764218i −0.0493300 + 0.0854422i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −3.02918 5.24669i −0.334517 0.579401i
\(83\) −10.5519 −1.15822 −0.579109 0.815250i \(-0.696599\pi\)
−0.579109 + 0.815250i \(0.696599\pi\)
\(84\) −2.45374 0.989520i −0.267725 0.107965i
\(85\) 3.16617 5.48396i 0.343419 0.594820i
\(86\) 3.35975 5.81927i 0.362292 0.627508i
\(87\) −7.74989 −0.830875
\(88\) −0.775934 + 1.34396i −0.0827149 + 0.143266i
\(89\) 14.8167 1.57057 0.785285 0.619134i \(-0.212516\pi\)
0.785285 + 0.619134i \(0.212516\pi\)
\(90\) 0.882443 0.0930176
\(91\) −6.82366 + 6.66615i −0.715314 + 0.698803i
\(92\) 5.29348 0.551883
\(93\) −6.49821 −0.673833
\(94\) 0.976430 1.69123i 0.100711 0.174437i
\(95\) 4.18420 0.429290
\(96\) −0.500000 + 0.866025i −0.0510310 + 0.0883883i
\(97\) 5.79259 10.0331i 0.588149 1.01870i −0.406326 0.913728i \(-0.633190\pi\)
0.994475 0.104975i \(-0.0334764\pi\)
\(98\) −6.72632 + 1.93822i −0.679460 + 0.195789i
\(99\) 1.55187 0.155969
\(100\) 2.11065 + 3.65575i 0.211065 + 0.365575i
\(101\) −3.91439 + 6.77993i −0.389497 + 0.674628i −0.992382 0.123200i \(-0.960684\pi\)
0.602885 + 0.797828i \(0.294018\pi\)
\(102\) 3.58796 6.21453i 0.355261 0.615330i
\(103\) 0.430172 0.745081i 0.0423862 0.0734150i −0.844054 0.536258i \(-0.819837\pi\)
0.886440 + 0.462843i \(0.153171\pi\)
\(104\) 2.13422 + 2.90605i 0.209277 + 0.284961i
\(105\) 1.83885 1.43860i 0.179454 0.140393i
\(106\) −6.74308 11.6794i −0.654946 1.13440i
\(107\) −8.14260 −0.787175 −0.393587 0.919287i \(-0.628766\pi\)
−0.393587 + 0.919287i \(0.628766\pi\)
\(108\) 1.00000 0.0962250
\(109\) 4.73806 + 8.20656i 0.453824 + 0.786046i 0.998620 0.0525229i \(-0.0167263\pi\)
−0.544796 + 0.838569i \(0.683393\pi\)
\(110\) −0.684718 1.18597i −0.0652853 0.113077i
\(111\) −0.165287 + 0.286285i −0.0156883 + 0.0271730i
\(112\) 0.369922 + 2.61976i 0.0349543 + 0.247544i
\(113\) 5.71537 9.89931i 0.537657 0.931249i −0.461373 0.887206i \(-0.652643\pi\)
0.999030 0.0440426i \(-0.0140237\pi\)
\(114\) 4.74161 0.444092
\(115\) −2.33559 + 4.04537i −0.217795 + 0.377233i
\(116\) 3.87494 + 6.71160i 0.359779 + 0.623156i
\(117\) 1.44960 3.30131i 0.134016 0.305206i
\(118\) 5.27138 0.485270
\(119\) −2.65453 18.7992i −0.243340 1.72332i
\(120\) −0.441221 0.764218i −0.0402778 0.0697632i
\(121\) 4.29585 + 7.44063i 0.390532 + 0.676421i
\(122\) 7.17592 + 12.4291i 0.649677 + 1.12527i
\(123\) 6.05836 0.546264
\(124\) 3.24911 + 5.62762i 0.291778 + 0.505375i
\(125\) −8.13726 −0.727819
\(126\) 2.08382 1.63024i 0.185641 0.145234i
\(127\) 3.02592 + 5.24105i 0.268507 + 0.465068i 0.968477 0.249105i \(-0.0801363\pi\)
−0.699969 + 0.714173i \(0.746803\pi\)
\(128\) 1.00000 0.0883883
\(129\) 3.35975 + 5.81927i 0.295810 + 0.512358i
\(130\) −3.16252 + 0.348796i −0.277371 + 0.0305914i
\(131\) −2.66045 + 4.60804i −0.232445 + 0.402606i −0.958527 0.285002i \(-0.908006\pi\)
0.726082 + 0.687608i \(0.241339\pi\)
\(132\) −0.775934 1.34396i −0.0675364 0.116977i
\(133\) 9.88066 7.72997i 0.856762 0.670274i
\(134\) 3.75236 6.49929i 0.324155 0.561453i
\(135\) −0.441221 + 0.764218i −0.0379743 + 0.0657734i
\(136\) −7.17592 −0.615330
\(137\) −8.01122 −0.684445 −0.342222 0.939619i \(-0.611180\pi\)
−0.342222 + 0.939619i \(0.611180\pi\)
\(138\) −2.64674 + 4.58428i −0.225305 + 0.390240i
\(139\) 8.87582 15.3734i 0.752838 1.30395i −0.193605 0.981080i \(-0.562018\pi\)
0.946442 0.322873i \(-0.104649\pi\)
\(140\) −2.16529 0.873194i −0.183000 0.0737984i
\(141\) 0.976430 + 1.69123i 0.0822303 + 0.142427i
\(142\) 5.00985 8.67732i 0.420418 0.728185i
\(143\) −5.56162 + 0.613395i −0.465086 + 0.0512947i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) −6.83883 −0.567934
\(146\) −1.93284 3.34778i −0.159963 0.277064i
\(147\) 1.68461 6.79427i 0.138945 0.560382i
\(148\) 0.330574 0.0271730
\(149\) −8.66161 15.0024i −0.709587 1.22904i −0.965010 0.262211i \(-0.915548\pi\)
0.255424 0.966829i \(-0.417785\pi\)
\(150\) −4.22129 −0.344667
\(151\) −1.40927 2.44093i −0.114685 0.198640i 0.802969 0.596021i \(-0.203252\pi\)
−0.917654 + 0.397381i \(0.869919\pi\)
\(152\) −2.37080 4.10635i −0.192298 0.333069i
\(153\) 3.58796 + 6.21453i 0.290069 + 0.502415i
\(154\) −3.80789 1.53560i −0.306848 0.123743i
\(155\) −5.73430 −0.460590
\(156\) −3.58382 + 0.395262i −0.286935 + 0.0316463i
\(157\) 6.39822 + 11.0820i 0.510634 + 0.884443i 0.999924 + 0.0123225i \(0.00392247\pi\)
−0.489290 + 0.872121i \(0.662744\pi\)
\(158\) 6.67928 11.5689i 0.531375 0.920368i
\(159\) 13.4862 1.06952
\(160\) −0.441221 + 0.764218i −0.0348816 + 0.0604167i
\(161\) 1.95817 + 13.8677i 0.154326 + 1.09292i
\(162\) −0.500000 + 0.866025i −0.0392837 + 0.0680414i
\(163\) 5.34387 + 9.25586i 0.418564 + 0.724975i 0.995795 0.0916061i \(-0.0292001\pi\)
−0.577231 + 0.816581i \(0.695867\pi\)
\(164\) −3.02918 5.24669i −0.236539 0.409698i
\(165\) 1.36944 0.106610
\(166\) −10.5519 −0.818984
\(167\) −9.90412 17.1544i −0.766404 1.32745i −0.939501 0.342546i \(-0.888711\pi\)
0.173097 0.984905i \(-0.444623\pi\)
\(168\) −2.45374 0.989520i −0.189310 0.0763431i
\(169\) −3.89023 + 12.4043i −0.299249 + 0.954175i
\(170\) 3.16617 5.48396i 0.242834 0.420601i
\(171\) −2.37080 + 4.10635i −0.181300 + 0.314021i
\(172\) 3.35975 5.81927i 0.256179 0.443715i
\(173\) 0.869332 + 1.50573i 0.0660941 + 0.114478i 0.897179 0.441668i \(-0.145613\pi\)
−0.831085 + 0.556146i \(0.812280\pi\)
\(174\) −7.74989 −0.587517
\(175\) −8.79642 + 6.88174i −0.664947 + 0.520210i
\(176\) −0.775934 + 1.34396i −0.0584883 + 0.101305i
\(177\) −2.63569 + 4.56515i −0.198111 + 0.343137i
\(178\) 14.8167 1.11056
\(179\) −4.89644 + 8.48088i −0.365977 + 0.633890i −0.988932 0.148367i \(-0.952598\pi\)
0.622956 + 0.782257i \(0.285932\pi\)
\(180\) 0.882443 0.0657734
\(181\) −11.5901 −0.861486 −0.430743 0.902475i \(-0.641748\pi\)
−0.430743 + 0.902475i \(0.641748\pi\)
\(182\) −6.82366 + 6.66615i −0.505804 + 0.494128i
\(183\) −14.3518 −1.06092
\(184\) 5.29348 0.390240
\(185\) −0.145856 + 0.252631i −0.0107236 + 0.0185738i
\(186\) −6.49821 −0.476472
\(187\) 5.56804 9.64413i 0.407176 0.705249i
\(188\) 0.976430 1.69123i 0.0712135 0.123345i
\(189\) 0.369922 + 2.61976i 0.0269079 + 0.190560i
\(190\) 4.18420 0.303554
\(191\) 0.631864 + 1.09442i 0.0457200 + 0.0791894i 0.887980 0.459882i \(-0.152108\pi\)
−0.842260 + 0.539072i \(0.818775\pi\)
\(192\) −0.500000 + 0.866025i −0.0360844 + 0.0625000i
\(193\) −9.49130 + 16.4394i −0.683199 + 1.18334i 0.290800 + 0.956784i \(0.406079\pi\)
−0.973999 + 0.226552i \(0.927255\pi\)
\(194\) 5.79259 10.0331i 0.415884 0.720332i
\(195\) 1.27919 2.91322i 0.0916048 0.208620i
\(196\) −6.72632 + 1.93822i −0.480451 + 0.138444i
\(197\) 12.1786 + 21.0939i 0.867688 + 1.50288i 0.864353 + 0.502886i \(0.167728\pi\)
0.00333546 + 0.999994i \(0.498938\pi\)
\(198\) 1.55187 0.110287
\(199\) 21.5059 1.52451 0.762255 0.647277i \(-0.224092\pi\)
0.762255 + 0.647277i \(0.224092\pi\)
\(200\) 2.11065 + 3.65575i 0.149245 + 0.258500i
\(201\) 3.75236 + 6.49929i 0.264671 + 0.458424i
\(202\) −3.91439 + 6.77993i −0.275416 + 0.477034i
\(203\) −16.1494 + 12.6342i −1.13346 + 0.886747i
\(204\) 3.58796 6.21453i 0.251207 0.435104i
\(205\) 5.34616 0.373392
\(206\) 0.430172 0.745081i 0.0299715 0.0519122i
\(207\) −2.64674 4.58428i −0.183961 0.318630i
\(208\) 2.13422 + 2.90605i 0.147981 + 0.201498i
\(209\) 7.35835 0.508988
\(210\) 1.83885 1.43860i 0.126893 0.0992726i
\(211\) 3.56775 + 6.17953i 0.245614 + 0.425416i 0.962304 0.271976i \(-0.0876771\pi\)
−0.716690 + 0.697392i \(0.754344\pi\)
\(212\) −6.74308 11.6794i −0.463117 0.802141i
\(213\) 5.00985 + 8.67732i 0.343270 + 0.594560i
\(214\) −8.14260 −0.556617
\(215\) 2.96479 + 5.13517i 0.202197 + 0.350216i
\(216\) 1.00000 0.0680414
\(217\) −13.5411 + 10.5937i −0.919231 + 0.719145i
\(218\) 4.73806 + 8.20656i 0.320902 + 0.555818i
\(219\) 3.86568 0.261218
\(220\) −0.684718 1.18597i −0.0461637 0.0799578i
\(221\) −15.3150 20.8536i −1.03020 1.40276i
\(222\) −0.165287 + 0.286285i −0.0110933 + 0.0192142i
\(223\) −12.1673 21.0744i −0.814784 1.41125i −0.909483 0.415742i \(-0.863522\pi\)
0.0946981 0.995506i \(-0.469811\pi\)
\(224\) 0.369922 + 2.61976i 0.0247164 + 0.175040i
\(225\) 2.11065 3.65575i 0.140710 0.243717i
\(226\) 5.71537 9.89931i 0.380181 0.658492i
\(227\) 9.56035 0.634543 0.317271 0.948335i \(-0.397233\pi\)
0.317271 + 0.948335i \(0.397233\pi\)
\(228\) 4.74161 0.314021
\(229\) −5.40570 + 9.36295i −0.357219 + 0.618721i −0.987495 0.157650i \(-0.949608\pi\)
0.630276 + 0.776371i \(0.282942\pi\)
\(230\) −2.33559 + 4.04537i −0.154005 + 0.266744i
\(231\) 3.23382 2.52992i 0.212769 0.166457i
\(232\) 3.87494 + 6.71160i 0.254402 + 0.440638i
\(233\) −5.15806 + 8.93403i −0.337916 + 0.585288i −0.984041 0.177944i \(-0.943055\pi\)
0.646125 + 0.763232i \(0.276389\pi\)
\(234\) 1.44960 3.30131i 0.0947635 0.215813i
\(235\) 0.861644 + 1.49241i 0.0562074 + 0.0973541i
\(236\) 5.27138 0.343137
\(237\) 6.67928 + 11.5689i 0.433866 + 0.751478i
\(238\) −2.65453 18.7992i −0.172068 1.21857i
\(239\) 11.0866 0.717130 0.358565 0.933505i \(-0.383266\pi\)
0.358565 + 0.933505i \(0.383266\pi\)
\(240\) −0.441221 0.764218i −0.0284807 0.0493300i
\(241\) −18.6739 −1.20289 −0.601447 0.798913i \(-0.705409\pi\)
−0.601447 + 0.798913i \(0.705409\pi\)
\(242\) 4.29585 + 7.44063i 0.276148 + 0.478302i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 7.17592 + 12.4291i 0.459391 + 0.795689i
\(245\) 1.48658 5.99555i 0.0949738 0.383042i
\(246\) 6.05836 0.386267
\(247\) 6.87345 15.6535i 0.437347 0.996009i
\(248\) 3.24911 + 5.62762i 0.206319 + 0.357354i
\(249\) 5.27593 9.13819i 0.334349 0.579109i
\(250\) −8.13726 −0.514646
\(251\) 0.00354883 0.00614676i 0.000224000 0.000387980i −0.865913 0.500194i \(-0.833262\pi\)
0.866137 + 0.499806i \(0.166595\pi\)
\(252\) 2.08382 1.63024i 0.131268 0.102696i
\(253\) −4.10739 + 7.11421i −0.258229 + 0.447266i
\(254\) 3.02592 + 5.24105i 0.189863 + 0.328853i
\(255\) 3.16617 + 5.48396i 0.198273 + 0.343419i
\(256\) 1.00000 0.0625000
\(257\) 12.6759 0.790701 0.395350 0.918530i \(-0.370623\pi\)
0.395350 + 0.918530i \(0.370623\pi\)
\(258\) 3.35975 + 5.81927i 0.209169 + 0.362292i
\(259\) 0.122287 + 0.866025i 0.00759852 + 0.0538122i
\(260\) −3.16252 + 0.348796i −0.196131 + 0.0216314i
\(261\) 3.87494 6.71160i 0.239853 0.415437i
\(262\) −2.66045 + 4.60804i −0.164363 + 0.284686i
\(263\) 2.59901 4.50161i 0.160262 0.277581i −0.774701 0.632328i \(-0.782100\pi\)
0.934963 + 0.354747i \(0.115433\pi\)
\(264\) −0.775934 1.34396i −0.0477555 0.0827149i
\(265\) 11.9008 0.731058
\(266\) 9.88066 7.72997i 0.605822 0.473955i
\(267\) −7.40837 + 12.8317i −0.453385 + 0.785285i
\(268\) 3.75236 6.49929i 0.229212 0.397007i
\(269\) −0.685009 −0.0417657 −0.0208829 0.999782i \(-0.506648\pi\)
−0.0208829 + 0.999782i \(0.506648\pi\)
\(270\) −0.441221 + 0.764218i −0.0268519 + 0.0465088i
\(271\) −5.05126 −0.306842 −0.153421 0.988161i \(-0.549029\pi\)
−0.153421 + 0.988161i \(0.549029\pi\)
\(272\) −7.17592 −0.435104
\(273\) −2.36123 9.24254i −0.142908 0.559384i
\(274\) −8.01122 −0.483976
\(275\) −6.55090 −0.395034
\(276\) −2.64674 + 4.58428i −0.159315 + 0.275942i
\(277\) −12.4497 −0.748029 −0.374015 0.927423i \(-0.622019\pi\)
−0.374015 + 0.927423i \(0.622019\pi\)
\(278\) 8.87582 15.3734i 0.532337 0.922034i
\(279\) 3.24911 5.62762i 0.194519 0.336917i
\(280\) −2.16529 0.873194i −0.129401 0.0521834i
\(281\) −23.5917 −1.40736 −0.703680 0.710517i \(-0.748461\pi\)
−0.703680 + 0.710517i \(0.748461\pi\)
\(282\) 0.976430 + 1.69123i 0.0581456 + 0.100711i
\(283\) −10.5148 + 18.2121i −0.625038 + 1.08260i 0.363495 + 0.931596i \(0.381583\pi\)
−0.988533 + 0.151002i \(0.951750\pi\)
\(284\) 5.00985 8.67732i 0.297280 0.514904i
\(285\) −2.09210 + 3.62362i −0.123925 + 0.214645i
\(286\) −5.56162 + 0.613395i −0.328865 + 0.0362708i
\(287\) 12.6245 9.87660i 0.745203 0.582997i
\(288\) −0.500000 0.866025i −0.0294628 0.0510310i
\(289\) 34.4938 2.02905
\(290\) −6.83883 −0.401590
\(291\) 5.79259 + 10.0331i 0.339568 + 0.588149i
\(292\) −1.93284 3.34778i −0.113111 0.195914i
\(293\) −6.41251 + 11.1068i −0.374623 + 0.648865i −0.990270 0.139156i \(-0.955561\pi\)
0.615648 + 0.788021i \(0.288894\pi\)
\(294\) 1.68461 6.79427i 0.0982487 0.396250i
\(295\) −2.32584 + 4.02848i −0.135416 + 0.234547i
\(296\) 0.330574 0.0192142
\(297\) −0.775934 + 1.34396i −0.0450243 + 0.0779843i
\(298\) −8.66161 15.0024i −0.501754 0.869063i
\(299\) 11.2974 + 15.3831i 0.653347 + 0.889627i
\(300\) −4.22129 −0.243717
\(301\) 16.4879 + 6.64909i 0.950349 + 0.383247i
\(302\) −1.40927 2.44093i −0.0810944 0.140460i
\(303\) −3.91439 6.77993i −0.224876 0.389497i
\(304\) −2.37080 4.10635i −0.135975 0.235515i
\(305\) −12.6647 −0.725177
\(306\) 3.58796 + 6.21453i 0.205110 + 0.355261i
\(307\) −20.4988 −1.16993 −0.584963 0.811060i \(-0.698891\pi\)
−0.584963 + 0.811060i \(0.698891\pi\)
\(308\) −3.80789 1.53560i −0.216974 0.0874992i
\(309\) 0.430172 + 0.745081i 0.0244717 + 0.0423862i
\(310\) −5.73430 −0.325686
\(311\) 7.06023 + 12.2287i 0.400349 + 0.693425i 0.993768 0.111469i \(-0.0355556\pi\)
−0.593419 + 0.804894i \(0.702222\pi\)
\(312\) −3.58382 + 0.395262i −0.202894 + 0.0223773i
\(313\) 14.5296 25.1661i 0.821264 1.42247i −0.0834772 0.996510i \(-0.526603\pi\)
0.904741 0.425961i \(-0.140064\pi\)
\(314\) 6.39822 + 11.0820i 0.361072 + 0.625396i
\(315\) 0.326435 + 2.31179i 0.0183925 + 0.130255i
\(316\) 6.67928 11.5689i 0.375739 0.650799i
\(317\) −6.08027 + 10.5313i −0.341502 + 0.591499i −0.984712 0.174191i \(-0.944269\pi\)
0.643210 + 0.765690i \(0.277602\pi\)
\(318\) 13.4862 0.756266
\(319\) −12.0268 −0.673372
\(320\) −0.441221 + 0.764218i −0.0246650 + 0.0427211i
\(321\) 4.07130 7.05170i 0.227238 0.393587i
\(322\) 1.95817 + 13.8677i 0.109125 + 0.772814i
\(323\) 17.0127 + 29.4669i 0.946612 + 1.63958i
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) −6.11920 + 13.9358i −0.339432 + 0.773019i
\(326\) 5.34387 + 9.25586i 0.295970 + 0.512635i
\(327\) −9.47612 −0.524030
\(328\) −3.02918 5.24669i −0.167259 0.289700i
\(329\) 4.79182 + 1.93239i 0.264181 + 0.106536i
\(330\) 1.36944 0.0753849
\(331\) −4.96685 8.60284i −0.273003 0.472855i 0.696626 0.717434i \(-0.254684\pi\)
−0.969629 + 0.244579i \(0.921350\pi\)
\(332\) −10.5519 −0.579109
\(333\) −0.165287 0.286285i −0.00905767 0.0156883i
\(334\) −9.90412 17.1544i −0.541930 0.938649i
\(335\) 3.31125 + 5.73525i 0.180913 + 0.313350i
\(336\) −2.45374 0.989520i −0.133863 0.0539827i
\(337\) −3.38360 −0.184316 −0.0921582 0.995744i \(-0.529377\pi\)
−0.0921582 + 0.995744i \(0.529377\pi\)
\(338\) −3.89023 + 12.4043i −0.211601 + 0.674704i
\(339\) 5.71537 + 9.89931i 0.310416 + 0.537657i
\(340\) 3.16617 5.48396i 0.171710 0.297410i
\(341\) −10.0844 −0.546100
\(342\) −2.37080 + 4.10635i −0.128198 + 0.222046i
\(343\) −7.56588 16.9044i −0.408519 0.912750i
\(344\) 3.35975 5.81927i 0.181146 0.313754i
\(345\) −2.33559 4.04537i −0.125744 0.217795i
\(346\) 0.869332 + 1.50573i 0.0467356 + 0.0809484i
\(347\) 22.2544 1.19468 0.597340 0.801988i \(-0.296224\pi\)
0.597340 + 0.801988i \(0.296224\pi\)
\(348\) −7.74989 −0.415437
\(349\) −5.16027 8.93784i −0.276223 0.478432i 0.694220 0.719763i \(-0.255749\pi\)
−0.970443 + 0.241331i \(0.922416\pi\)
\(350\) −8.79642 + 6.88174i −0.470188 + 0.367844i
\(351\) 2.13422 + 2.90605i 0.113916 + 0.155113i
\(352\) −0.775934 + 1.34396i −0.0413574 + 0.0716332i
\(353\) 0.485103 0.840224i 0.0258195 0.0447206i −0.852827 0.522194i \(-0.825114\pi\)
0.878646 + 0.477473i \(0.158447\pi\)
\(354\) −2.63569 + 4.56515i −0.140085 + 0.242635i
\(355\) 4.42091 + 7.65724i 0.234637 + 0.406404i
\(356\) 14.8167 0.785285
\(357\) 17.6079 + 7.10071i 0.931906 + 0.375810i
\(358\) −4.89644 + 8.48088i −0.258785 + 0.448228i
\(359\) −1.03017 + 1.78430i −0.0543701 + 0.0941717i −0.891929 0.452175i \(-0.850648\pi\)
0.837559 + 0.546346i \(0.183982\pi\)
\(360\) 0.882443 0.0465088
\(361\) −1.74142 + 3.01623i −0.0916537 + 0.158749i
\(362\) −11.5901 −0.609162
\(363\) −8.59170 −0.450947
\(364\) −6.82366 + 6.66615i −0.357657 + 0.349401i
\(365\) 3.41124 0.178552
\(366\) −14.3518 −0.750183
\(367\) 4.63538 8.02871i 0.241965 0.419095i −0.719309 0.694690i \(-0.755542\pi\)
0.961274 + 0.275595i \(0.0888749\pi\)
\(368\) 5.29348 0.275942
\(369\) −3.02918 + 5.24669i −0.157693 + 0.273132i
\(370\) −0.145856 + 0.252631i −0.00758271 + 0.0131336i
\(371\) 28.1027 21.9857i 1.45902 1.14144i
\(372\) −6.49821 −0.336917
\(373\) 3.76618 + 6.52322i 0.195006 + 0.337760i 0.946902 0.321521i \(-0.104194\pi\)
−0.751897 + 0.659281i \(0.770861\pi\)
\(374\) 5.56804 9.64413i 0.287917 0.498686i
\(375\) 4.06863 7.04708i 0.210103 0.363910i
\(376\) 0.976430 1.69123i 0.0503555 0.0872184i
\(377\) −11.2343 + 25.5848i −0.578594 + 1.31768i
\(378\) 0.369922 + 2.61976i 0.0190267 + 0.134746i
\(379\) −8.94169 15.4875i −0.459304 0.795537i 0.539621 0.841908i \(-0.318568\pi\)
−0.998924 + 0.0463711i \(0.985234\pi\)
\(380\) 4.18420 0.214645
\(381\) −6.05185 −0.310045
\(382\) 0.631864 + 1.09442i 0.0323290 + 0.0559954i
\(383\) 9.09536 + 15.7536i 0.464751 + 0.804972i 0.999190 0.0402346i \(-0.0128105\pi\)
−0.534439 + 0.845207i \(0.679477\pi\)
\(384\) −0.500000 + 0.866025i −0.0255155 + 0.0441942i
\(385\) 2.85366 2.23251i 0.145436 0.113779i
\(386\) −9.49130 + 16.4394i −0.483095 + 0.836745i
\(387\) −6.71951 −0.341572
\(388\) 5.79259 10.0331i 0.294074 0.509352i
\(389\) 8.54918 + 14.8076i 0.433461 + 0.750776i 0.997169 0.0751984i \(-0.0239590\pi\)
−0.563708 + 0.825974i \(0.690626\pi\)
\(390\) 1.27919 2.91322i 0.0647744 0.147516i
\(391\) −37.9856 −1.92101
\(392\) −6.72632 + 1.93822i −0.339730 + 0.0978947i
\(393\) −2.66045 4.60804i −0.134202 0.232445i
\(394\) 12.1786 + 21.0939i 0.613548 + 1.06270i
\(395\) 5.89408 + 10.2088i 0.296563 + 0.513663i
\(396\) 1.55187 0.0779843
\(397\) −13.8385 23.9691i −0.694536 1.20297i −0.970337 0.241757i \(-0.922276\pi\)
0.275800 0.961215i \(-0.411057\pi\)
\(398\) 21.5059 1.07799
\(399\) 1.75402 + 12.4219i 0.0878111 + 0.621872i
\(400\) 2.11065 + 3.65575i 0.105532 + 0.182787i
\(401\) −0.784039 −0.0391531 −0.0195765 0.999808i \(-0.506232\pi\)
−0.0195765 + 0.999808i \(0.506232\pi\)
\(402\) 3.75236 + 6.49929i 0.187151 + 0.324155i
\(403\) −9.41983 + 21.4526i −0.469235 + 1.06863i
\(404\) −3.91439 + 6.77993i −0.194748 + 0.337314i
\(405\) −0.441221 0.764218i −0.0219245 0.0379743i
\(406\) −16.1494 + 12.6342i −0.801480 + 0.627025i
\(407\) −0.256504 + 0.444277i −0.0127144 + 0.0220220i
\(408\) 3.58796 6.21453i 0.177630 0.307665i
\(409\) 25.9739 1.28433 0.642164 0.766567i \(-0.278037\pi\)
0.642164 + 0.766567i \(0.278037\pi\)
\(410\) 5.34616 0.264028
\(411\) 4.00561 6.93792i 0.197582 0.342222i
\(412\) 0.430172 0.745081i 0.0211931 0.0367075i
\(413\) 1.95000 + 13.8098i 0.0959531 + 0.679534i
\(414\) −2.64674 4.58428i −0.130080 0.225305i
\(415\) 4.65571 8.06393i 0.228540 0.395843i
\(416\) 2.13422 + 2.90605i 0.104639 + 0.142481i
\(417\) 8.87582 + 15.3734i 0.434651 + 0.752838i
\(418\) 7.35835 0.359909
\(419\) 0.207579 + 0.359537i 0.0101409 + 0.0175645i 0.871051 0.491192i \(-0.163439\pi\)
−0.860910 + 0.508757i \(0.830105\pi\)
\(420\) 1.83885 1.43860i 0.0897268 0.0701963i
\(421\) −8.45284 −0.411966 −0.205983 0.978556i \(-0.566039\pi\)
−0.205983 + 0.978556i \(0.566039\pi\)
\(422\) 3.56775 + 6.17953i 0.173675 + 0.300815i
\(423\) −1.95286 −0.0949513
\(424\) −6.74308 11.6794i −0.327473 0.567200i
\(425\) −15.1458 26.2334i −0.734681 1.27250i
\(426\) 5.00985 + 8.67732i 0.242728 + 0.420418i
\(427\) −29.9067 + 23.3970i −1.44728 + 1.13226i
\(428\) −8.14260 −0.393587
\(429\) 2.24959 5.12320i 0.108611 0.247350i
\(430\) 2.96479 + 5.13517i 0.142975 + 0.247640i
\(431\) 12.3935 21.4662i 0.596973 1.03399i −0.396292 0.918125i \(-0.629703\pi\)
0.993265 0.115864i \(-0.0369636\pi\)
\(432\) 1.00000 0.0481125
\(433\) 18.5723 32.1682i 0.892529 1.54591i 0.0556964 0.998448i \(-0.482262\pi\)
0.836833 0.547458i \(-0.184405\pi\)
\(434\) −13.5411 + 10.5937i −0.649994 + 0.508512i
\(435\) 3.41942 5.92260i 0.163948 0.283967i
\(436\) 4.73806 + 8.20656i 0.226912 + 0.393023i
\(437\) −12.5498 21.7369i −0.600338 1.03982i
\(438\) 3.86568 0.184709
\(439\) −8.75366 −0.417790 −0.208895 0.977938i \(-0.566987\pi\)
−0.208895 + 0.977938i \(0.566987\pi\)
\(440\) −0.684718 1.18597i −0.0326426 0.0565387i
\(441\) 5.04170 + 4.85605i 0.240081 + 0.231241i
\(442\) −15.3150 20.8536i −0.728459 0.991903i
\(443\) 1.48601 2.57384i 0.0706023 0.122287i −0.828563 0.559896i \(-0.810841\pi\)
0.899165 + 0.437609i \(0.144175\pi\)
\(444\) −0.165287 + 0.286285i −0.00784417 + 0.0135865i
\(445\) −6.53746 + 11.3232i −0.309905 + 0.536772i
\(446\) −12.1673 21.0744i −0.576140 0.997903i
\(447\) 17.3232 0.819360
\(448\) 0.369922 + 2.61976i 0.0174772 + 0.123772i
\(449\) 2.95700 5.12167i 0.139549 0.241707i −0.787777 0.615961i \(-0.788768\pi\)
0.927326 + 0.374254i \(0.122101\pi\)
\(450\) 2.11065 3.65575i 0.0994969 0.172334i
\(451\) 9.40178 0.442713
\(452\) 5.71537 9.89931i 0.268828 0.465624i
\(453\) 2.81854 0.132427
\(454\) 9.56035 0.448690
\(455\) −2.08365 8.15602i −0.0976829 0.382360i
\(456\) 4.74161 0.222046
\(457\) −14.1933 −0.663935 −0.331968 0.943291i \(-0.607712\pi\)
−0.331968 + 0.943291i \(0.607712\pi\)
\(458\) −5.40570 + 9.36295i −0.252592 + 0.437502i
\(459\) −7.17592 −0.334943
\(460\) −2.33559 + 4.04537i −0.108898 + 0.188616i
\(461\) 15.1395 26.2224i 0.705117 1.22130i −0.261532 0.965195i \(-0.584228\pi\)
0.966649 0.256104i \(-0.0824391\pi\)
\(462\) 3.23382 2.52992i 0.150451 0.117703i
\(463\) −32.8167 −1.52512 −0.762561 0.646916i \(-0.776059\pi\)
−0.762561 + 0.646916i \(0.776059\pi\)
\(464\) 3.87494 + 6.71160i 0.179890 + 0.311578i
\(465\) 2.86715 4.96605i 0.132961 0.230295i
\(466\) −5.15806 + 8.93403i −0.238943 + 0.413861i
\(467\) −10.4247 + 18.0562i −0.482399 + 0.835540i −0.999796 0.0202058i \(-0.993568\pi\)
0.517397 + 0.855746i \(0.326901\pi\)
\(468\) 1.44960 3.30131i 0.0670079 0.152603i
\(469\) 18.4147 + 7.42608i 0.850310 + 0.342904i
\(470\) 0.861644 + 1.49241i 0.0397447 + 0.0688398i
\(471\) −12.7964 −0.589629
\(472\) 5.27138 0.242635
\(473\) 5.21390 + 9.03074i 0.239735 + 0.415234i
\(474\) 6.67928 + 11.5689i 0.306789 + 0.531375i
\(475\) 10.0079 17.3341i 0.459192 0.795344i
\(476\) −2.65453 18.7992i −0.121670 0.861660i
\(477\) −6.74308 + 11.6794i −0.308744 + 0.534761i
\(478\) 11.0866 0.507087
\(479\) 12.0950 20.9492i 0.552637 0.957195i −0.445447 0.895308i \(-0.646955\pi\)
0.998083 0.0618862i \(-0.0197116\pi\)
\(480\) −0.441221 0.764218i −0.0201389 0.0348816i
\(481\) 0.705517 + 0.960664i 0.0321688 + 0.0438025i
\(482\) −18.6739 −0.850574
\(483\) −12.9888 5.23800i −0.591012 0.238337i
\(484\) 4.29585 + 7.44063i 0.195266 + 0.338211i
\(485\) 5.11163 + 8.85361i 0.232107 + 0.402022i
\(486\) −0.500000 0.866025i −0.0226805 0.0392837i
\(487\) −40.3065 −1.82646 −0.913230 0.407444i \(-0.866420\pi\)
−0.913230 + 0.407444i \(0.866420\pi\)
\(488\) 7.17592 + 12.4291i 0.324839 + 0.562637i
\(489\) −10.6877 −0.483317
\(490\) 1.48658 5.99555i 0.0671566 0.270851i
\(491\) −3.58602 6.21117i −0.161835 0.280306i 0.773692 0.633562i \(-0.218408\pi\)
−0.935527 + 0.353256i \(0.885075\pi\)
\(492\) 6.05836 0.273132
\(493\) −27.8063 48.1619i −1.25233 2.16910i
\(494\) 6.87345 15.6535i 0.309251 0.704285i
\(495\) −0.684718 + 1.18597i −0.0307758 + 0.0533052i
\(496\) 3.24911 + 5.62762i 0.145889 + 0.252688i
\(497\) 24.5858 + 9.91470i 1.10282 + 0.444735i
\(498\) 5.27593 9.13819i 0.236420 0.409492i
\(499\) 8.24802 14.2860i 0.369232 0.639528i −0.620214 0.784433i \(-0.712954\pi\)
0.989446 + 0.144904i \(0.0462875\pi\)
\(500\) −8.13726 −0.363910
\(501\) 19.8082 0.884967
\(502\) 0.00354883 0.00614676i 0.000158392 0.000274343i
\(503\) 0.187093 0.324055i 0.00834208 0.0144489i −0.861824 0.507207i \(-0.830678\pi\)
0.870166 + 0.492758i \(0.164011\pi\)
\(504\) 2.08382 1.63024i 0.0928207 0.0726168i
\(505\) −3.45423 5.98290i −0.153711 0.266236i
\(506\) −4.10739 + 7.11421i −0.182596 + 0.316265i
\(507\) −8.79730 9.57118i −0.390702 0.425071i
\(508\) 3.02592 + 5.24105i 0.134254 + 0.232534i
\(509\) 5.26899 0.233544 0.116772 0.993159i \(-0.462745\pi\)
0.116772 + 0.993159i \(0.462745\pi\)
\(510\) 3.16617 + 5.48396i 0.140200 + 0.242834i
\(511\) 8.05538 6.30200i 0.356349 0.278784i
\(512\) 1.00000 0.0441942
\(513\) −2.37080 4.10635i −0.104674 0.181300i
\(514\) 12.6759 0.559110
\(515\) 0.379603 + 0.657491i 0.0167273 + 0.0289725i
\(516\) 3.35975 + 5.81927i 0.147905 + 0.256179i
\(517\) 1.51529 + 2.62456i 0.0666424 + 0.115428i
\(518\) 0.122287 + 0.866025i 0.00537296 + 0.0380510i
\(519\) −1.73866 −0.0763189
\(520\) −3.16252 + 0.348796i −0.138686 + 0.0152957i
\(521\) 3.43343 + 5.94687i 0.150421 + 0.260537i 0.931382 0.364042i \(-0.118604\pi\)
−0.780961 + 0.624580i \(0.785270\pi\)
\(522\) 3.87494 6.71160i 0.169602 0.293759i
\(523\) −2.18445 −0.0955193 −0.0477596 0.998859i \(-0.515208\pi\)
−0.0477596 + 0.998859i \(0.515208\pi\)
\(524\) −2.66045 + 4.60804i −0.116222 + 0.201303i
\(525\) −1.56155 11.0588i −0.0681516 0.482645i
\(526\) 2.59901 4.50161i 0.113322 0.196280i
\(527\) −23.3153 40.3833i −1.01563 1.75913i
\(528\) −0.775934 1.34396i −0.0337682 0.0584883i
\(529\) 5.02089 0.218299
\(530\) 11.9008 0.516936
\(531\) −2.63569 4.56515i −0.114379 0.198111i
\(532\) 9.88066 7.72997i 0.428381 0.335137i
\(533\) 8.78222 20.0005i 0.380400 0.866319i
\(534\) −7.40837 + 12.8317i −0.320591 + 0.555281i
\(535\) 3.59269 6.22272i 0.155325 0.269032i
\(536\) 3.75236 6.49929i 0.162077 0.280726i
\(537\) −4.89644 8.48088i −0.211297 0.365977i
\(538\) −0.685009 −0.0295328
\(539\) 2.61430 10.5438i 0.112606 0.454154i
\(540\) −0.441221 + 0.764218i −0.0189871 + 0.0328867i
\(541\) −18.7629 + 32.4982i −0.806679 + 1.39721i 0.108473 + 0.994099i \(0.465404\pi\)
−0.915152 + 0.403109i \(0.867929\pi\)
\(542\) −5.05126 −0.216970
\(543\) 5.79505 10.0373i 0.248689 0.430743i
\(544\) −7.17592 −0.307665
\(545\) −8.36213 −0.358194
\(546\) −2.36123 9.24254i −0.101051 0.395544i
\(547\) 26.8987 1.15011 0.575054 0.818116i \(-0.304981\pi\)
0.575054 + 0.818116i \(0.304981\pi\)
\(548\) −8.01122 −0.342222
\(549\) 7.17592 12.4291i 0.306261 0.530459i
\(550\) −6.55090 −0.279331
\(551\) 18.3735 31.8238i 0.782736 1.35574i
\(552\) −2.64674 + 4.58428i −0.112653 + 0.195120i
\(553\) 32.7785 + 13.2186i 1.39388 + 0.562110i
\(554\) −12.4497 −0.528937
\(555\) −0.145856 0.252631i −0.00619125 0.0107236i
\(556\) 8.87582 15.3734i 0.376419 0.651976i
\(557\) −1.58336 + 2.74245i −0.0670889 + 0.116201i −0.897619 0.440773i \(-0.854704\pi\)
0.830530 + 0.556974i \(0.188038\pi\)
\(558\) 3.24911 5.62762i 0.137546 0.238236i
\(559\) 24.0815 2.65597i 1.01854 0.112335i
\(560\) −2.16529 0.873194i −0.0915001 0.0368992i
\(561\) 5.56804 + 9.64413i 0.235083 + 0.407176i
\(562\) −23.5917 −0.995154
\(563\) 30.8984 1.30221 0.651106 0.758987i \(-0.274306\pi\)
0.651106 + 0.758987i \(0.274306\pi\)
\(564\) 0.976430 + 1.69123i 0.0411151 + 0.0712135i
\(565\) 5.04349 + 8.73558i 0.212181 + 0.367508i
\(566\) −10.5148 + 18.2121i −0.441969 + 0.765512i
\(567\) −2.45374 0.989520i −0.103047 0.0415559i
\(568\) 5.00985 8.67732i 0.210209 0.364092i
\(569\) 11.7828 0.493962 0.246981 0.969020i \(-0.420561\pi\)
0.246981 + 0.969020i \(0.420561\pi\)
\(570\) −2.09210 + 3.62362i −0.0876284 + 0.151777i
\(571\) −11.9777 20.7459i −0.501250 0.868190i −0.999999 0.00144398i \(-0.999540\pi\)
0.498749 0.866746i \(-0.333793\pi\)
\(572\) −5.56162 + 0.613395i −0.232543 + 0.0256473i
\(573\) −1.26373 −0.0527930
\(574\) 12.6245 9.87660i 0.526938 0.412241i
\(575\) 11.1727 + 19.3516i 0.465932 + 0.807018i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) −13.2068 22.8748i −0.549805 0.952291i −0.998287 0.0584990i \(-0.981369\pi\)
0.448482 0.893792i \(-0.351965\pi\)
\(578\) 34.4938 1.43475
\(579\) −9.49130 16.4394i −0.394445 0.683199i
\(580\) −6.83883 −0.283967
\(581\) −3.90337 27.6434i −0.161939 1.14684i
\(582\) 5.79259 + 10.0331i 0.240111 + 0.415884i
\(583\) 20.9287 0.866780
\(584\) −1.93284 3.34778i −0.0799815 0.138532i
\(585\) 1.88332 + 2.56442i 0.0778659 + 0.106026i
\(586\) −6.41251 + 11.1068i −0.264898 + 0.458817i
\(587\) 15.3403 + 26.5702i 0.633162 + 1.09667i 0.986901 + 0.161325i \(0.0515767\pi\)
−0.353739 + 0.935344i \(0.615090\pi\)
\(588\) 1.68461 6.79427i 0.0694723 0.280191i
\(589\) 15.4060 26.6840i 0.634793 1.09949i
\(590\) −2.32584 + 4.02848i −0.0957535 + 0.165850i
\(591\) −24.3572 −1.00192
\(592\) 0.330574 0.0135865
\(593\) 6.14941 10.6511i 0.252526 0.437388i −0.711695 0.702489i \(-0.752072\pi\)
0.964221 + 0.265101i \(0.0854054\pi\)
\(594\) −0.775934 + 1.34396i −0.0318370 + 0.0551433i
\(595\) 15.5379 + 6.26597i 0.636993 + 0.256880i
\(596\) −8.66161 15.0024i −0.354793 0.614520i
\(597\) −10.7529 + 18.6246i −0.440088 + 0.762255i
\(598\) 11.2974 + 15.3831i 0.461986 + 0.629062i
\(599\) −3.22732 5.58989i −0.131865 0.228397i 0.792531 0.609832i \(-0.208763\pi\)
−0.924395 + 0.381436i \(0.875430\pi\)
\(600\) −4.22129 −0.172334
\(601\) −1.05552 1.82822i −0.0430556 0.0745745i 0.843695 0.536824i \(-0.180376\pi\)
−0.886750 + 0.462249i \(0.847043\pi\)
\(602\) 16.4879 + 6.64909i 0.671998 + 0.270997i
\(603\) −7.50473 −0.305616
\(604\) −1.40927 2.44093i −0.0573424 0.0993199i
\(605\) −7.58169 −0.308239
\(606\) −3.91439 6.77993i −0.159011 0.275416i
\(607\) −12.5828 21.7941i −0.510722 0.884596i −0.999923 0.0124247i \(-0.996045\pi\)
0.489201 0.872171i \(-0.337288\pi\)
\(608\) −2.37080 4.10635i −0.0961488 0.166535i
\(609\) −2.86685 20.3029i −0.116171 0.822713i
\(610\) −12.6647 −0.512778
\(611\) 6.99870 0.771892i 0.283137 0.0312274i
\(612\) 3.58796 + 6.21453i 0.145035 + 0.251207i
\(613\) 12.7273 22.0444i 0.514052 0.890364i −0.485815 0.874061i \(-0.661477\pi\)
0.999867 0.0163023i \(-0.00518940\pi\)
\(614\) −20.4988 −0.827263
\(615\) −2.67308 + 4.62991i −0.107789 + 0.186696i
\(616\) −3.80789 1.53560i −0.153424 0.0618713i
\(617\) 16.4252 28.4493i 0.661254 1.14532i −0.319033 0.947744i \(-0.603358\pi\)
0.980287 0.197581i \(-0.0633086\pi\)
\(618\) 0.430172 + 0.745081i 0.0173041 + 0.0299715i
\(619\) 0.180058 + 0.311869i 0.00723713 + 0.0125351i 0.869621 0.493719i \(-0.164363\pi\)
−0.862384 + 0.506254i \(0.831030\pi\)
\(620\) −5.73430 −0.230295
\(621\) 5.29348 0.212420
\(622\) 7.06023 + 12.2287i 0.283089 + 0.490325i
\(623\) 5.48103 + 38.8163i 0.219593 + 1.55514i
\(624\) −3.58382 + 0.395262i −0.143468 + 0.0158231i
\(625\) −6.96290 + 12.0601i −0.278516 + 0.482404i
\(626\) 14.5296 25.1661i 0.580721 1.00584i
\(627\) −3.67918 + 6.37252i −0.146932 + 0.254494i
\(628\) 6.39822 + 11.0820i 0.255317 + 0.442222i
\(629\) −2.37217 −0.0945847
\(630\) 0.326435 + 2.31179i 0.0130055 + 0.0921039i
\(631\) −7.36478 + 12.7562i −0.293187 + 0.507815i −0.974562 0.224120i \(-0.928049\pi\)
0.681374 + 0.731935i \(0.261383\pi\)
\(632\) 6.67928 11.5689i 0.265687 0.460184i
\(633\) −7.13550 −0.283611
\(634\) −6.08027 + 10.5313i −0.241478 + 0.418253i
\(635\) −5.34041 −0.211928
\(636\) 13.4862 0.534761
\(637\) −19.9880 15.4104i −0.791952 0.610583i
\(638\) −12.0268 −0.476146
\(639\) −10.0197 −0.396373
\(640\) −0.441221 + 0.764218i −0.0174408 + 0.0302084i
\(641\) −48.3368 −1.90919 −0.954595 0.297906i \(-0.903712\pi\)
−0.954595 + 0.297906i \(0.903712\pi\)
\(642\) 4.07130 7.05170i 0.160681 0.278308i
\(643\) −0.0861739 + 0.149258i −0.00339837 + 0.00588614i −0.867720 0.497054i \(-0.834415\pi\)
0.864321 + 0.502940i \(0.167748\pi\)
\(644\) 1.95817 + 13.8677i 0.0771628 + 0.546462i
\(645\) −5.92958 −0.233477
\(646\) 17.0127 + 29.4669i 0.669355 + 1.15936i
\(647\) −13.9682 + 24.1937i −0.549147 + 0.951151i 0.449186 + 0.893438i \(0.351714\pi\)
−0.998333 + 0.0577129i \(0.981619\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) −4.09024 + 7.08451i −0.160556 + 0.278091i
\(650\) −6.11920 + 13.9358i −0.240015 + 0.546607i
\(651\) −2.40383 17.0238i −0.0942136 0.667215i
\(652\) 5.34387 + 9.25586i 0.209282 + 0.362487i
\(653\) −41.8489 −1.63767 −0.818836 0.574027i \(-0.805380\pi\)
−0.818836 + 0.574027i \(0.805380\pi\)
\(654\) −9.47612 −0.370545
\(655\) −2.34770 4.06633i −0.0917322 0.158885i
\(656\) −3.02918 5.24669i −0.118270 0.204849i
\(657\) −1.93284 + 3.34778i −0.0754073 + 0.130609i
\(658\) 4.79182 + 1.93239i 0.186804 + 0.0753326i
\(659\) 3.26341 5.65240i 0.127125 0.220186i −0.795437 0.606036i \(-0.792759\pi\)
0.922561 + 0.385850i \(0.126092\pi\)
\(660\) 1.36944 0.0533052
\(661\) −0.526326 + 0.911623i −0.0204717 + 0.0354580i −0.876080 0.482166i \(-0.839850\pi\)
0.855608 + 0.517624i \(0.173183\pi\)
\(662\) −4.96685 8.60284i −0.193042 0.334359i
\(663\) 25.7172 2.83637i 0.998773 0.110155i
\(664\) −10.5519 −0.409492
\(665\) 1.54783 + 10.9616i 0.0600221 + 0.425073i
\(666\) −0.165287 0.286285i −0.00640474 0.0110933i
\(667\) 20.5119 + 35.5277i 0.794225 + 1.37564i
\(668\) −9.90412 17.1544i −0.383202 0.663725i
\(669\) 24.3347 0.940832
\(670\) 3.31125 + 5.73525i 0.127925 + 0.221572i
\(671\) −22.2722 −0.859808
\(672\) −2.45374 0.989520i −0.0946552 0.0381716i
\(673\) −13.1957 22.8556i −0.508655 0.881017i −0.999950 0.0100234i \(-0.996809\pi\)
0.491294 0.870994i \(-0.336524\pi\)
\(674\) −3.38360 −0.130331
\(675\) 2.11065 + 3.65575i 0.0812389 + 0.140710i
\(676\) −3.89023 + 12.4043i −0.149624 + 0.477088i
\(677\) −10.3481 + 17.9235i −0.397711 + 0.688856i −0.993443 0.114327i \(-0.963529\pi\)
0.595732 + 0.803183i \(0.296862\pi\)
\(678\) 5.71537 + 9.89931i 0.219497 + 0.380181i
\(679\) 28.4271 + 11.4638i 1.09093 + 0.439939i
\(680\) 3.16617 5.48396i 0.121417 0.210300i
\(681\) −4.78018 + 8.27951i −0.183177 + 0.317271i
\(682\) −10.0844 −0.386151
\(683\) −36.9788 −1.41495 −0.707477 0.706736i \(-0.750167\pi\)
−0.707477 + 0.706736i \(0.750167\pi\)
\(684\) −2.37080 + 4.10635i −0.0906499 + 0.157010i
\(685\) 3.53472 6.12232i 0.135055 0.233922i
\(686\) −7.56588 16.9044i −0.288866 0.645412i
\(687\) −5.40570 9.36295i −0.206240 0.357219i
\(688\) 3.35975 5.81927i 0.128089 0.221857i
\(689\) 19.5496 44.5220i 0.744780 1.69615i
\(690\) −2.33559 4.04537i −0.0889146 0.154005i
\(691\) 3.51208 0.133606 0.0668029 0.997766i \(-0.478720\pi\)
0.0668029 + 0.997766i \(0.478720\pi\)
\(692\) 0.869332 + 1.50573i 0.0330470 + 0.0572391i
\(693\) 0.574070 + 4.06553i 0.0218071 + 0.154437i
\(694\) 22.2544 0.844766
\(695\) 7.83241 + 13.5661i 0.297100 + 0.514593i
\(696\) −7.74989 −0.293759
\(697\) 21.7372 + 37.6499i 0.823353 + 1.42609i
\(698\) −5.16027 8.93784i −0.195319 0.338302i
\(699\) −5.15806 8.93403i −0.195096 0.337916i
\(700\) −8.79642 + 6.88174i −0.332473 + 0.260105i
\(701\) −9.53390 −0.360090 −0.180045 0.983658i \(-0.557624\pi\)
−0.180045 + 0.983658i \(0.557624\pi\)
\(702\) 2.13422 + 2.90605i 0.0805508 + 0.109682i
\(703\) −0.783726 1.35745i −0.0295588 0.0511973i
\(704\) −0.775934 + 1.34396i −0.0292441 + 0.0506523i
\(705\) −1.72329 −0.0649028
\(706\) 0.485103 0.840224i 0.0182571 0.0316222i
\(707\) −19.2098 7.74674i −0.722460 0.291346i
\(708\) −2.63569 + 4.56515i −0.0990553 + 0.171569i
\(709\) −9.56380 16.5650i −0.359176 0.622111i 0.628647 0.777690i \(-0.283609\pi\)
−0.987823 + 0.155579i \(0.950276\pi\)
\(710\) 4.42091 + 7.65724i 0.165914 + 0.287371i
\(711\) −13.3586 −0.500985
\(712\) 14.8167 0.555281
\(713\) 17.1991 + 29.7897i 0.644110 + 1.11563i
\(714\) 17.6079 + 7.10071i 0.658957 + 0.265738i
\(715\) 1.98514 4.52093i 0.0742399 0.169073i
\(716\) −4.89644 + 8.48088i −0.182988 + 0.316945i
\(717\) −5.54328 + 9.60124i −0.207017 + 0.358565i
\(718\) −1.03017 + 1.78430i −0.0384455 + 0.0665895i
\(719\) 13.8837 + 24.0473i 0.517775 + 0.896812i 0.999787 + 0.0206477i \(0.00657283\pi\)
−0.482012 + 0.876165i \(0.660094\pi\)
\(720\) 0.882443 0.0328867
\(721\) 2.11106 + 0.851328i 0.0786202 + 0.0317051i
\(722\) −1.74142 + 3.01623i −0.0648089 + 0.112252i
\(723\) 9.33696 16.1721i 0.347245 0.601447i
\(724\) −11.5901 −0.430743
\(725\) −16.3573 + 28.3316i −0.607494 + 1.05221i
\(726\) −8.59170 −0.318868
\(727\) 27.4082 1.01651 0.508257 0.861205i \(-0.330290\pi\)
0.508257 + 0.861205i \(0.330290\pi\)
\(728\) −6.82366 + 6.66615i −0.252902 + 0.247064i
\(729\) 1.00000 0.0370370
\(730\) 3.41124 0.126256
\(731\) −24.1093 + 41.7586i −0.891716 + 1.54450i
\(732\) −14.3518 −0.530459
\(733\) 9.70789 16.8146i 0.358569 0.621060i −0.629153 0.777282i \(-0.716598\pi\)
0.987722 + 0.156222i \(0.0499314\pi\)
\(734\) 4.63538 8.02871i 0.171095 0.296345i
\(735\) 4.44901 + 4.28519i 0.164104 + 0.158062i
\(736\) 5.29348 0.195120
\(737\) 5.82318 + 10.0860i 0.214500 + 0.371524i
\(738\) −3.02918 + 5.24669i −0.111506 + 0.193134i
\(739\) −7.58084 + 13.1304i −0.278866 + 0.483010i −0.971103 0.238660i \(-0.923292\pi\)
0.692237 + 0.721670i \(0.256625\pi\)
\(740\) −0.145856 + 0.252631i −0.00536178 + 0.00928688i
\(741\) 10.1196 + 13.7793i 0.371754 + 0.506197i
\(742\) 28.1027 21.9857i 1.03168 0.807121i
\(743\) −5.85184 10.1357i −0.214683 0.371842i 0.738491 0.674263i \(-0.235539\pi\)
−0.953174 + 0.302421i \(0.902205\pi\)
\(744\) −6.49821 −0.238236
\(745\) 15.2868 0.560063
\(746\) 3.76618 + 6.52322i 0.137890 + 0.238832i
\(747\) 5.27593 + 9.13819i 0.193036 + 0.334349i
\(748\) 5.56804 9.64413i 0.203588 0.352624i
\(749\) −3.01213 21.3317i −0.110061 0.779443i
\(750\) 4.06863 7.04708i 0.148565 0.257323i
\(751\) 36.7832 1.34224 0.671119 0.741350i \(-0.265814\pi\)
0.671119 + 0.741350i \(0.265814\pi\)
\(752\) 0.976430 1.69123i 0.0356067 0.0616727i
\(753\) 0.00354883 + 0.00614676i 0.000129327 + 0.000224000i
\(754\) −11.2343 + 25.5848i −0.409128 + 0.931743i
\(755\) 2.48720 0.0905185
\(756\) 0.369922 + 2.61976i 0.0134539 + 0.0952799i
\(757\) 0.469542 + 0.813271i 0.0170658 + 0.0295589i 0.874432 0.485148i \(-0.161234\pi\)
−0.857366 + 0.514707i \(0.827901\pi\)
\(758\) −8.94169 15.4875i −0.324777 0.562530i
\(759\) −4.10739 7.11421i −0.149089 0.258229i
\(760\) 4.18420 0.151777
\(761\) 2.83559 + 4.91139i 0.102790 + 0.178038i 0.912833 0.408333i \(-0.133890\pi\)
−0.810043 + 0.586370i \(0.800556\pi\)
\(762\) −6.05185 −0.219235
\(763\) −19.7465 + 15.4484i −0.714872 + 0.559269i
\(764\) 0.631864 + 1.09442i 0.0228600 + 0.0395947i
\(765\) −6.33234 −0.228946
\(766\) 9.09536 + 15.7536i 0.328629 + 0.569201i
\(767\) 11.2503 + 15.3189i 0.406224 + 0.553133i
\(768\) −0.500000 + 0.866025i −0.0180422 + 0.0312500i
\(769\) 0.775934 + 1.34396i 0.0279809 + 0.0484644i 0.879677 0.475572i \(-0.157759\pi\)
−0.851696 + 0.524036i \(0.824426\pi\)
\(770\) 2.85366 2.23251i 0.102839 0.0804542i
\(771\) −6.33795 + 10.9776i −0.228256 + 0.395350i
\(772\) −9.49130 + 16.4394i −0.341600 + 0.591668i
\(773\) −29.3595 −1.05599 −0.527994 0.849248i \(-0.677056\pi\)
−0.527994 + 0.849248i \(0.677056\pi\)
\(774\) −6.71951 −0.241528
\(775\) −13.7154 + 23.7558i −0.492673 + 0.853335i
\(776\) 5.79259 10.0331i 0.207942 0.360166i