Properties

Label 1638.2.bj.i.1135.3
Level $1638$
Weight $2$
Character 1638.1135
Analytic conductor $13.079$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(127,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,0,0,0,0,0,2,12,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} + 18 x^{13} + 143 x^{12} - 148 x^{11} + 172 x^{10} + 1612 x^{9} + \cdots + 97344 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1135.3
Root \(-1.29491 - 1.29491i\) of defining polynomial
Character \(\chi\) \(=\) 1638.1135
Dual form 1638.2.bj.i.127.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +1.34861i q^{5} +(-0.866025 + 0.500000i) q^{7} -1.00000i q^{8} +(0.674306 - 1.16793i) q^{10} +(-1.11892 - 0.646009i) q^{11} +(-0.343043 - 3.58920i) q^{13} +1.00000 q^{14} +(-0.500000 + 0.866025i) q^{16} +(-1.76555 - 3.05803i) q^{17} +(1.98887 - 1.14828i) q^{19} +(-1.16793 + 0.674306i) q^{20} +(0.646009 + 1.11892i) q^{22} +(-3.08058 + 5.33572i) q^{23} +3.18125 q^{25} +(-1.49751 + 3.27986i) q^{26} +(-0.866025 - 0.500000i) q^{28} +(-4.11174 + 7.12175i) q^{29} +9.90596i q^{31} +(0.866025 - 0.500000i) q^{32} +3.53111i q^{34} +(-0.674306 - 1.16793i) q^{35} +(3.71625 + 2.14558i) q^{37} -2.29655 q^{38} +1.34861 q^{40} +(-6.84283 - 3.95071i) q^{41} +(-6.26649 - 10.8539i) q^{43} -1.29202i q^{44} +(5.33572 - 3.08058i) q^{46} -10.7063i q^{47} +(0.500000 - 0.866025i) q^{49} +(-2.75504 - 1.59062i) q^{50} +(2.93681 - 2.09168i) q^{52} -3.30912 q^{53} +(0.871215 - 1.50899i) q^{55} +(0.500000 + 0.866025i) q^{56} +(7.12175 - 4.11174i) q^{58} +(-9.40363 + 5.42919i) q^{59} +(-2.64171 - 4.57558i) q^{61} +(4.95298 - 8.57881i) q^{62} -1.00000 q^{64} +(4.84043 - 0.462632i) q^{65} +(-7.85978 - 4.53784i) q^{67} +(1.76555 - 3.05803i) q^{68} +1.34861i q^{70} +(-6.89175 + 3.97895i) q^{71} -3.28169i q^{73} +(-2.14558 - 3.71625i) q^{74} +(1.98887 + 1.14828i) q^{76} +1.29202 q^{77} -3.32636 q^{79} +(-1.16793 - 0.674306i) q^{80} +(3.95071 + 6.84283i) q^{82} +0.731184i q^{83} +(4.12410 - 2.38105i) q^{85} +12.5330i q^{86} +(-0.646009 + 1.11892i) q^{88} +(-11.5236 - 6.65313i) q^{89} +(2.09168 + 2.93681i) q^{91} -6.16116 q^{92} +(-5.35313 + 9.27189i) q^{94} +(1.54858 + 2.68222i) q^{95} +(-10.5806 + 6.10870i) q^{97} +(-0.866025 + 0.500000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 2 q^{10} + 12 q^{11} + 10 q^{13} + 16 q^{14} - 8 q^{16} + 6 q^{17} - 4 q^{22} + 12 q^{23} - 20 q^{25} + 2 q^{26} - 16 q^{29} - 2 q^{35} - 6 q^{37} + 4 q^{40} - 12 q^{41} - 6 q^{43} + 6 q^{46}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.34861i 0.603118i 0.953448 + 0.301559i \(0.0975070\pi\)
−0.953448 + 0.301559i \(0.902493\pi\)
\(6\) 0 0
\(7\) −0.866025 + 0.500000i −0.327327 + 0.188982i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.674306 1.16793i 0.213234 0.369333i
\(11\) −1.11892 0.646009i −0.337367 0.194779i 0.321740 0.946828i \(-0.395732\pi\)
−0.659107 + 0.752049i \(0.729066\pi\)
\(12\) 0 0
\(13\) −0.343043 3.58920i −0.0951431 0.995464i
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.76555 3.05803i −0.428210 0.741681i 0.568504 0.822680i \(-0.307522\pi\)
−0.996714 + 0.0809991i \(0.974189\pi\)
\(18\) 0 0
\(19\) 1.98887 1.14828i 0.456279 0.263433i −0.254200 0.967152i \(-0.581812\pi\)
0.710478 + 0.703719i \(0.248479\pi\)
\(20\) −1.16793 + 0.674306i −0.261158 + 0.150779i
\(21\) 0 0
\(22\) 0.646009 + 1.11892i 0.137730 + 0.238555i
\(23\) −3.08058 + 5.33572i −0.642345 + 1.11257i 0.342563 + 0.939495i \(0.388705\pi\)
−0.984908 + 0.173079i \(0.944628\pi\)
\(24\) 0 0
\(25\) 3.18125 0.636249
\(26\) −1.49751 + 3.27986i −0.293687 + 0.643233i
\(27\) 0 0
\(28\) −0.866025 0.500000i −0.163663 0.0944911i
\(29\) −4.11174 + 7.12175i −0.763532 + 1.32248i 0.177488 + 0.984123i \(0.443203\pi\)
−0.941019 + 0.338353i \(0.890130\pi\)
\(30\) 0 0
\(31\) 9.90596i 1.77916i 0.456777 + 0.889581i \(0.349004\pi\)
−0.456777 + 0.889581i \(0.650996\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0 0
\(34\) 3.53111i 0.605580i
\(35\) −0.674306 1.16793i −0.113979 0.197417i
\(36\) 0 0
\(37\) 3.71625 + 2.14558i 0.610947 + 0.352730i 0.773336 0.633996i \(-0.218587\pi\)
−0.162389 + 0.986727i \(0.551920\pi\)
\(38\) −2.29655 −0.372550
\(39\) 0 0
\(40\) 1.34861 0.213234
\(41\) −6.84283 3.95071i −1.06867 0.616997i −0.140853 0.990031i \(-0.544984\pi\)
−0.927818 + 0.373033i \(0.878318\pi\)
\(42\) 0 0
\(43\) −6.26649 10.8539i −0.955630 1.65520i −0.732920 0.680315i \(-0.761843\pi\)
−0.222710 0.974885i \(-0.571490\pi\)
\(44\) 1.29202i 0.194779i
\(45\) 0 0
\(46\) 5.33572 3.08058i 0.786709 0.454207i
\(47\) 10.7063i 1.56167i −0.624738 0.780834i \(-0.714794\pi\)
0.624738 0.780834i \(-0.285206\pi\)
\(48\) 0 0
\(49\) 0.500000 0.866025i 0.0714286 0.123718i
\(50\) −2.75504 1.59062i −0.389621 0.224948i
\(51\) 0 0
\(52\) 2.93681 2.09168i 0.407263 0.290064i
\(53\) −3.30912 −0.454543 −0.227272 0.973831i \(-0.572980\pi\)
−0.227272 + 0.973831i \(0.572980\pi\)
\(54\) 0 0
\(55\) 0.871215 1.50899i 0.117475 0.203472i
\(56\) 0.500000 + 0.866025i 0.0668153 + 0.115728i
\(57\) 0 0
\(58\) 7.12175 4.11174i 0.935132 0.539898i
\(59\) −9.40363 + 5.42919i −1.22425 + 0.706820i −0.965821 0.259210i \(-0.916538\pi\)
−0.258428 + 0.966031i \(0.583204\pi\)
\(60\) 0 0
\(61\) −2.64171 4.57558i −0.338237 0.585843i 0.645864 0.763452i \(-0.276497\pi\)
−0.984101 + 0.177609i \(0.943164\pi\)
\(62\) 4.95298 8.57881i 0.629029 1.08951i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 4.84043 0.462632i 0.600382 0.0573825i
\(66\) 0 0
\(67\) −7.85978 4.53784i −0.960225 0.554386i −0.0639825 0.997951i \(-0.520380\pi\)
−0.896242 + 0.443565i \(0.853714\pi\)
\(68\) 1.76555 3.05803i 0.214105 0.370841i
\(69\) 0 0
\(70\) 1.34861i 0.161190i
\(71\) −6.89175 + 3.97895i −0.817900 + 0.472215i −0.849692 0.527280i \(-0.823212\pi\)
0.0317917 + 0.999495i \(0.489879\pi\)
\(72\) 0 0
\(73\) 3.28169i 0.384092i −0.981386 0.192046i \(-0.938488\pi\)
0.981386 0.192046i \(-0.0615123\pi\)
\(74\) −2.14558 3.71625i −0.249418 0.432005i
\(75\) 0 0
\(76\) 1.98887 + 1.14828i 0.228139 + 0.131716i
\(77\) 1.29202 0.147239
\(78\) 0 0
\(79\) −3.32636 −0.374245 −0.187123 0.982337i \(-0.559916\pi\)
−0.187123 + 0.982337i \(0.559916\pi\)
\(80\) −1.16793 0.674306i −0.130579 0.0753897i
\(81\) 0 0
\(82\) 3.95071 + 6.84283i 0.436283 + 0.755664i
\(83\) 0.731184i 0.0802579i 0.999195 + 0.0401289i \(0.0127769\pi\)
−0.999195 + 0.0401289i \(0.987223\pi\)
\(84\) 0 0
\(85\) 4.12410 2.38105i 0.447321 0.258261i
\(86\) 12.5330i 1.35146i
\(87\) 0 0
\(88\) −0.646009 + 1.11892i −0.0688648 + 0.119277i
\(89\) −11.5236 6.65313i −1.22150 0.705231i −0.256259 0.966608i \(-0.582490\pi\)
−0.965237 + 0.261377i \(0.915823\pi\)
\(90\) 0 0
\(91\) 2.09168 + 2.93681i 0.219268 + 0.307862i
\(92\) −6.16116 −0.642345
\(93\) 0 0
\(94\) −5.35313 + 9.27189i −0.552133 + 0.956323i
\(95\) 1.54858 + 2.68222i 0.158881 + 0.275190i
\(96\) 0 0
\(97\) −10.5806 + 6.10870i −1.07429 + 0.620244i −0.929352 0.369196i \(-0.879633\pi\)
−0.144943 + 0.989440i \(0.546300\pi\)
\(98\) −0.866025 + 0.500000i −0.0874818 + 0.0505076i
\(99\) 0 0
\(100\) 1.59062 + 2.75504i 0.159062 + 0.275504i
\(101\) 6.32905 10.9622i 0.629764 1.09078i −0.357835 0.933785i \(-0.616485\pi\)
0.987599 0.156998i \(-0.0501816\pi\)
\(102\) 0 0
\(103\) 11.8042 1.16310 0.581551 0.813510i \(-0.302446\pi\)
0.581551 + 0.813510i \(0.302446\pi\)
\(104\) −3.58920 + 0.343043i −0.351950 + 0.0336382i
\(105\) 0 0
\(106\) 2.86579 + 1.65456i 0.278350 + 0.160705i
\(107\) 5.14877 8.91794i 0.497751 0.862130i −0.502246 0.864725i \(-0.667493\pi\)
0.999997 + 0.00259527i \(0.000826100\pi\)
\(108\) 0 0
\(109\) 18.8876i 1.80910i −0.426368 0.904550i \(-0.640207\pi\)
0.426368 0.904550i \(-0.359793\pi\)
\(110\) −1.50899 + 0.871215i −0.143876 + 0.0830671i
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) −6.42036 11.1204i −0.603977 1.04612i −0.992212 0.124558i \(-0.960249\pi\)
0.388236 0.921560i \(-0.373085\pi\)
\(114\) 0 0
\(115\) −7.19581 4.15451i −0.671013 0.387410i
\(116\) −8.22349 −0.763532
\(117\) 0 0
\(118\) 10.8584 0.999595
\(119\) 3.05803 + 1.76555i 0.280329 + 0.161848i
\(120\) 0 0
\(121\) −4.66535 8.08062i −0.424122 0.734601i
\(122\) 5.28343i 0.478339i
\(123\) 0 0
\(124\) −8.57881 + 4.95298i −0.770400 + 0.444791i
\(125\) 11.0333i 0.986851i
\(126\) 0 0
\(127\) −5.67048 + 9.82157i −0.503174 + 0.871523i 0.496819 + 0.867854i \(0.334501\pi\)
−0.999993 + 0.00366893i \(0.998832\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −4.42325 2.01956i −0.387945 0.177128i
\(131\) 12.8560 1.12324 0.561618 0.827397i \(-0.310179\pi\)
0.561618 + 0.827397i \(0.310179\pi\)
\(132\) 0 0
\(133\) −1.14828 + 1.98887i −0.0995682 + 0.172457i
\(134\) 4.53784 + 7.85978i 0.392010 + 0.678981i
\(135\) 0 0
\(136\) −3.05803 + 1.76555i −0.262224 + 0.151395i
\(137\) −10.0049 + 5.77635i −0.854779 + 0.493507i −0.862260 0.506465i \(-0.830952\pi\)
0.00748143 + 0.999972i \(0.497619\pi\)
\(138\) 0 0
\(139\) 4.29208 + 7.43409i 0.364049 + 0.630552i 0.988623 0.150414i \(-0.0480607\pi\)
−0.624574 + 0.780966i \(0.714727\pi\)
\(140\) 0.674306 1.16793i 0.0569893 0.0987083i
\(141\) 0 0
\(142\) 7.95791 0.667813
\(143\) −1.93481 + 4.23763i −0.161797 + 0.354369i
\(144\) 0 0
\(145\) −9.60448 5.54515i −0.797608 0.460499i
\(146\) −1.64084 + 2.84202i −0.135797 + 0.235208i
\(147\) 0 0
\(148\) 4.29115i 0.352730i
\(149\) −8.76683 + 5.06153i −0.718207 + 0.414657i −0.814092 0.580736i \(-0.802765\pi\)
0.0958856 + 0.995392i \(0.469432\pi\)
\(150\) 0 0
\(151\) 3.86590i 0.314603i −0.987551 0.157301i \(-0.949721\pi\)
0.987551 0.157301i \(-0.0502794\pi\)
\(152\) −1.14828 1.98887i −0.0931375 0.161319i
\(153\) 0 0
\(154\) −1.11892 0.646009i −0.0901651 0.0520569i
\(155\) −13.3593 −1.07304
\(156\) 0 0
\(157\) 4.71896 0.376614 0.188307 0.982110i \(-0.439700\pi\)
0.188307 + 0.982110i \(0.439700\pi\)
\(158\) 2.88072 + 1.66318i 0.229177 + 0.132316i
\(159\) 0 0
\(160\) 0.674306 + 1.16793i 0.0533086 + 0.0923331i
\(161\) 6.16116i 0.485567i
\(162\) 0 0
\(163\) −20.2815 + 11.7095i −1.58857 + 0.917161i −0.595026 + 0.803707i \(0.702858\pi\)
−0.993543 + 0.113454i \(0.963809\pi\)
\(164\) 7.90142i 0.616997i
\(165\) 0 0
\(166\) 0.365592 0.633224i 0.0283754 0.0491477i
\(167\) 21.0853 + 12.1736i 1.63163 + 0.942021i 0.983591 + 0.180414i \(0.0577436\pi\)
0.648038 + 0.761608i \(0.275590\pi\)
\(168\) 0 0
\(169\) −12.7646 + 2.46250i −0.981896 + 0.189423i
\(170\) −4.76210 −0.365236
\(171\) 0 0
\(172\) 6.26649 10.8539i 0.477815 0.827600i
\(173\) 9.06378 + 15.6989i 0.689107 + 1.19357i 0.972127 + 0.234454i \(0.0753302\pi\)
−0.283021 + 0.959114i \(0.591337\pi\)
\(174\) 0 0
\(175\) −2.75504 + 1.59062i −0.208261 + 0.120240i
\(176\) 1.11892 0.646009i 0.0843418 0.0486947i
\(177\) 0 0
\(178\) 6.65313 + 11.5236i 0.498673 + 0.863728i
\(179\) 8.75612 15.1660i 0.654463 1.13356i −0.327565 0.944829i \(-0.606228\pi\)
0.982028 0.188735i \(-0.0604386\pi\)
\(180\) 0 0
\(181\) −24.5640 −1.82583 −0.912914 0.408152i \(-0.866173\pi\)
−0.912914 + 0.408152i \(0.866173\pi\)
\(182\) −0.343043 3.58920i −0.0254281 0.266049i
\(183\) 0 0
\(184\) 5.33572 + 3.08058i 0.393354 + 0.227103i
\(185\) −2.89355 + 5.01177i −0.212738 + 0.368473i
\(186\) 0 0
\(187\) 4.56225i 0.333625i
\(188\) 9.27189 5.35313i 0.676222 0.390417i
\(189\) 0 0
\(190\) 3.09716i 0.224691i
\(191\) −6.64065 11.5020i −0.480501 0.832252i 0.519249 0.854623i \(-0.326212\pi\)
−0.999750 + 0.0223712i \(0.992878\pi\)
\(192\) 0 0
\(193\) 18.9996 + 10.9694i 1.36762 + 0.789596i 0.990624 0.136618i \(-0.0436234\pi\)
0.376997 + 0.926214i \(0.376957\pi\)
\(194\) 12.2174 0.877158
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −13.1392 7.58594i −0.936132 0.540476i −0.0473862 0.998877i \(-0.515089\pi\)
−0.888746 + 0.458401i \(0.848422\pi\)
\(198\) 0 0
\(199\) 7.01383 + 12.1483i 0.497197 + 0.861171i 0.999995 0.00323355i \(-0.00102927\pi\)
−0.502798 + 0.864404i \(0.667696\pi\)
\(200\) 3.18125i 0.224948i
\(201\) 0 0
\(202\) −10.9622 + 6.32905i −0.771300 + 0.445310i
\(203\) 8.22349i 0.577176i
\(204\) 0 0
\(205\) 5.32798 9.22832i 0.372122 0.644534i
\(206\) −10.2227 5.90210i −0.712252 0.411219i
\(207\) 0 0
\(208\) 3.27986 + 1.49751i 0.227417 + 0.103834i
\(209\) −2.96719 −0.205245
\(210\) 0 0
\(211\) −7.16564 + 12.4113i −0.493303 + 0.854426i −0.999970 0.00771563i \(-0.997544\pi\)
0.506667 + 0.862142i \(0.330877\pi\)
\(212\) −1.65456 2.86579i −0.113636 0.196823i
\(213\) 0 0
\(214\) −8.91794 + 5.14877i −0.609618 + 0.351963i
\(215\) 14.6377 8.45106i 0.998280 0.576357i
\(216\) 0 0
\(217\) −4.95298 8.57881i −0.336230 0.582368i
\(218\) −9.44378 + 16.3571i −0.639613 + 1.10784i
\(219\) 0 0
\(220\) 1.74243 0.117475
\(221\) −10.3702 + 7.38596i −0.697575 + 0.496833i
\(222\) 0 0
\(223\) −10.6241 6.13382i −0.711442 0.410751i 0.100153 0.994972i \(-0.468067\pi\)
−0.811595 + 0.584221i \(0.801400\pi\)
\(224\) −0.500000 + 0.866025i −0.0334077 + 0.0578638i
\(225\) 0 0
\(226\) 12.8407i 0.854152i
\(227\) −14.5897 + 8.42336i −0.968352 + 0.559078i −0.898733 0.438495i \(-0.855512\pi\)
−0.0696185 + 0.997574i \(0.522178\pi\)
\(228\) 0 0
\(229\) 9.18953i 0.607261i −0.952790 0.303631i \(-0.901801\pi\)
0.952790 0.303631i \(-0.0981989\pi\)
\(230\) 4.15451 + 7.19581i 0.273940 + 0.474478i
\(231\) 0 0
\(232\) 7.12175 + 4.11174i 0.467566 + 0.269949i
\(233\) 25.1142 1.64529 0.822643 0.568558i \(-0.192498\pi\)
0.822643 + 0.568558i \(0.192498\pi\)
\(234\) 0 0
\(235\) 14.4386 0.941870
\(236\) −9.40363 5.42919i −0.612124 0.353410i
\(237\) 0 0
\(238\) −1.76555 3.05803i −0.114444 0.198223i
\(239\) 22.1206i 1.43086i 0.698682 + 0.715432i \(0.253770\pi\)
−0.698682 + 0.715432i \(0.746230\pi\)
\(240\) 0 0
\(241\) −5.87308 + 3.39083i −0.378318 + 0.218422i −0.677086 0.735904i \(-0.736758\pi\)
0.298768 + 0.954326i \(0.403424\pi\)
\(242\) 9.33069i 0.599800i
\(243\) 0 0
\(244\) 2.64171 4.57558i 0.169118 0.292922i
\(245\) 1.16793 + 0.674306i 0.0746165 + 0.0430798i
\(246\) 0 0
\(247\) −4.80366 6.74454i −0.305649 0.429145i
\(248\) 9.90596 0.629029
\(249\) 0 0
\(250\) 5.51666 9.55514i 0.348904 0.604320i
\(251\) −0.613386 1.06242i −0.0387166 0.0670591i 0.846018 0.533155i \(-0.178994\pi\)
−0.884734 + 0.466096i \(0.845660\pi\)
\(252\) 0 0
\(253\) 6.89384 3.98016i 0.433412 0.250231i
\(254\) 9.82157 5.67048i 0.616260 0.355798i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 8.94177 15.4876i 0.557772 0.966090i −0.439910 0.898042i \(-0.644990\pi\)
0.997682 0.0680481i \(-0.0216771\pi\)
\(258\) 0 0
\(259\) −4.29115 −0.266639
\(260\) 2.82087 + 3.96062i 0.174943 + 0.245627i
\(261\) 0 0
\(262\) −11.1336 6.42801i −0.687838 0.397124i
\(263\) −3.47009 + 6.01037i −0.213975 + 0.370615i −0.952955 0.303112i \(-0.901974\pi\)
0.738980 + 0.673727i \(0.235308\pi\)
\(264\) 0 0
\(265\) 4.46272i 0.274143i
\(266\) 1.98887 1.14828i 0.121946 0.0704053i
\(267\) 0 0
\(268\) 9.07569i 0.554386i
\(269\) 3.84257 + 6.65552i 0.234285 + 0.405794i 0.959065 0.283187i \(-0.0913916\pi\)
−0.724779 + 0.688981i \(0.758058\pi\)
\(270\) 0 0
\(271\) 4.06286 + 2.34569i 0.246801 + 0.142491i 0.618299 0.785943i \(-0.287822\pi\)
−0.371498 + 0.928434i \(0.621156\pi\)
\(272\) 3.53111 0.214105
\(273\) 0 0
\(274\) 11.5527 0.697924
\(275\) −3.55956 2.05511i −0.214650 0.123928i
\(276\) 0 0
\(277\) −11.7976 20.4340i −0.708847 1.22776i −0.965285 0.261198i \(-0.915882\pi\)
0.256438 0.966561i \(-0.417451\pi\)
\(278\) 8.58415i 0.514843i
\(279\) 0 0
\(280\) −1.16793 + 0.674306i −0.0697973 + 0.0402975i
\(281\) 9.32765i 0.556441i 0.960517 + 0.278221i \(0.0897446\pi\)
−0.960517 + 0.278221i \(0.910255\pi\)
\(282\) 0 0
\(283\) −8.08625 + 14.0058i −0.480678 + 0.832558i −0.999754 0.0221698i \(-0.992943\pi\)
0.519077 + 0.854728i \(0.326276\pi\)
\(284\) −6.89175 3.97895i −0.408950 0.236107i
\(285\) 0 0
\(286\) 3.79441 2.70249i 0.224368 0.159802i
\(287\) 7.90142 0.466406
\(288\) 0 0
\(289\) 2.26564 3.92420i 0.133273 0.230835i
\(290\) 5.54515 + 9.60448i 0.325622 + 0.563994i
\(291\) 0 0
\(292\) 2.84202 1.64084i 0.166317 0.0960231i
\(293\) 23.9023 13.8000i 1.39639 0.806203i 0.402373 0.915476i \(-0.368185\pi\)
0.994012 + 0.109272i \(0.0348520\pi\)
\(294\) 0 0
\(295\) −7.32187 12.6819i −0.426296 0.738366i
\(296\) 2.14558 3.71625i 0.124709 0.216002i
\(297\) 0 0
\(298\) 10.1231 0.586413
\(299\) 20.2077 + 9.22642i 1.16864 + 0.533577i
\(300\) 0 0
\(301\) 10.8539 + 6.26649i 0.625607 + 0.361194i
\(302\) −1.93295 + 3.34797i −0.111229 + 0.192654i
\(303\) 0 0
\(304\) 2.29655i 0.131716i
\(305\) 6.17068 3.56265i 0.353332 0.203996i
\(306\) 0 0
\(307\) 15.9372i 0.909584i 0.890598 + 0.454792i \(0.150286\pi\)
−0.890598 + 0.454792i \(0.849714\pi\)
\(308\) 0.646009 + 1.11892i 0.0368098 + 0.0637564i
\(309\) 0 0
\(310\) 11.5695 + 6.67965i 0.657103 + 0.379378i
\(311\) −8.56954 −0.485934 −0.242967 0.970035i \(-0.578121\pi\)
−0.242967 + 0.970035i \(0.578121\pi\)
\(312\) 0 0
\(313\) 19.1599 1.08298 0.541490 0.840707i \(-0.317860\pi\)
0.541490 + 0.840707i \(0.317860\pi\)
\(314\) −4.08674 2.35948i −0.230628 0.133153i
\(315\) 0 0
\(316\) −1.66318 2.88072i −0.0935613 0.162053i
\(317\) 4.23963i 0.238121i 0.992887 + 0.119061i \(0.0379883\pi\)
−0.992887 + 0.119061i \(0.962012\pi\)
\(318\) 0 0
\(319\) 9.20143 5.31245i 0.515181 0.297440i
\(320\) 1.34861i 0.0753897i
\(321\) 0 0
\(322\) −3.08058 + 5.33572i −0.171674 + 0.297348i
\(323\) −7.02292 4.05469i −0.390766 0.225609i
\(324\) 0 0
\(325\) −1.09130 11.4181i −0.0605347 0.633363i
\(326\) 23.4190 1.29706
\(327\) 0 0
\(328\) −3.95071 + 6.84283i −0.218141 + 0.377832i
\(329\) 5.35313 + 9.27189i 0.295128 + 0.511176i
\(330\) 0 0
\(331\) −0.0541701 + 0.0312751i −0.00297746 + 0.00171904i −0.501488 0.865165i \(-0.667214\pi\)
0.498511 + 0.866884i \(0.333881\pi\)
\(332\) −0.633224 + 0.365592i −0.0347527 + 0.0200645i
\(333\) 0 0
\(334\) −12.1736 21.0853i −0.666110 1.15374i
\(335\) 6.11979 10.5998i 0.334360 0.579128i
\(336\) 0 0
\(337\) −10.3047 −0.561334 −0.280667 0.959805i \(-0.590556\pi\)
−0.280667 + 0.959805i \(0.590556\pi\)
\(338\) 12.2858 + 4.24974i 0.668257 + 0.231155i
\(339\) 0 0
\(340\) 4.12410 + 2.38105i 0.223660 + 0.129130i
\(341\) 6.39933 11.0840i 0.346543 0.600231i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) −10.8539 + 6.26649i −0.585202 + 0.337866i
\(345\) 0 0
\(346\) 18.1276i 0.974544i
\(347\) 9.05710 + 15.6874i 0.486210 + 0.842141i 0.999874 0.0158503i \(-0.00504551\pi\)
−0.513664 + 0.857991i \(0.671712\pi\)
\(348\) 0 0
\(349\) 2.21514 + 1.27891i 0.118574 + 0.0684587i 0.558114 0.829764i \(-0.311525\pi\)
−0.439540 + 0.898223i \(0.644859\pi\)
\(350\) 3.18125 0.170045
\(351\) 0 0
\(352\) −1.29202 −0.0688648
\(353\) −5.37541 3.10350i −0.286104 0.165182i 0.350079 0.936720i \(-0.386155\pi\)
−0.636184 + 0.771538i \(0.719488\pi\)
\(354\) 0 0
\(355\) −5.36606 9.29430i −0.284801 0.493290i
\(356\) 13.3063i 0.705231i
\(357\) 0 0
\(358\) −15.1660 + 8.75612i −0.801550 + 0.462775i
\(359\) 7.92186i 0.418100i 0.977905 + 0.209050i \(0.0670371\pi\)
−0.977905 + 0.209050i \(0.932963\pi\)
\(360\) 0 0
\(361\) −6.86292 + 11.8869i −0.361207 + 0.625628i
\(362\) 21.2731 + 12.2820i 1.11809 + 0.645528i
\(363\) 0 0
\(364\) −1.49751 + 3.27986i −0.0784910 + 0.171911i
\(365\) 4.42572 0.231653
\(366\) 0 0
\(367\) 7.99513 13.8480i 0.417342 0.722858i −0.578329 0.815804i \(-0.696295\pi\)
0.995671 + 0.0929458i \(0.0296283\pi\)
\(368\) −3.08058 5.33572i −0.160586 0.278144i
\(369\) 0 0
\(370\) 5.01177 2.89355i 0.260550 0.150428i
\(371\) 2.86579 1.65456i 0.148784 0.0859006i
\(372\) 0 0
\(373\) −7.59496 13.1549i −0.393252 0.681132i 0.599624 0.800282i \(-0.295317\pi\)
−0.992876 + 0.119149i \(0.961983\pi\)
\(374\) 2.28113 3.95103i 0.117954 0.204303i
\(375\) 0 0
\(376\) −10.7063 −0.552133
\(377\) 26.9719 + 12.3148i 1.38912 + 0.634244i
\(378\) 0 0
\(379\) 11.8872 + 6.86310i 0.610607 + 0.352534i 0.773203 0.634159i \(-0.218653\pi\)
−0.162596 + 0.986693i \(0.551987\pi\)
\(380\) −1.54858 + 2.68222i −0.0794404 + 0.137595i
\(381\) 0 0
\(382\) 13.2813i 0.679531i
\(383\) −0.366939 + 0.211852i −0.0187497 + 0.0108251i −0.509346 0.860562i \(-0.670112\pi\)
0.490596 + 0.871387i \(0.336779\pi\)
\(384\) 0 0
\(385\) 1.74243i 0.0888025i
\(386\) −10.9694 18.9996i −0.558329 0.967054i
\(387\) 0 0
\(388\) −10.5806 6.10870i −0.537147 0.310122i
\(389\) 23.3287 1.18281 0.591406 0.806374i \(-0.298573\pi\)
0.591406 + 0.806374i \(0.298573\pi\)
\(390\) 0 0
\(391\) 21.7557 1.10023
\(392\) −0.866025 0.500000i −0.0437409 0.0252538i
\(393\) 0 0
\(394\) 7.58594 + 13.1392i 0.382174 + 0.661945i
\(395\) 4.48597i 0.225714i
\(396\) 0 0
\(397\) 22.9083 13.2261i 1.14973 0.663800i 0.200912 0.979609i \(-0.435609\pi\)
0.948823 + 0.315810i \(0.102276\pi\)
\(398\) 14.0277i 0.703143i
\(399\) 0 0
\(400\) −1.59062 + 2.75504i −0.0795311 + 0.137752i
\(401\) 21.0649 + 12.1618i 1.05193 + 0.607333i 0.923189 0.384346i \(-0.125573\pi\)
0.128742 + 0.991678i \(0.458906\pi\)
\(402\) 0 0
\(403\) 35.5544 3.39817i 1.77109 0.169275i
\(404\) 12.6581 0.629764
\(405\) 0 0
\(406\) −4.11174 + 7.12175i −0.204062 + 0.353446i
\(407\) −2.77212 4.80145i −0.137409 0.237999i
\(408\) 0 0
\(409\) −4.16586 + 2.40516i −0.205989 + 0.118928i −0.599446 0.800415i \(-0.704612\pi\)
0.393457 + 0.919343i \(0.371279\pi\)
\(410\) −9.22832 + 5.32798i −0.455754 + 0.263130i
\(411\) 0 0
\(412\) 5.90210 + 10.2227i 0.290776 + 0.503638i
\(413\) 5.42919 9.40363i 0.267153 0.462723i
\(414\) 0 0
\(415\) −0.986084 −0.0484049
\(416\) −2.09168 2.93681i −0.102553 0.143989i
\(417\) 0 0
\(418\) 2.56966 + 1.48359i 0.125686 + 0.0725649i
\(419\) 3.32439 5.75801i 0.162407 0.281297i −0.773324 0.634011i \(-0.781408\pi\)
0.935731 + 0.352713i \(0.114741\pi\)
\(420\) 0 0
\(421\) 15.2834i 0.744869i 0.928059 + 0.372434i \(0.121477\pi\)
−0.928059 + 0.372434i \(0.878523\pi\)
\(422\) 12.4113 7.16564i 0.604171 0.348818i
\(423\) 0 0
\(424\) 3.30912i 0.160705i
\(425\) −5.61666 9.72834i −0.272448 0.471894i
\(426\) 0 0
\(427\) 4.57558 + 2.64171i 0.221428 + 0.127841i
\(428\) 10.2975 0.497751
\(429\) 0 0
\(430\) −16.9021 −0.815092
\(431\) −31.5708 18.2274i −1.52071 0.877983i −0.999701 0.0244320i \(-0.992222\pi\)
−0.521009 0.853551i \(-0.674444\pi\)
\(432\) 0 0
\(433\) −0.457951 0.793194i −0.0220077 0.0381185i 0.854812 0.518938i \(-0.173673\pi\)
−0.876820 + 0.480820i \(0.840339\pi\)
\(434\) 9.90596i 0.475501i
\(435\) 0 0
\(436\) 16.3571 9.44378i 0.783363 0.452275i
\(437\) 14.1494i 0.676858i
\(438\) 0 0
\(439\) −13.3296 + 23.0876i −0.636188 + 1.10191i 0.350074 + 0.936722i \(0.386157\pi\)
−0.986262 + 0.165189i \(0.947177\pi\)
\(440\) −1.50899 0.871215i −0.0719382 0.0415336i
\(441\) 0 0
\(442\) 12.6738 1.21132i 0.602833 0.0576167i
\(443\) 28.1700 1.33840 0.669199 0.743083i \(-0.266637\pi\)
0.669199 + 0.743083i \(0.266637\pi\)
\(444\) 0 0
\(445\) 8.97250 15.5408i 0.425337 0.736705i
\(446\) 6.13382 + 10.6241i 0.290445 + 0.503065i
\(447\) 0 0
\(448\) 0.866025 0.500000i 0.0409159 0.0236228i
\(449\) −22.1050 + 12.7623i −1.04320 + 0.602290i −0.920737 0.390183i \(-0.872412\pi\)
−0.122460 + 0.992473i \(0.539078\pi\)
\(450\) 0 0
\(451\) 5.10439 + 8.84106i 0.240356 + 0.416309i
\(452\) 6.42036 11.1204i 0.301988 0.523059i
\(453\) 0 0
\(454\) 16.8467 0.790656
\(455\) −3.96062 + 2.82087i −0.185677 + 0.132244i
\(456\) 0 0
\(457\) −30.7007 17.7251i −1.43612 0.829143i −0.438541 0.898711i \(-0.644505\pi\)
−0.997577 + 0.0695681i \(0.977838\pi\)
\(458\) −4.59477 + 7.95837i −0.214699 + 0.371870i
\(459\) 0 0
\(460\) 8.30901i 0.387410i
\(461\) 3.16691 1.82842i 0.147498 0.0851579i −0.424435 0.905458i \(-0.639527\pi\)
0.571933 + 0.820301i \(0.306194\pi\)
\(462\) 0 0
\(463\) 2.86203i 0.133010i 0.997786 + 0.0665048i \(0.0211848\pi\)
−0.997786 + 0.0665048i \(0.978815\pi\)
\(464\) −4.11174 7.12175i −0.190883 0.330619i
\(465\) 0 0
\(466\) −21.7495 12.5571i −1.00753 0.581697i
\(467\) 12.4480 0.576024 0.288012 0.957627i \(-0.407006\pi\)
0.288012 + 0.957627i \(0.407006\pi\)
\(468\) 0 0
\(469\) 9.07569 0.419076
\(470\) −12.5042 7.21929i −0.576775 0.333001i
\(471\) 0 0
\(472\) 5.42919 + 9.40363i 0.249899 + 0.432837i
\(473\) 16.1928i 0.744547i
\(474\) 0 0
\(475\) 6.32709 3.65295i 0.290307 0.167609i
\(476\) 3.53111i 0.161848i
\(477\) 0 0
\(478\) 11.0603 19.1570i 0.505887 0.876222i
\(479\) 2.49108 + 1.43822i 0.113820 + 0.0657141i 0.555829 0.831296i \(-0.312401\pi\)
−0.442009 + 0.897011i \(0.645734\pi\)
\(480\) 0 0
\(481\) 6.42606 14.0744i 0.293003 0.641735i
\(482\) 6.78165 0.308896
\(483\) 0 0
\(484\) 4.66535 8.08062i 0.212061 0.367301i
\(485\) −8.23826 14.2691i −0.374080 0.647926i
\(486\) 0 0
\(487\) −6.74495 + 3.89420i −0.305643 + 0.176463i −0.644975 0.764204i \(-0.723132\pi\)
0.339332 + 0.940667i \(0.389799\pi\)
\(488\) −4.57558 + 2.64171i −0.207127 + 0.119585i
\(489\) 0 0
\(490\) −0.674306 1.16793i −0.0304620 0.0527618i
\(491\) −1.14360 + 1.98078i −0.0516102 + 0.0893914i −0.890676 0.454638i \(-0.849769\pi\)
0.839066 + 0.544029i \(0.183102\pi\)
\(492\) 0 0
\(493\) 29.0380 1.30781
\(494\) 0.787817 + 8.24277i 0.0354455 + 0.370860i
\(495\) 0 0
\(496\) −8.57881 4.95298i −0.385200 0.222395i
\(497\) 3.97895 6.89175i 0.178480 0.309137i
\(498\) 0 0
\(499\) 28.0079i 1.25381i 0.779097 + 0.626903i \(0.215678\pi\)
−0.779097 + 0.626903i \(0.784322\pi\)
\(500\) −9.55514 + 5.51666i −0.427319 + 0.246713i
\(501\) 0 0
\(502\) 1.22677i 0.0547535i
\(503\) −22.0810 38.2454i −0.984543 1.70528i −0.643949 0.765069i \(-0.722705\pi\)
−0.340594 0.940210i \(-0.610628\pi\)
\(504\) 0 0
\(505\) 14.7838 + 8.53543i 0.657870 + 0.379822i
\(506\) −7.96032 −0.353880
\(507\) 0 0
\(508\) −11.3410 −0.503174
\(509\) 13.3612 + 7.71409i 0.592225 + 0.341921i 0.765977 0.642868i \(-0.222256\pi\)
−0.173752 + 0.984789i \(0.555589\pi\)
\(510\) 0 0
\(511\) 1.64084 + 2.84202i 0.0725866 + 0.125724i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −15.4876 + 8.94177i −0.683129 + 0.394405i
\(515\) 15.9193i 0.701488i
\(516\) 0 0
\(517\) −6.91634 + 11.9794i −0.304180 + 0.526856i
\(518\) 3.71625 + 2.14558i 0.163282 + 0.0942712i
\(519\) 0 0
\(520\) −0.462632 4.84043i −0.0202878 0.212267i
\(521\) −24.0874 −1.05529 −0.527643 0.849466i \(-0.676924\pi\)
−0.527643 + 0.849466i \(0.676924\pi\)
\(522\) 0 0
\(523\) −10.2046 + 17.6748i −0.446215 + 0.772866i −0.998136 0.0610299i \(-0.980561\pi\)
0.551921 + 0.833896i \(0.313895\pi\)
\(524\) 6.42801 + 11.1336i 0.280809 + 0.486375i
\(525\) 0 0
\(526\) 6.01037 3.47009i 0.262065 0.151303i
\(527\) 30.2927 17.4895i 1.31957 0.761855i
\(528\) 0 0
\(529\) −7.47993 12.9556i −0.325214 0.563288i
\(530\) −2.23136 + 3.86483i −0.0969242 + 0.167878i
\(531\) 0 0
\(532\) −2.29655 −0.0995682
\(533\) −11.8325 + 25.9155i −0.512522 + 1.12253i
\(534\) 0 0
\(535\) 12.0268 + 6.94370i 0.519966 + 0.300202i
\(536\) −4.53784 + 7.85978i −0.196005 + 0.339491i
\(537\) 0 0
\(538\) 7.68513i 0.331330i
\(539\) −1.11892 + 0.646009i −0.0481953 + 0.0278256i
\(540\) 0 0
\(541\) 0.995612i 0.0428047i 0.999771 + 0.0214024i \(0.00681310\pi\)
−0.999771 + 0.0214024i \(0.993187\pi\)
\(542\) −2.34569 4.06286i −0.100756 0.174515i
\(543\) 0 0
\(544\) −3.05803 1.76555i −0.131112 0.0756975i
\(545\) 25.4720 1.09110
\(546\) 0 0
\(547\) 10.8590 0.464296 0.232148 0.972680i \(-0.425425\pi\)
0.232148 + 0.972680i \(0.425425\pi\)
\(548\) −10.0049 5.77635i −0.427390 0.246753i
\(549\) 0 0
\(550\) 2.05511 + 3.55956i 0.0876303 + 0.151780i
\(551\) 18.8857i 0.804557i
\(552\) 0 0
\(553\) 2.88072 1.66318i 0.122501 0.0707257i
\(554\) 23.5951i 1.00246i
\(555\) 0 0
\(556\) −4.29208 + 7.43409i −0.182025 + 0.315276i
\(557\) −14.4876 8.36441i −0.613859 0.354411i 0.160616 0.987017i \(-0.448652\pi\)
−0.774474 + 0.632606i \(0.781985\pi\)
\(558\) 0 0
\(559\) −36.8070 + 26.2150i −1.55677 + 1.10878i
\(560\) 1.34861 0.0569893
\(561\) 0 0
\(562\) 4.66383 8.07798i 0.196732 0.340749i
\(563\) 12.0094 + 20.8010i 0.506138 + 0.876656i 0.999975 + 0.00710189i \(0.00226062\pi\)
−0.493837 + 0.869555i \(0.664406\pi\)
\(564\) 0 0
\(565\) 14.9971 8.65857i 0.630932 0.364269i
\(566\) 14.0058 8.08625i 0.588707 0.339890i
\(567\) 0 0
\(568\) 3.97895 + 6.89175i 0.166953 + 0.289171i
\(569\) 21.4551 37.1613i 0.899445 1.55788i 0.0712394 0.997459i \(-0.477305\pi\)
0.828205 0.560425i \(-0.189362\pi\)
\(570\) 0 0
\(571\) −10.7484 −0.449807 −0.224904 0.974381i \(-0.572207\pi\)
−0.224904 + 0.974381i \(0.572207\pi\)
\(572\) −4.63730 + 0.443218i −0.193895 + 0.0185319i
\(573\) 0 0
\(574\) −6.84283 3.95071i −0.285614 0.164899i
\(575\) −9.80008 + 16.9742i −0.408691 + 0.707874i
\(576\) 0 0
\(577\) 3.70579i 0.154274i 0.997020 + 0.0771371i \(0.0245779\pi\)
−0.997020 + 0.0771371i \(0.975422\pi\)
\(578\) −3.92420 + 2.26564i −0.163225 + 0.0942380i
\(579\) 0 0
\(580\) 11.0903i 0.460499i
\(581\) −0.365592 0.633224i −0.0151673 0.0262706i
\(582\) 0 0
\(583\) 3.70265 + 2.13772i 0.153348 + 0.0885354i
\(584\) −3.28169 −0.135797
\(585\) 0 0
\(586\) −27.6000 −1.14014
\(587\) 14.3886 + 8.30727i 0.593881 + 0.342878i 0.766631 0.642088i \(-0.221932\pi\)
−0.172749 + 0.984966i \(0.555265\pi\)
\(588\) 0 0
\(589\) 11.3748 + 19.7017i 0.468689 + 0.811794i
\(590\) 14.6437i 0.602873i
\(591\) 0 0
\(592\) −3.71625 + 2.14558i −0.152737 + 0.0881826i
\(593\) 12.2152i 0.501620i −0.968036 0.250810i \(-0.919303\pi\)
0.968036 0.250810i \(-0.0806969\pi\)
\(594\) 0 0
\(595\) −2.38105 + 4.12410i −0.0976134 + 0.169071i
\(596\) −8.76683 5.06153i −0.359103 0.207328i
\(597\) 0 0
\(598\) −12.8872 18.0942i −0.526996 0.739925i
\(599\) −32.8665 −1.34289 −0.671443 0.741056i \(-0.734325\pi\)
−0.671443 + 0.741056i \(0.734325\pi\)
\(600\) 0 0
\(601\) 14.4802 25.0805i 0.590661 1.02306i −0.403482 0.914988i \(-0.632200\pi\)
0.994144 0.108068i \(-0.0344664\pi\)
\(602\) −6.26649 10.8539i −0.255403 0.442371i
\(603\) 0 0
\(604\) 3.34797 1.93295i 0.136227 0.0786507i
\(605\) 10.8976 6.29174i 0.443051 0.255796i
\(606\) 0 0
\(607\) 10.6364 + 18.4227i 0.431716 + 0.747755i 0.997021 0.0771273i \(-0.0245748\pi\)
−0.565305 + 0.824882i \(0.691241\pi\)
\(608\) 1.14828 1.98887i 0.0465687 0.0806594i
\(609\) 0 0
\(610\) −7.12529 −0.288495
\(611\) −38.4269 + 3.67271i −1.55458 + 0.148582i
\(612\) 0 0
\(613\) 16.4098 + 9.47422i 0.662787 + 0.382660i 0.793338 0.608781i \(-0.208341\pi\)
−0.130551 + 0.991442i \(0.541675\pi\)
\(614\) 7.96860 13.8020i 0.321586 0.557004i
\(615\) 0 0
\(616\) 1.29202i 0.0520569i
\(617\) −36.0364 + 20.8056i −1.45077 + 0.837602i −0.998525 0.0542919i \(-0.982710\pi\)
−0.452244 + 0.891894i \(0.649377\pi\)
\(618\) 0 0
\(619\) 33.3758i 1.34149i −0.741690 0.670743i \(-0.765975\pi\)
0.741690 0.670743i \(-0.234025\pi\)
\(620\) −6.67965 11.5695i −0.268261 0.464642i
\(621\) 0 0
\(622\) 7.42144 + 4.28477i 0.297572 + 0.171804i
\(623\) 13.3063 0.533104
\(624\) 0 0
\(625\) 1.02655 0.0410621
\(626\) −16.5929 9.57994i −0.663188 0.382892i
\(627\) 0 0
\(628\) 2.35948 + 4.08674i 0.0941535 + 0.163079i
\(629\) 15.1525i 0.604171i
\(630\) 0 0
\(631\) −15.6685 + 9.04620i −0.623752 + 0.360123i −0.778328 0.627857i \(-0.783932\pi\)
0.154576 + 0.987981i \(0.450599\pi\)
\(632\) 3.32636i 0.132316i
\(633\) 0 0
\(634\) 2.11982 3.67163i 0.0841886 0.145819i
\(635\) −13.2455 7.64728i −0.525631 0.303473i
\(636\) 0 0
\(637\) −3.27986 1.49751i −0.129953 0.0593336i
\(638\) −10.6249 −0.420643
\(639\) 0 0
\(640\) −0.674306 + 1.16793i −0.0266543 + 0.0461666i
\(641\) −4.70086 8.14213i −0.185673 0.321595i 0.758130 0.652103i \(-0.226113\pi\)
−0.943803 + 0.330508i \(0.892780\pi\)
\(642\) 0 0
\(643\) −35.7323 + 20.6300i −1.40914 + 0.813569i −0.995306 0.0967822i \(-0.969145\pi\)
−0.413837 + 0.910351i \(0.635812\pi\)
\(644\) 5.33572 3.08058i 0.210257 0.121392i
\(645\) 0 0
\(646\) 4.05469 + 7.02292i 0.159530 + 0.276313i
\(647\) 9.47607 16.4130i 0.372543 0.645263i −0.617413 0.786639i \(-0.711819\pi\)
0.989956 + 0.141376i \(0.0451527\pi\)
\(648\) 0 0
\(649\) 14.0292 0.550695
\(650\) −4.76396 + 10.4340i −0.186858 + 0.409256i
\(651\) 0 0
\(652\) −20.2815 11.7095i −0.794284 0.458580i
\(653\) 2.84907 4.93473i 0.111493 0.193111i −0.804880 0.593438i \(-0.797770\pi\)
0.916372 + 0.400327i \(0.131104\pi\)
\(654\) 0 0
\(655\) 17.3378i 0.677443i
\(656\) 6.84283 3.95071i 0.267168 0.154249i
\(657\) 0 0
\(658\) 10.7063i 0.417373i
\(659\) −2.06833 3.58246i −0.0805709 0.139553i 0.822924 0.568151i \(-0.192341\pi\)
−0.903495 + 0.428598i \(0.859008\pi\)
\(660\) 0 0
\(661\) −0.636113 0.367260i −0.0247419 0.0142848i 0.487578 0.873079i \(-0.337880\pi\)
−0.512320 + 0.858795i \(0.671214\pi\)
\(662\) 0.0625502 0.00243108
\(663\) 0 0
\(664\) 0.731184 0.0283754
\(665\) −2.68222 1.54858i −0.104012 0.0600513i
\(666\) 0 0
\(667\) −25.3331 43.8782i −0.980902 1.69897i
\(668\) 24.3472i 0.942021i
\(669\) 0 0
\(670\) −10.5998 + 6.11979i −0.409506 + 0.236428i
\(671\) 6.82628i 0.263526i
\(672\) 0 0
\(673\) 9.17498 15.8915i 0.353669 0.612573i −0.633220 0.773972i \(-0.718267\pi\)
0.986889 + 0.161399i \(0.0516005\pi\)
\(674\) 8.92415 + 5.15236i 0.343745 + 0.198461i
\(675\) 0 0
\(676\) −8.51491 9.82326i −0.327496 0.377818i
\(677\) 26.0206 1.00005 0.500026 0.866010i \(-0.333324\pi\)
0.500026 + 0.866010i \(0.333324\pi\)
\(678\) 0 0
\(679\) 6.10870 10.5806i 0.234430 0.406045i
\(680\) −2.38105 4.12410i −0.0913090 0.158152i
\(681\) 0 0
\(682\) −11.0840 + 6.39933i −0.424427 + 0.245043i
\(683\) 33.2640 19.2050i 1.27281 0.734859i 0.297296 0.954785i \(-0.403915\pi\)
0.975516 + 0.219927i \(0.0705818\pi\)
\(684\) 0 0
\(685\) −7.79005 13.4928i −0.297643 0.515532i
\(686\) 0.500000 0.866025i 0.0190901 0.0330650i
\(687\) 0 0
\(688\) 12.5330 0.477815
\(689\) 1.13517 + 11.8771i 0.0432466 + 0.452481i
\(690\) 0 0
\(691\) 4.37089 + 2.52354i 0.166277 + 0.0959998i 0.580829 0.814026i \(-0.302729\pi\)
−0.414552 + 0.910025i \(0.636062\pi\)
\(692\) −9.06378 + 15.6989i −0.344553 + 0.596784i
\(693\) 0 0
\(694\) 18.1142i 0.687605i
\(695\) −10.0257 + 5.78835i −0.380297 + 0.219564i
\(696\) 0 0
\(697\) 27.9008i 1.05682i
\(698\) −1.27891 2.21514i −0.0484076 0.0838444i
\(699\) 0 0
\(700\) −2.75504 1.59062i −0.104131 0.0601199i
\(701\) −41.3523 −1.56185 −0.780927 0.624623i \(-0.785253\pi\)
−0.780927 + 0.624623i \(0.785253\pi\)
\(702\) 0 0
\(703\) 9.85485 0.371683
\(704\) 1.11892 + 0.646009i 0.0421709 + 0.0243474i
\(705\) 0 0
\(706\) 3.10350 + 5.37541i 0.116802 + 0.202306i
\(707\) 12.6581i 0.476057i
\(708\) 0 0
\(709\) 28.7863 16.6198i 1.08109 0.624170i 0.149902 0.988701i \(-0.452104\pi\)
0.931191 + 0.364531i \(0.118771\pi\)
\(710\) 10.7321i 0.402770i
\(711\) 0 0
\(712\) −6.65313 + 11.5236i −0.249337 + 0.431864i
\(713\) −52.8554 30.5161i −1.97945 1.14284i
\(714\) 0 0
\(715\) −5.71492 2.60931i −0.213726 0.0975828i
\(716\) 17.5122 0.654463
\(717\) 0 0
\(718\) 3.96093 6.86053i 0.147821 0.256033i
\(719\) −7.34020 12.7136i −0.273743 0.474137i 0.696074 0.717970i \(-0.254929\pi\)
−0.969817 + 0.243833i \(0.921595\pi\)
\(720\) 0 0
\(721\) −10.2227 + 5.90210i −0.380715 + 0.219806i
\(722\) 11.8869 6.86292i 0.442386 0.255412i
\(723\) 0 0
\(724\) −12.2820 21.2731i −0.456457 0.790607i
\(725\) −13.0805 + 22.6560i −0.485796 + 0.841424i
\(726\) 0 0
\(727\) 25.4749 0.944812 0.472406 0.881381i \(-0.343386\pi\)
0.472406 + 0.881381i \(0.343386\pi\)
\(728\) 2.93681 2.09168i 0.108846 0.0775229i
\(729\) 0 0
\(730\) −3.83279 2.21286i −0.141858 0.0819017i
\(731\) −22.1276 + 38.3262i −0.818420 + 1.41755i
\(732\) 0 0
\(733\) 13.7814i 0.509027i 0.967069 + 0.254514i \(0.0819154\pi\)
−0.967069 + 0.254514i \(0.918085\pi\)
\(734\) −13.8480 + 7.99513i −0.511138 + 0.295105i
\(735\) 0 0
\(736\) 6.16116i 0.227103i
\(737\) 5.86298 + 10.1550i 0.215965 + 0.374063i
\(738\) 0 0
\(739\) 29.1960 + 16.8563i 1.07399 + 0.620069i 0.929269 0.369403i \(-0.120438\pi\)
0.144722 + 0.989472i \(0.453771\pi\)
\(740\) −5.78710 −0.212738
\(741\) 0 0
\(742\) −3.30912 −0.121482
\(743\) −25.1238 14.5052i −0.921701 0.532144i −0.0375238 0.999296i \(-0.511947\pi\)
−0.884177 + 0.467151i \(0.845280\pi\)
\(744\) 0 0
\(745\) −6.82604 11.8231i −0.250087 0.433163i
\(746\) 15.1899i 0.556142i
\(747\) 0 0
\(748\) −3.95103 + 2.28113i −0.144464 + 0.0834063i
\(749\) 10.2975i 0.376264i
\(750\) 0 0
\(751\) −13.9330 + 24.1326i −0.508422 + 0.880613i 0.491531 + 0.870860i \(0.336438\pi\)
−0.999952 + 0.00975221i \(0.996896\pi\)
\(752\) 9.27189 + 5.35313i 0.338111 + 0.195209i
\(753\) 0 0
\(754\) −17.2009 24.1508i −0.626421 0.879522i
\(755\) 5.21360 0.189742
\(756\) 0 0
\(757\) 7.24779 12.5535i 0.263426 0.456266i −0.703724 0.710473i \(-0.748481\pi\)
0.967150 + 0.254207i \(0.0818143\pi\)
\(758\) −6.86310 11.8872i −0.249279 0.431764i
\(759\) 0 0
\(760\) 2.68222 1.54858i 0.0972942 0.0561729i
\(761\) 8.33828 4.81411i 0.302262 0.174511i −0.341196 0.939992i \(-0.610832\pi\)
0.643459 + 0.765481i \(0.277499\pi\)
\(762\) 0 0
\(763\) 9.44378 + 16.3571i 0.341888 + 0.592167i
\(764\) 6.64065 11.5020i 0.240250 0.416126i
\(765\) 0 0
\(766\) 0.423704 0.0153091
\(767\) 22.7123 + 31.8890i 0.820093 + 1.15145i
\(768\) 0 0
\(769\) 15.7328 + 9.08333i 0.567339 + 0.327553i 0.756086 0.654473i \(-0.227109\pi\)
−0.188747 + 0.982026i \(0.560443\pi\)
\(770\) 0.871215 1.50899i 0.0313964 0.0543802i
\(771\) 0 0
\(772\) 21.9388i 0.789596i
\(773\) −18.5429 + 10.7058i −0.666944 + 0.385060i −0.794918 0.606718i \(-0.792486\pi\)
0.127974 + 0.991778i \(0.459153\pi\)
\(774\) 0 0
\(775\) 31.5133i 1.13199i
\(776\) 6.10870 + 10.5806i 0.219289 + 0.379820i
\(777\) 0 0
\(778\) −20.2032 11.6643i −0.724321 0.418187i
\(779\) −18.1460 −0.650149
\(780\) 0 0
\(781\) 10.2818 0.367910
\(782\) −18.8410 10.8779i −0.673753 0.388991i
\(783\) 0 0
\(784\) 0.500000 + 0.866025i 0.0178571 + 0.0309295i
\(785\) 6.36405i 0.227143i
\(786\) 0 0
\(787\) 20.9960 12.1221i 0.748428 0.432105i −0.0766978 0.997054i \(-0.524438\pi\)
0.825126 + 0.564949i \(0.191104\pi\)
\(788\) 15.1719i 0.540476i
\(789\) 0 0
\(790\) −2.24299 + 3.88497i −0.0798019 + 0.138221i
\(791\) 11.1204 + 6.42036i 0.395396 + 0.228282i
\(792\) 0 0
\(793\) −15.5164 + 11.0512i −0.551005 + 0.392441i
\(794\) −26.4522 −0.938755
\(795\) 0 0
\(796\) −7.01383 + 12.1483i −0.248599 + 0.430585i
\(797\) 8.32599 + 14.4210i 0.294922 + 0.510820i 0.974967 0.222351i \(-0.0713730\pi\)
−0.680045 + 0.733171i \(0.738040\pi\)
\(798\) 0 0
\(799\) −32.7401 + 18.9025i −1.15826 + 0.668722i
\(800\) 2.75504 1.59062i 0.0974054 0.0562370i
\(801\) 0 0
\(802\) −12.1618 21.0649i −0.429449 0.743828i
\(803\) −2.12000 + 3.67195i −0.0748131 + 0.129580i
\(804\) 0 0
\(805\) 8.30901 0.292854
\(806\) −32.4901 14.8343i −1.14442 0.522516i
\(807\) 0 0
\(808\) −10.9622 6.32905i −0.385650 0.222655i
\(809\) −4.49885 + 7.79224i −0.158171 + 0.273960i −0.934209 0.356726i \(-0.883893\pi\)
0.776038 + 0.630686i \(0.217226\pi\)
\(810\) 0 0
\(811\) 4.95566i 0.174017i 0.996208 + 0.0870084i \(0.0277307\pi\)
−0.996208 + 0.0870084i \(0.972269\pi\)
\(812\) 7.12175 4.11174i 0.249924 0.144294i
\(813\) 0 0
\(814\) 5.54424i 0.194326i
\(815\) −15.7916 27.3519i −0.553156 0.958094i
\(816\) 0 0
\(817\) −24.9265 14.3913i −0.872067 0.503488i
\(818\) 4.81032 0.168189
\(819\) 0 0
\(820\) 10.6560 0.372122
\(821\) −34.9461 20.1761i −1.21963 0.704151i −0.254788 0.966997i \(-0.582006\pi\)
−0.964838 + 0.262846i \(0.915339\pi\)
\(822\) 0 0
\(823\) 3.62878 + 6.28523i 0.126491 + 0.219089i 0.922315 0.386439i \(-0.126295\pi\)
−0.795824 + 0.605529i \(0.792962\pi\)
\(824\) 11.8042i 0.411219i
\(825\) 0 0
\(826\) −9.40363 + 5.42919i −0.327194 + 0.188906i
\(827\) 41.7368i 1.45133i −0.688048 0.725666i \(-0.741532\pi\)
0.688048 0.725666i \(-0.258468\pi\)
\(828\) 0 0
\(829\) −2.19025 + 3.79362i −0.0760704 + 0.131758i −0.901551 0.432672i \(-0.857571\pi\)
0.825481 + 0.564430i \(0.190904\pi\)
\(830\) 0.853973 + 0.493042i 0.0296419 + 0.0171137i
\(831\) 0 0
\(832\) 0.343043 + 3.58920i 0.0118929 + 0.124433i
\(833\) −3.53111 −0.122346
\(834\) 0 0
\(835\) −16.4175 + 28.4359i −0.568150 + 0.984064i
\(836\) −1.48359 2.56966i −0.0513111 0.0888735i
\(837\) 0 0
\(838\) −5.75801 + 3.32439i −0.198907 + 0.114839i
\(839\) 29.4393 16.9968i 1.01636 0.586795i 0.103312 0.994649i \(-0.467056\pi\)
0.913047 + 0.407854i \(0.133723\pi\)
\(840\) 0 0
\(841\) −19.3129 33.4509i −0.665961 1.15348i
\(842\) 7.64172 13.2358i 0.263351 0.456137i
\(843\) 0 0
\(844\) −14.3313 −0.493303
\(845\) −3.32095 17.2145i −0.114244 0.592199i
\(846\) 0 0
\(847\) 8.08062 + 4.66535i 0.277653 + 0.160303i
\(848\) 1.65456 2.86579i 0.0568179 0.0984115i
\(849\) 0 0
\(850\) 11.2333i 0.385300i
\(851\) −22.8964 + 13.2192i −0.784878 + 0.453149i
\(852\) 0 0
\(853\) 54.7869i 1.87587i −0.346816 0.937933i \(-0.612737\pi\)
0.346816 0.937933i \(-0.387263\pi\)
\(854\) −2.64171 4.57558i −0.0903976 0.156573i
\(855\) 0 0
\(856\) −8.91794 5.14877i −0.304809 0.175981i
\(857\) 23.3425 0.797366 0.398683 0.917089i \(-0.369467\pi\)
0.398683 + 0.917089i \(0.369467\pi\)
\(858\) 0 0
\(859\) 29.4543 1.00497 0.502484 0.864587i \(-0.332420\pi\)
0.502484 + 0.864587i \(0.332420\pi\)
\(860\) 14.6377 + 8.45106i 0.499140 + 0.288179i
\(861\) 0 0
\(862\) 18.2274 + 31.5708i 0.620828 + 1.07531i
\(863\) 10.8327i 0.368750i 0.982856 + 0.184375i \(0.0590262\pi\)
−0.982856 + 0.184375i \(0.940974\pi\)
\(864\) 0 0
\(865\) −21.1718 + 12.2235i −0.719862 + 0.415612i
\(866\) 0.915902i 0.0311236i
\(867\) 0 0
\(868\) 4.95298 8.57881i 0.168115 0.291184i
\(869\) 3.72194 + 2.14886i 0.126258 + 0.0728951i
\(870\) 0 0
\(871\) −13.5910 + 29.7670i −0.460512 + 1.00861i
\(872\) −18.8876 −0.639613
\(873\) 0 0
\(874\) 7.07471 12.2538i 0.239306 0.414489i
\(875\) −5.51666 9.55514i −0.186497 0.323023i
\(876\) 0 0
\(877\) −16.8691 + 9.73940i −0.569630 + 0.328876i −0.757002 0.653413i \(-0.773337\pi\)
0.187371 + 0.982289i \(0.440003\pi\)
\(878\) 23.0876 13.3296i 0.779169 0.449853i
\(879\) 0 0
\(880\) 0.871215 + 1.50899i 0.0293687 + 0.0508680i
\(881\) 13.3760 23.1678i 0.450648 0.780545i −0.547779 0.836623i \(-0.684526\pi\)
0.998426 + 0.0560787i \(0.0178598\pi\)
\(882\) 0 0
\(883\) −19.7077 −0.663217 −0.331608 0.943417i \(-0.607591\pi\)
−0.331608 + 0.943417i \(0.607591\pi\)
\(884\) −11.5815 5.28788i −0.389529 0.177851i
\(885\) 0 0
\(886\) −24.3960 14.0850i −0.819598 0.473195i
\(887\) −17.5895 + 30.4659i −0.590597 + 1.02294i 0.403555 + 0.914955i \(0.367774\pi\)
−0.994152 + 0.107989i \(0.965559\pi\)
\(888\) 0 0
\(889\) 11.3410i 0.380364i
\(890\) −15.5408 + 8.97250i −0.520929 + 0.300759i
\(891\) 0 0
\(892\) 12.2676i 0.410751i
\(893\) −12.2937 21.2934i −0.411394 0.712556i
\(894\) 0 0
\(895\) 20.4531 + 11.8086i 0.683672 + 0.394718i
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) 25.5246 0.851767
\(899\) −70.5477 40.7308i −2.35290 1.35845i
\(900\) 0 0
\(901\) 5.84244 + 10.1194i 0.194640 + 0.337126i
\(902\) 10.2088i 0.339915i
\(903\) 0 0
\(904\) −11.1204 + 6.42036i −0.369859 + 0.213538i
\(905\) 33.1273i 1.10119i
\(906\) 0 0
\(907\) −13.1330 + 22.7470i −0.436074 + 0.755302i −0.997383 0.0723042i \(-0.976965\pi\)
0.561309 + 0.827607i \(0.310298\pi\)
\(908\) −14.5897 8.42336i −0.484176 0.279539i
\(909\) 0 0
\(910\) 4.84043 0.462632i 0.160459 0.0153361i
\(911\) −2.76837 −0.0917200 −0.0458600 0.998948i \(-0.514603\pi\)
−0.0458600 + 0.998948i \(0.514603\pi\)
\(912\) 0 0
\(913\) 0.472351 0.818137i 0.0156325 0.0270764i
\(914\) 17.7251 + 30.7007i 0.586293 + 1.01549i
\(915\) 0 0
\(916\) 7.95837 4.59477i 0.262952 0.151815i
\(917\) −11.1336 + 6.42801i −0.367665 + 0.212271i
\(918\) 0 0
\(919\) 13.6427 + 23.6299i 0.450032 + 0.779479i 0.998387 0.0567668i \(-0.0180791\pi\)
−0.548355 + 0.836246i \(0.684746\pi\)
\(920\) −4.15451 + 7.19581i −0.136970 + 0.237239i
\(921\) 0 0
\(922\) −3.65683 −0.120431
\(923\) 16.6454 + 23.3709i 0.547890 + 0.769262i
\(924\) 0 0
\(925\) 11.8223 + 6.82560i 0.388715 + 0.224424i
\(926\) 1.43101 2.47859i 0.0470260 0.0814515i
\(927\) 0 0
\(928\) 8.22349i 0.269949i
\(929\) 1.69178 0.976752i 0.0555057 0.0320462i −0.471990 0.881604i \(-0.656464\pi\)
0.527496 + 0.849557i \(0.323131\pi\)
\(930\) 0 0
\(931\) 2.29655i 0.0752665i
\(932\) 12.5571 + 21.7495i 0.411322 + 0.712430i
\(933\) 0 0
\(934\) −10.7803 6.22399i −0.352741 0.203655i
\(935\) −6.15271 −0.201215
\(936\) 0 0
\(937\) −26.9688 −0.881033 −0.440517 0.897744i \(-0.645205\pi\)
−0.440517 + 0.897744i \(0.645205\pi\)
\(938\) −7.85978 4.53784i −0.256631 0.148166i
\(939\) 0 0
\(940\) 7.21929 + 12.5042i 0.235467 + 0.407842i
\(941\) 3.44549i 0.112320i 0.998422 + 0.0561598i \(0.0178856\pi\)
−0.998422 + 0.0561598i \(0.982114\pi\)
\(942\) 0 0
\(943\) 42.1598 24.3409i 1.37291 0.792650i
\(944\) 10.8584i 0.353410i
\(945\) 0 0
\(946\) 8.09641 14.0234i 0.263237 0.455940i
\(947\) −16.3580 9.44431i −0.531564 0.306899i 0.210089 0.977682i \(-0.432625\pi\)
−0.741653 + 0.670784i \(0.765958\pi\)
\(948\) 0 0
\(949\) −11.7786 + 1.12576i −0.382350 + 0.0365437i
\(950\) −7.30590 −0.237035
\(951\) 0 0
\(952\) 1.76555 3.05803i 0.0572219 0.0991113i
\(953\) 1.15780 + 2.00537i 0.0375048 + 0.0649602i 0.884169 0.467168i \(-0.154726\pi\)
−0.846664 + 0.532128i \(0.821392\pi\)
\(954\) 0 0
\(955\) 15.5117 8.95567i 0.501946 0.289799i
\(956\) −19.1570 + 11.0603i −0.619583 + 0.357716i
\(957\) 0 0
\(958\) −1.43822 2.49108i −0.0464669 0.0804830i
\(959\) 5.77635 10.0049i 0.186528 0.323076i
\(960\) 0 0
\(961\) −67.1280 −2.16542
\(962\) −12.6023 + 8.97572i −0.406315 + 0.289389i
\(963\) 0 0
\(964\) −5.87308 3.39083i −0.189159 0.109211i
\(965\) −14.7935 + 25.6231i −0.476219 + 0.824836i
\(966\) 0 0
\(967\) 52.9865i 1.70393i −0.523598 0.851965i \(-0.675411\pi\)
0.523598 0.851965i \(-0.324589\pi\)
\(968\) −8.08062 + 4.66535i −0.259721 + 0.149950i
\(969\) 0 0
\(970\) 16.4765i 0.529029i
\(971\) −14.9786 25.9437i −0.480686 0.832573i 0.519068 0.854733i \(-0.326279\pi\)
−0.999754 + 0.0221597i \(0.992946\pi\)
\(972\) 0 0
\(973\) −7.43409 4.29208i −0.238326 0.137598i
\(974\) 7.78840 0.249557
\(975\) 0 0
\(976\) 5.28343 0.169118
\(977\) −38.4936 22.2243i −1.23152 0.711017i −0.264172 0.964476i \(-0.585099\pi\)
−0.967346 + 0.253458i \(0.918432\pi\)
\(978\) 0 0
\(979\) 8.59597 + 14.8887i 0.274728 + 0.475843i
\(980\) 1.34861i 0.0430798i
\(981\) 0 0
\(982\) 1.98078 1.14360i 0.0632093 0.0364939i
\(983\) 35.7876i 1.14145i 0.821143 + 0.570723i \(0.193337\pi\)
−0.821143 + 0.570723i \(0.806663\pi\)
\(984\) 0 0
\(985\) 10.2305 17.7197i 0.325971 0.564598i
\(986\) −25.1477 14.5190i −0.800865 0.462380i
\(987\) 0 0
\(988\) 3.43912 7.53236i 0.109413 0.239636i
\(989\) 77.2176 2.45538
\(990\) 0 0
\(991\) −10.2824 + 17.8096i −0.326631 + 0.565742i −0.981841 0.189705i \(-0.939247\pi\)
0.655210 + 0.755447i \(0.272580\pi\)
\(992\) 4.95298 + 8.57881i 0.157257 + 0.272377i
\(993\) 0 0
\(994\) −6.89175 + 3.97895i −0.218593 + 0.126205i
\(995\) −16.3834 + 9.45893i −0.519387 + 0.299868i
\(996\) 0 0
\(997\) 15.4991 + 26.8453i 0.490862 + 0.850198i 0.999945 0.0105196i \(-0.00334857\pi\)
−0.509083 + 0.860718i \(0.670015\pi\)
\(998\) 14.0040 24.2556i 0.443287 0.767796i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.bj.i.1135.3 yes 16
3.2 odd 2 1638.2.bj.h.1135.6 yes 16
13.10 even 6 inner 1638.2.bj.i.127.2 yes 16
39.23 odd 6 1638.2.bj.h.127.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1638.2.bj.h.127.7 16 39.23 odd 6
1638.2.bj.h.1135.6 yes 16 3.2 odd 2
1638.2.bj.i.127.2 yes 16 13.10 even 6 inner
1638.2.bj.i.1135.3 yes 16 1.1 even 1 trivial