Properties

Label 1638.2.bj.i.127.2
Level $1638$
Weight $2$
Character 1638.127
Analytic conductor $13.079$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(127,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} + 18 x^{13} + 143 x^{12} - 148 x^{11} + 172 x^{10} + 1612 x^{9} + \cdots + 97344 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 127.2
Root \(-1.29491 + 1.29491i\) of defining polynomial
Character \(\chi\) \(=\) 1638.127
Dual form 1638.2.bj.i.1135.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} -1.34861i q^{5} +(-0.866025 - 0.500000i) q^{7} +1.00000i q^{8} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} -1.34861i q^{5} +(-0.866025 - 0.500000i) q^{7} +1.00000i q^{8} +(0.674306 + 1.16793i) q^{10} +(-1.11892 + 0.646009i) q^{11} +(-0.343043 + 3.58920i) q^{13} +1.00000 q^{14} +(-0.500000 - 0.866025i) q^{16} +(-1.76555 + 3.05803i) q^{17} +(1.98887 + 1.14828i) q^{19} +(-1.16793 - 0.674306i) q^{20} +(0.646009 - 1.11892i) q^{22} +(-3.08058 - 5.33572i) q^{23} +3.18125 q^{25} +(-1.49751 - 3.27986i) q^{26} +(-0.866025 + 0.500000i) q^{28} +(-4.11174 - 7.12175i) q^{29} -9.90596i q^{31} +(0.866025 + 0.500000i) q^{32} -3.53111i q^{34} +(-0.674306 + 1.16793i) q^{35} +(3.71625 - 2.14558i) q^{37} -2.29655 q^{38} +1.34861 q^{40} +(-6.84283 + 3.95071i) q^{41} +(-6.26649 + 10.8539i) q^{43} +1.29202i q^{44} +(5.33572 + 3.08058i) q^{46} +10.7063i q^{47} +(0.500000 + 0.866025i) q^{49} +(-2.75504 + 1.59062i) q^{50} +(2.93681 + 2.09168i) q^{52} -3.30912 q^{53} +(0.871215 + 1.50899i) q^{55} +(0.500000 - 0.866025i) q^{56} +(7.12175 + 4.11174i) q^{58} +(-9.40363 - 5.42919i) q^{59} +(-2.64171 + 4.57558i) q^{61} +(4.95298 + 8.57881i) q^{62} -1.00000 q^{64} +(4.84043 + 0.462632i) q^{65} +(-7.85978 + 4.53784i) q^{67} +(1.76555 + 3.05803i) q^{68} -1.34861i q^{70} +(-6.89175 - 3.97895i) q^{71} +3.28169i q^{73} +(-2.14558 + 3.71625i) q^{74} +(1.98887 - 1.14828i) q^{76} +1.29202 q^{77} -3.32636 q^{79} +(-1.16793 + 0.674306i) q^{80} +(3.95071 - 6.84283i) q^{82} -0.731184i q^{83} +(4.12410 + 2.38105i) q^{85} -12.5330i q^{86} +(-0.646009 - 1.11892i) q^{88} +(-11.5236 + 6.65313i) q^{89} +(2.09168 - 2.93681i) q^{91} -6.16116 q^{92} +(-5.35313 - 9.27189i) q^{94} +(1.54858 - 2.68222i) q^{95} +(-10.5806 - 6.10870i) q^{97} +(-0.866025 - 0.500000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 8 q^{4} + 2 q^{10} + 12 q^{11} + 10 q^{13} + 16 q^{14} - 8 q^{16} + 6 q^{17} - 4 q^{22} + 12 q^{23} - 20 q^{25} + 2 q^{26} - 16 q^{29} - 2 q^{35} - 6 q^{37} + 4 q^{40} - 12 q^{41} - 6 q^{43} + 6 q^{46} + 8 q^{49} + 24 q^{50} - 4 q^{52} + 40 q^{53} + 20 q^{55} + 8 q^{56} + 6 q^{58} - 6 q^{59} - 2 q^{61} + 14 q^{62} - 16 q^{64} + 52 q^{65} - 30 q^{67} - 6 q^{68} - 12 q^{71} - 24 q^{74} - 8 q^{77} - 16 q^{79} + 2 q^{82} + 6 q^{85} + 4 q^{88} - 30 q^{89} + 4 q^{91} + 24 q^{92} - 8 q^{94} + 40 q^{95} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.34861i 0.603118i −0.953448 0.301559i \(-0.902493\pi\)
0.953448 0.301559i \(-0.0975070\pi\)
\(6\) 0 0
\(7\) −0.866025 0.500000i −0.327327 0.188982i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.674306 + 1.16793i 0.213234 + 0.369333i
\(11\) −1.11892 + 0.646009i −0.337367 + 0.194779i −0.659107 0.752049i \(-0.729066\pi\)
0.321740 + 0.946828i \(0.395732\pi\)
\(12\) 0 0
\(13\) −0.343043 + 3.58920i −0.0951431 + 0.995464i
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.76555 + 3.05803i −0.428210 + 0.741681i −0.996714 0.0809991i \(-0.974189\pi\)
0.568504 + 0.822680i \(0.307522\pi\)
\(18\) 0 0
\(19\) 1.98887 + 1.14828i 0.456279 + 0.263433i 0.710478 0.703719i \(-0.248479\pi\)
−0.254200 + 0.967152i \(0.581812\pi\)
\(20\) −1.16793 0.674306i −0.261158 0.150779i
\(21\) 0 0
\(22\) 0.646009 1.11892i 0.137730 0.238555i
\(23\) −3.08058 5.33572i −0.642345 1.11257i −0.984908 0.173079i \(-0.944628\pi\)
0.342563 0.939495i \(-0.388705\pi\)
\(24\) 0 0
\(25\) 3.18125 0.636249
\(26\) −1.49751 3.27986i −0.293687 0.643233i
\(27\) 0 0
\(28\) −0.866025 + 0.500000i −0.163663 + 0.0944911i
\(29\) −4.11174 7.12175i −0.763532 1.32248i −0.941019 0.338353i \(-0.890130\pi\)
0.177488 0.984123i \(-0.443203\pi\)
\(30\) 0 0
\(31\) 9.90596i 1.77916i −0.456777 0.889581i \(-0.650996\pi\)
0.456777 0.889581i \(-0.349004\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 3.53111i 0.605580i
\(35\) −0.674306 + 1.16793i −0.113979 + 0.197417i
\(36\) 0 0
\(37\) 3.71625 2.14558i 0.610947 0.352730i −0.162389 0.986727i \(-0.551920\pi\)
0.773336 + 0.633996i \(0.218587\pi\)
\(38\) −2.29655 −0.372550
\(39\) 0 0
\(40\) 1.34861 0.213234
\(41\) −6.84283 + 3.95071i −1.06867 + 0.616997i −0.927818 0.373033i \(-0.878318\pi\)
−0.140853 + 0.990031i \(0.544984\pi\)
\(42\) 0 0
\(43\) −6.26649 + 10.8539i −0.955630 + 1.65520i −0.222710 + 0.974885i \(0.571490\pi\)
−0.732920 + 0.680315i \(0.761843\pi\)
\(44\) 1.29202i 0.194779i
\(45\) 0 0
\(46\) 5.33572 + 3.08058i 0.786709 + 0.454207i
\(47\) 10.7063i 1.56167i 0.624738 + 0.780834i \(0.285206\pi\)
−0.624738 + 0.780834i \(0.714794\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) −2.75504 + 1.59062i −0.389621 + 0.224948i
\(51\) 0 0
\(52\) 2.93681 + 2.09168i 0.407263 + 0.290064i
\(53\) −3.30912 −0.454543 −0.227272 0.973831i \(-0.572980\pi\)
−0.227272 + 0.973831i \(0.572980\pi\)
\(54\) 0 0
\(55\) 0.871215 + 1.50899i 0.117475 + 0.203472i
\(56\) 0.500000 0.866025i 0.0668153 0.115728i
\(57\) 0 0
\(58\) 7.12175 + 4.11174i 0.935132 + 0.539898i
\(59\) −9.40363 5.42919i −1.22425 0.706820i −0.258428 0.966031i \(-0.583204\pi\)
−0.965821 + 0.259210i \(0.916538\pi\)
\(60\) 0 0
\(61\) −2.64171 + 4.57558i −0.338237 + 0.585843i −0.984101 0.177609i \(-0.943164\pi\)
0.645864 + 0.763452i \(0.276497\pi\)
\(62\) 4.95298 + 8.57881i 0.629029 + 1.08951i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 4.84043 + 0.462632i 0.600382 + 0.0573825i
\(66\) 0 0
\(67\) −7.85978 + 4.53784i −0.960225 + 0.554386i −0.896242 0.443565i \(-0.853714\pi\)
−0.0639825 + 0.997951i \(0.520380\pi\)
\(68\) 1.76555 + 3.05803i 0.214105 + 0.370841i
\(69\) 0 0
\(70\) 1.34861i 0.161190i
\(71\) −6.89175 3.97895i −0.817900 0.472215i 0.0317917 0.999495i \(-0.489879\pi\)
−0.849692 + 0.527280i \(0.823212\pi\)
\(72\) 0 0
\(73\) 3.28169i 0.384092i 0.981386 + 0.192046i \(0.0615123\pi\)
−0.981386 + 0.192046i \(0.938488\pi\)
\(74\) −2.14558 + 3.71625i −0.249418 + 0.432005i
\(75\) 0 0
\(76\) 1.98887 1.14828i 0.228139 0.131716i
\(77\) 1.29202 0.147239
\(78\) 0 0
\(79\) −3.32636 −0.374245 −0.187123 0.982337i \(-0.559916\pi\)
−0.187123 + 0.982337i \(0.559916\pi\)
\(80\) −1.16793 + 0.674306i −0.130579 + 0.0753897i
\(81\) 0 0
\(82\) 3.95071 6.84283i 0.436283 0.755664i
\(83\) 0.731184i 0.0802579i −0.999195 0.0401289i \(-0.987223\pi\)
0.999195 0.0401289i \(-0.0127769\pi\)
\(84\) 0 0
\(85\) 4.12410 + 2.38105i 0.447321 + 0.258261i
\(86\) 12.5330i 1.35146i
\(87\) 0 0
\(88\) −0.646009 1.11892i −0.0688648 0.119277i
\(89\) −11.5236 + 6.65313i −1.22150 + 0.705231i −0.965237 0.261377i \(-0.915823\pi\)
−0.256259 + 0.966608i \(0.582490\pi\)
\(90\) 0 0
\(91\) 2.09168 2.93681i 0.219268 0.307862i
\(92\) −6.16116 −0.642345
\(93\) 0 0
\(94\) −5.35313 9.27189i −0.552133 0.956323i
\(95\) 1.54858 2.68222i 0.158881 0.275190i
\(96\) 0 0
\(97\) −10.5806 6.10870i −1.07429 0.620244i −0.144943 0.989440i \(-0.546300\pi\)
−0.929352 + 0.369196i \(0.879633\pi\)
\(98\) −0.866025 0.500000i −0.0874818 0.0505076i
\(99\) 0 0
\(100\) 1.59062 2.75504i 0.159062 0.275504i
\(101\) 6.32905 + 10.9622i 0.629764 + 1.09078i 0.987599 + 0.156998i \(0.0501816\pi\)
−0.357835 + 0.933785i \(0.616485\pi\)
\(102\) 0 0
\(103\) 11.8042 1.16310 0.581551 0.813510i \(-0.302446\pi\)
0.581551 + 0.813510i \(0.302446\pi\)
\(104\) −3.58920 0.343043i −0.351950 0.0336382i
\(105\) 0 0
\(106\) 2.86579 1.65456i 0.278350 0.160705i
\(107\) 5.14877 + 8.91794i 0.497751 + 0.862130i 0.999997 0.00259527i \(-0.000826100\pi\)
−0.502246 + 0.864725i \(0.667493\pi\)
\(108\) 0 0
\(109\) 18.8876i 1.80910i 0.426368 + 0.904550i \(0.359793\pi\)
−0.426368 + 0.904550i \(0.640207\pi\)
\(110\) −1.50899 0.871215i −0.143876 0.0830671i
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) −6.42036 + 11.1204i −0.603977 + 1.04612i 0.388236 + 0.921560i \(0.373085\pi\)
−0.992212 + 0.124558i \(0.960249\pi\)
\(114\) 0 0
\(115\) −7.19581 + 4.15451i −0.671013 + 0.387410i
\(116\) −8.22349 −0.763532
\(117\) 0 0
\(118\) 10.8584 0.999595
\(119\) 3.05803 1.76555i 0.280329 0.161848i
\(120\) 0 0
\(121\) −4.66535 + 8.08062i −0.424122 + 0.734601i
\(122\) 5.28343i 0.478339i
\(123\) 0 0
\(124\) −8.57881 4.95298i −0.770400 0.444791i
\(125\) 11.0333i 0.986851i
\(126\) 0 0
\(127\) −5.67048 9.82157i −0.503174 0.871523i −0.999993 0.00366893i \(-0.998832\pi\)
0.496819 0.867854i \(-0.334501\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −4.42325 + 2.01956i −0.387945 + 0.177128i
\(131\) 12.8560 1.12324 0.561618 0.827397i \(-0.310179\pi\)
0.561618 + 0.827397i \(0.310179\pi\)
\(132\) 0 0
\(133\) −1.14828 1.98887i −0.0995682 0.172457i
\(134\) 4.53784 7.85978i 0.392010 0.678981i
\(135\) 0 0
\(136\) −3.05803 1.76555i −0.262224 0.151395i
\(137\) −10.0049 5.77635i −0.854779 0.493507i 0.00748143 0.999972i \(-0.497619\pi\)
−0.862260 + 0.506465i \(0.830952\pi\)
\(138\) 0 0
\(139\) 4.29208 7.43409i 0.364049 0.630552i −0.624574 0.780966i \(-0.714727\pi\)
0.988623 + 0.150414i \(0.0480607\pi\)
\(140\) 0.674306 + 1.16793i 0.0569893 + 0.0987083i
\(141\) 0 0
\(142\) 7.95791 0.667813
\(143\) −1.93481 4.23763i −0.161797 0.354369i
\(144\) 0 0
\(145\) −9.60448 + 5.54515i −0.797608 + 0.460499i
\(146\) −1.64084 2.84202i −0.135797 0.235208i
\(147\) 0 0
\(148\) 4.29115i 0.352730i
\(149\) −8.76683 5.06153i −0.718207 0.414657i 0.0958856 0.995392i \(-0.469432\pi\)
−0.814092 + 0.580736i \(0.802765\pi\)
\(150\) 0 0
\(151\) 3.86590i 0.314603i 0.987551 + 0.157301i \(0.0502794\pi\)
−0.987551 + 0.157301i \(0.949721\pi\)
\(152\) −1.14828 + 1.98887i −0.0931375 + 0.161319i
\(153\) 0 0
\(154\) −1.11892 + 0.646009i −0.0901651 + 0.0520569i
\(155\) −13.3593 −1.07304
\(156\) 0 0
\(157\) 4.71896 0.376614 0.188307 0.982110i \(-0.439700\pi\)
0.188307 + 0.982110i \(0.439700\pi\)
\(158\) 2.88072 1.66318i 0.229177 0.132316i
\(159\) 0 0
\(160\) 0.674306 1.16793i 0.0533086 0.0923331i
\(161\) 6.16116i 0.485567i
\(162\) 0 0
\(163\) −20.2815 11.7095i −1.58857 0.917161i −0.993543 0.113454i \(-0.963809\pi\)
−0.595026 0.803707i \(-0.702858\pi\)
\(164\) 7.90142i 0.616997i
\(165\) 0 0
\(166\) 0.365592 + 0.633224i 0.0283754 + 0.0491477i
\(167\) 21.0853 12.1736i 1.63163 0.942021i 0.648038 0.761608i \(-0.275590\pi\)
0.983591 0.180414i \(-0.0577436\pi\)
\(168\) 0 0
\(169\) −12.7646 2.46250i −0.981896 0.189423i
\(170\) −4.76210 −0.365236
\(171\) 0 0
\(172\) 6.26649 + 10.8539i 0.477815 + 0.827600i
\(173\) 9.06378 15.6989i 0.689107 1.19357i −0.283021 0.959114i \(-0.591337\pi\)
0.972127 0.234454i \(-0.0753302\pi\)
\(174\) 0 0
\(175\) −2.75504 1.59062i −0.208261 0.120240i
\(176\) 1.11892 + 0.646009i 0.0843418 + 0.0486947i
\(177\) 0 0
\(178\) 6.65313 11.5236i 0.498673 0.863728i
\(179\) 8.75612 + 15.1660i 0.654463 + 1.13356i 0.982028 + 0.188735i \(0.0604386\pi\)
−0.327565 + 0.944829i \(0.606228\pi\)
\(180\) 0 0
\(181\) −24.5640 −1.82583 −0.912914 0.408152i \(-0.866173\pi\)
−0.912914 + 0.408152i \(0.866173\pi\)
\(182\) −0.343043 + 3.58920i −0.0254281 + 0.266049i
\(183\) 0 0
\(184\) 5.33572 3.08058i 0.393354 0.227103i
\(185\) −2.89355 5.01177i −0.212738 0.368473i
\(186\) 0 0
\(187\) 4.56225i 0.333625i
\(188\) 9.27189 + 5.35313i 0.676222 + 0.390417i
\(189\) 0 0
\(190\) 3.09716i 0.224691i
\(191\) −6.64065 + 11.5020i −0.480501 + 0.832252i −0.999750 0.0223712i \(-0.992878\pi\)
0.519249 + 0.854623i \(0.326212\pi\)
\(192\) 0 0
\(193\) 18.9996 10.9694i 1.36762 0.789596i 0.376997 0.926214i \(-0.376957\pi\)
0.990624 + 0.136618i \(0.0436234\pi\)
\(194\) 12.2174 0.877158
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −13.1392 + 7.58594i −0.936132 + 0.540476i −0.888746 0.458401i \(-0.848422\pi\)
−0.0473862 + 0.998877i \(0.515089\pi\)
\(198\) 0 0
\(199\) 7.01383 12.1483i 0.497197 0.861171i −0.502798 0.864404i \(-0.667696\pi\)
0.999995 + 0.00323355i \(0.00102927\pi\)
\(200\) 3.18125i 0.224948i
\(201\) 0 0
\(202\) −10.9622 6.32905i −0.771300 0.445310i
\(203\) 8.22349i 0.577176i
\(204\) 0 0
\(205\) 5.32798 + 9.22832i 0.372122 + 0.644534i
\(206\) −10.2227 + 5.90210i −0.712252 + 0.411219i
\(207\) 0 0
\(208\) 3.27986 1.49751i 0.227417 0.103834i
\(209\) −2.96719 −0.205245
\(210\) 0 0
\(211\) −7.16564 12.4113i −0.493303 0.854426i 0.506667 0.862142i \(-0.330877\pi\)
−0.999970 + 0.00771563i \(0.997544\pi\)
\(212\) −1.65456 + 2.86579i −0.113636 + 0.196823i
\(213\) 0 0
\(214\) −8.91794 5.14877i −0.609618 0.351963i
\(215\) 14.6377 + 8.45106i 0.998280 + 0.576357i
\(216\) 0 0
\(217\) −4.95298 + 8.57881i −0.336230 + 0.582368i
\(218\) −9.44378 16.3571i −0.639613 1.10784i
\(219\) 0 0
\(220\) 1.74243 0.117475
\(221\) −10.3702 7.38596i −0.697575 0.496833i
\(222\) 0 0
\(223\) −10.6241 + 6.13382i −0.711442 + 0.410751i −0.811595 0.584221i \(-0.801400\pi\)
0.100153 + 0.994972i \(0.468067\pi\)
\(224\) −0.500000 0.866025i −0.0334077 0.0578638i
\(225\) 0 0
\(226\) 12.8407i 0.854152i
\(227\) −14.5897 8.42336i −0.968352 0.559078i −0.0696185 0.997574i \(-0.522178\pi\)
−0.898733 + 0.438495i \(0.855512\pi\)
\(228\) 0 0
\(229\) 9.18953i 0.607261i 0.952790 + 0.303631i \(0.0981989\pi\)
−0.952790 + 0.303631i \(0.901801\pi\)
\(230\) 4.15451 7.19581i 0.273940 0.474478i
\(231\) 0 0
\(232\) 7.12175 4.11174i 0.467566 0.269949i
\(233\) 25.1142 1.64529 0.822643 0.568558i \(-0.192498\pi\)
0.822643 + 0.568558i \(0.192498\pi\)
\(234\) 0 0
\(235\) 14.4386 0.941870
\(236\) −9.40363 + 5.42919i −0.612124 + 0.353410i
\(237\) 0 0
\(238\) −1.76555 + 3.05803i −0.114444 + 0.198223i
\(239\) 22.1206i 1.43086i −0.698682 0.715432i \(-0.746230\pi\)
0.698682 0.715432i \(-0.253770\pi\)
\(240\) 0 0
\(241\) −5.87308 3.39083i −0.378318 0.218422i 0.298768 0.954326i \(-0.403424\pi\)
−0.677086 + 0.735904i \(0.736758\pi\)
\(242\) 9.33069i 0.599800i
\(243\) 0 0
\(244\) 2.64171 + 4.57558i 0.169118 + 0.292922i
\(245\) 1.16793 0.674306i 0.0746165 0.0430798i
\(246\) 0 0
\(247\) −4.80366 + 6.74454i −0.305649 + 0.429145i
\(248\) 9.90596 0.629029
\(249\) 0 0
\(250\) 5.51666 + 9.55514i 0.348904 + 0.604320i
\(251\) −0.613386 + 1.06242i −0.0387166 + 0.0670591i −0.884734 0.466096i \(-0.845660\pi\)
0.846018 + 0.533155i \(0.178994\pi\)
\(252\) 0 0
\(253\) 6.89384 + 3.98016i 0.433412 + 0.250231i
\(254\) 9.82157 + 5.67048i 0.616260 + 0.355798i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 8.94177 + 15.4876i 0.557772 + 0.966090i 0.997682 + 0.0680481i \(0.0216771\pi\)
−0.439910 + 0.898042i \(0.644990\pi\)
\(258\) 0 0
\(259\) −4.29115 −0.266639
\(260\) 2.82087 3.96062i 0.174943 0.245627i
\(261\) 0 0
\(262\) −11.1336 + 6.42801i −0.687838 + 0.397124i
\(263\) −3.47009 6.01037i −0.213975 0.370615i 0.738980 0.673727i \(-0.235308\pi\)
−0.952955 + 0.303112i \(0.901974\pi\)
\(264\) 0 0
\(265\) 4.46272i 0.274143i
\(266\) 1.98887 + 1.14828i 0.121946 + 0.0704053i
\(267\) 0 0
\(268\) 9.07569i 0.554386i
\(269\) 3.84257 6.65552i 0.234285 0.405794i −0.724779 0.688981i \(-0.758058\pi\)
0.959065 + 0.283187i \(0.0913916\pi\)
\(270\) 0 0
\(271\) 4.06286 2.34569i 0.246801 0.142491i −0.371498 0.928434i \(-0.621156\pi\)
0.618299 + 0.785943i \(0.287822\pi\)
\(272\) 3.53111 0.214105
\(273\) 0 0
\(274\) 11.5527 0.697924
\(275\) −3.55956 + 2.05511i −0.214650 + 0.123928i
\(276\) 0 0
\(277\) −11.7976 + 20.4340i −0.708847 + 1.22776i 0.256438 + 0.966561i \(0.417451\pi\)
−0.965285 + 0.261198i \(0.915882\pi\)
\(278\) 8.58415i 0.514843i
\(279\) 0 0
\(280\) −1.16793 0.674306i −0.0697973 0.0402975i
\(281\) 9.32765i 0.556441i −0.960517 0.278221i \(-0.910255\pi\)
0.960517 0.278221i \(-0.0897446\pi\)
\(282\) 0 0
\(283\) −8.08625 14.0058i −0.480678 0.832558i 0.519077 0.854728i \(-0.326276\pi\)
−0.999754 + 0.0221698i \(0.992943\pi\)
\(284\) −6.89175 + 3.97895i −0.408950 + 0.236107i
\(285\) 0 0
\(286\) 3.79441 + 2.70249i 0.224368 + 0.159802i
\(287\) 7.90142 0.466406
\(288\) 0 0
\(289\) 2.26564 + 3.92420i 0.133273 + 0.230835i
\(290\) 5.54515 9.60448i 0.325622 0.563994i
\(291\) 0 0
\(292\) 2.84202 + 1.64084i 0.166317 + 0.0960231i
\(293\) 23.9023 + 13.8000i 1.39639 + 0.806203i 0.994012 0.109272i \(-0.0348520\pi\)
0.402373 + 0.915476i \(0.368185\pi\)
\(294\) 0 0
\(295\) −7.32187 + 12.6819i −0.426296 + 0.738366i
\(296\) 2.14558 + 3.71625i 0.124709 + 0.216002i
\(297\) 0 0
\(298\) 10.1231 0.586413
\(299\) 20.2077 9.22642i 1.16864 0.533577i
\(300\) 0 0
\(301\) 10.8539 6.26649i 0.625607 0.361194i
\(302\) −1.93295 3.34797i −0.111229 0.192654i
\(303\) 0 0
\(304\) 2.29655i 0.131716i
\(305\) 6.17068 + 3.56265i 0.353332 + 0.203996i
\(306\) 0 0
\(307\) 15.9372i 0.909584i −0.890598 0.454792i \(-0.849714\pi\)
0.890598 0.454792i \(-0.150286\pi\)
\(308\) 0.646009 1.11892i 0.0368098 0.0637564i
\(309\) 0 0
\(310\) 11.5695 6.67965i 0.657103 0.379378i
\(311\) −8.56954 −0.485934 −0.242967 0.970035i \(-0.578121\pi\)
−0.242967 + 0.970035i \(0.578121\pi\)
\(312\) 0 0
\(313\) 19.1599 1.08298 0.541490 0.840707i \(-0.317860\pi\)
0.541490 + 0.840707i \(0.317860\pi\)
\(314\) −4.08674 + 2.35948i −0.230628 + 0.133153i
\(315\) 0 0
\(316\) −1.66318 + 2.88072i −0.0935613 + 0.162053i
\(317\) 4.23963i 0.238121i −0.992887 0.119061i \(-0.962012\pi\)
0.992887 0.119061i \(-0.0379883\pi\)
\(318\) 0 0
\(319\) 9.20143 + 5.31245i 0.515181 + 0.297440i
\(320\) 1.34861i 0.0753897i
\(321\) 0 0
\(322\) −3.08058 5.33572i −0.171674 0.297348i
\(323\) −7.02292 + 4.05469i −0.390766 + 0.225609i
\(324\) 0 0
\(325\) −1.09130 + 11.4181i −0.0605347 + 0.633363i
\(326\) 23.4190 1.29706
\(327\) 0 0
\(328\) −3.95071 6.84283i −0.218141 0.377832i
\(329\) 5.35313 9.27189i 0.295128 0.511176i
\(330\) 0 0
\(331\) −0.0541701 0.0312751i −0.00297746 0.00171904i 0.498511 0.866884i \(-0.333881\pi\)
−0.501488 + 0.865165i \(0.667214\pi\)
\(332\) −0.633224 0.365592i −0.0347527 0.0200645i
\(333\) 0 0
\(334\) −12.1736 + 21.0853i −0.666110 + 1.15374i
\(335\) 6.11979 + 10.5998i 0.334360 + 0.579128i
\(336\) 0 0
\(337\) −10.3047 −0.561334 −0.280667 0.959805i \(-0.590556\pi\)
−0.280667 + 0.959805i \(0.590556\pi\)
\(338\) 12.2858 4.24974i 0.668257 0.231155i
\(339\) 0 0
\(340\) 4.12410 2.38105i 0.223660 0.129130i
\(341\) 6.39933 + 11.0840i 0.346543 + 0.600231i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) −10.8539 6.26649i −0.585202 0.337866i
\(345\) 0 0
\(346\) 18.1276i 0.974544i
\(347\) 9.05710 15.6874i 0.486210 0.842141i −0.513664 0.857991i \(-0.671712\pi\)
0.999874 + 0.0158503i \(0.00504551\pi\)
\(348\) 0 0
\(349\) 2.21514 1.27891i 0.118574 0.0684587i −0.439540 0.898223i \(-0.644859\pi\)
0.558114 + 0.829764i \(0.311525\pi\)
\(350\) 3.18125 0.170045
\(351\) 0 0
\(352\) −1.29202 −0.0688648
\(353\) −5.37541 + 3.10350i −0.286104 + 0.165182i −0.636184 0.771538i \(-0.719488\pi\)
0.350079 + 0.936720i \(0.386155\pi\)
\(354\) 0 0
\(355\) −5.36606 + 9.29430i −0.284801 + 0.493290i
\(356\) 13.3063i 0.705231i
\(357\) 0 0
\(358\) −15.1660 8.75612i −0.801550 0.462775i
\(359\) 7.92186i 0.418100i −0.977905 0.209050i \(-0.932963\pi\)
0.977905 0.209050i \(-0.0670371\pi\)
\(360\) 0 0
\(361\) −6.86292 11.8869i −0.361207 0.625628i
\(362\) 21.2731 12.2820i 1.11809 0.645528i
\(363\) 0 0
\(364\) −1.49751 3.27986i −0.0784910 0.171911i
\(365\) 4.42572 0.231653
\(366\) 0 0
\(367\) 7.99513 + 13.8480i 0.417342 + 0.722858i 0.995671 0.0929458i \(-0.0296283\pi\)
−0.578329 + 0.815804i \(0.696295\pi\)
\(368\) −3.08058 + 5.33572i −0.160586 + 0.278144i
\(369\) 0 0
\(370\) 5.01177 + 2.89355i 0.260550 + 0.150428i
\(371\) 2.86579 + 1.65456i 0.148784 + 0.0859006i
\(372\) 0 0
\(373\) −7.59496 + 13.1549i −0.393252 + 0.681132i −0.992876 0.119149i \(-0.961983\pi\)
0.599624 + 0.800282i \(0.295317\pi\)
\(374\) 2.28113 + 3.95103i 0.117954 + 0.204303i
\(375\) 0 0
\(376\) −10.7063 −0.552133
\(377\) 26.9719 12.3148i 1.38912 0.634244i
\(378\) 0 0
\(379\) 11.8872 6.86310i 0.610607 0.352534i −0.162596 0.986693i \(-0.551987\pi\)
0.773203 + 0.634159i \(0.218653\pi\)
\(380\) −1.54858 2.68222i −0.0794404 0.137595i
\(381\) 0 0
\(382\) 13.2813i 0.679531i
\(383\) −0.366939 0.211852i −0.0187497 0.0108251i 0.490596 0.871387i \(-0.336779\pi\)
−0.509346 + 0.860562i \(0.670112\pi\)
\(384\) 0 0
\(385\) 1.74243i 0.0888025i
\(386\) −10.9694 + 18.9996i −0.558329 + 0.967054i
\(387\) 0 0
\(388\) −10.5806 + 6.10870i −0.537147 + 0.310122i
\(389\) 23.3287 1.18281 0.591406 0.806374i \(-0.298573\pi\)
0.591406 + 0.806374i \(0.298573\pi\)
\(390\) 0 0
\(391\) 21.7557 1.10023
\(392\) −0.866025 + 0.500000i −0.0437409 + 0.0252538i
\(393\) 0 0
\(394\) 7.58594 13.1392i 0.382174 0.661945i
\(395\) 4.48597i 0.225714i
\(396\) 0 0
\(397\) 22.9083 + 13.2261i 1.14973 + 0.663800i 0.948823 0.315810i \(-0.102276\pi\)
0.200912 + 0.979609i \(0.435609\pi\)
\(398\) 14.0277i 0.703143i
\(399\) 0 0
\(400\) −1.59062 2.75504i −0.0795311 0.137752i
\(401\) 21.0649 12.1618i 1.05193 0.607333i 0.128742 0.991678i \(-0.458906\pi\)
0.923189 + 0.384346i \(0.125573\pi\)
\(402\) 0 0
\(403\) 35.5544 + 3.39817i 1.77109 + 0.169275i
\(404\) 12.6581 0.629764
\(405\) 0 0
\(406\) −4.11174 7.12175i −0.204062 0.353446i
\(407\) −2.77212 + 4.80145i −0.137409 + 0.237999i
\(408\) 0 0
\(409\) −4.16586 2.40516i −0.205989 0.118928i 0.393457 0.919343i \(-0.371279\pi\)
−0.599446 + 0.800415i \(0.704612\pi\)
\(410\) −9.22832 5.32798i −0.455754 0.263130i
\(411\) 0 0
\(412\) 5.90210 10.2227i 0.290776 0.503638i
\(413\) 5.42919 + 9.40363i 0.267153 + 0.462723i
\(414\) 0 0
\(415\) −0.986084 −0.0484049
\(416\) −2.09168 + 2.93681i −0.102553 + 0.143989i
\(417\) 0 0
\(418\) 2.56966 1.48359i 0.125686 0.0725649i
\(419\) 3.32439 + 5.75801i 0.162407 + 0.281297i 0.935731 0.352713i \(-0.114741\pi\)
−0.773324 + 0.634011i \(0.781408\pi\)
\(420\) 0 0
\(421\) 15.2834i 0.744869i −0.928059 0.372434i \(-0.878523\pi\)
0.928059 0.372434i \(-0.121477\pi\)
\(422\) 12.4113 + 7.16564i 0.604171 + 0.348818i
\(423\) 0 0
\(424\) 3.30912i 0.160705i
\(425\) −5.61666 + 9.72834i −0.272448 + 0.471894i
\(426\) 0 0
\(427\) 4.57558 2.64171i 0.221428 0.127841i
\(428\) 10.2975 0.497751
\(429\) 0 0
\(430\) −16.9021 −0.815092
\(431\) −31.5708 + 18.2274i −1.52071 + 0.877983i −0.521009 + 0.853551i \(0.674444\pi\)
−0.999701 + 0.0244320i \(0.992222\pi\)
\(432\) 0 0
\(433\) −0.457951 + 0.793194i −0.0220077 + 0.0381185i −0.876820 0.480820i \(-0.840339\pi\)
0.854812 + 0.518938i \(0.173673\pi\)
\(434\) 9.90596i 0.475501i
\(435\) 0 0
\(436\) 16.3571 + 9.44378i 0.783363 + 0.452275i
\(437\) 14.1494i 0.676858i
\(438\) 0 0
\(439\) −13.3296 23.0876i −0.636188 1.10191i −0.986262 0.165189i \(-0.947177\pi\)
0.350074 0.936722i \(-0.386157\pi\)
\(440\) −1.50899 + 0.871215i −0.0719382 + 0.0415336i
\(441\) 0 0
\(442\) 12.6738 + 1.21132i 0.602833 + 0.0576167i
\(443\) 28.1700 1.33840 0.669199 0.743083i \(-0.266637\pi\)
0.669199 + 0.743083i \(0.266637\pi\)
\(444\) 0 0
\(445\) 8.97250 + 15.5408i 0.425337 + 0.736705i
\(446\) 6.13382 10.6241i 0.290445 0.503065i
\(447\) 0 0
\(448\) 0.866025 + 0.500000i 0.0409159 + 0.0236228i
\(449\) −22.1050 12.7623i −1.04320 0.602290i −0.122460 0.992473i \(-0.539078\pi\)
−0.920737 + 0.390183i \(0.872412\pi\)
\(450\) 0 0
\(451\) 5.10439 8.84106i 0.240356 0.416309i
\(452\) 6.42036 + 11.1204i 0.301988 + 0.523059i
\(453\) 0 0
\(454\) 16.8467 0.790656
\(455\) −3.96062 2.82087i −0.185677 0.132244i
\(456\) 0 0
\(457\) −30.7007 + 17.7251i −1.43612 + 0.829143i −0.997577 0.0695681i \(-0.977838\pi\)
−0.438541 + 0.898711i \(0.644505\pi\)
\(458\) −4.59477 7.95837i −0.214699 0.371870i
\(459\) 0 0
\(460\) 8.30901i 0.387410i
\(461\) 3.16691 + 1.82842i 0.147498 + 0.0851579i 0.571933 0.820301i \(-0.306194\pi\)
−0.424435 + 0.905458i \(0.639527\pi\)
\(462\) 0 0
\(463\) 2.86203i 0.133010i −0.997786 0.0665048i \(-0.978815\pi\)
0.997786 0.0665048i \(-0.0211848\pi\)
\(464\) −4.11174 + 7.12175i −0.190883 + 0.330619i
\(465\) 0 0
\(466\) −21.7495 + 12.5571i −1.00753 + 0.581697i
\(467\) 12.4480 0.576024 0.288012 0.957627i \(-0.407006\pi\)
0.288012 + 0.957627i \(0.407006\pi\)
\(468\) 0 0
\(469\) 9.07569 0.419076
\(470\) −12.5042 + 7.21929i −0.576775 + 0.333001i
\(471\) 0 0
\(472\) 5.42919 9.40363i 0.249899 0.432837i
\(473\) 16.1928i 0.744547i
\(474\) 0 0
\(475\) 6.32709 + 3.65295i 0.290307 + 0.167609i
\(476\) 3.53111i 0.161848i
\(477\) 0 0
\(478\) 11.0603 + 19.1570i 0.505887 + 0.876222i
\(479\) 2.49108 1.43822i 0.113820 0.0657141i −0.442009 0.897011i \(-0.645734\pi\)
0.555829 + 0.831296i \(0.312401\pi\)
\(480\) 0 0
\(481\) 6.42606 + 14.0744i 0.293003 + 0.641735i
\(482\) 6.78165 0.308896
\(483\) 0 0
\(484\) 4.66535 + 8.08062i 0.212061 + 0.367301i
\(485\) −8.23826 + 14.2691i −0.374080 + 0.647926i
\(486\) 0 0
\(487\) −6.74495 3.89420i −0.305643 0.176463i 0.339332 0.940667i \(-0.389799\pi\)
−0.644975 + 0.764204i \(0.723132\pi\)
\(488\) −4.57558 2.64171i −0.207127 0.119585i
\(489\) 0 0
\(490\) −0.674306 + 1.16793i −0.0304620 + 0.0527618i
\(491\) −1.14360 1.98078i −0.0516102 0.0893914i 0.839066 0.544029i \(-0.183102\pi\)
−0.890676 + 0.454638i \(0.849769\pi\)
\(492\) 0 0
\(493\) 29.0380 1.30781
\(494\) 0.787817 8.24277i 0.0354455 0.370860i
\(495\) 0 0
\(496\) −8.57881 + 4.95298i −0.385200 + 0.222395i
\(497\) 3.97895 + 6.89175i 0.178480 + 0.309137i
\(498\) 0 0
\(499\) 28.0079i 1.25381i −0.779097 0.626903i \(-0.784322\pi\)
0.779097 0.626903i \(-0.215678\pi\)
\(500\) −9.55514 5.51666i −0.427319 0.246713i
\(501\) 0 0
\(502\) 1.22677i 0.0547535i
\(503\) −22.0810 + 38.2454i −0.984543 + 1.70528i −0.340594 + 0.940210i \(0.610628\pi\)
−0.643949 + 0.765069i \(0.722705\pi\)
\(504\) 0 0
\(505\) 14.7838 8.53543i 0.657870 0.379822i
\(506\) −7.96032 −0.353880
\(507\) 0 0
\(508\) −11.3410 −0.503174
\(509\) 13.3612 7.71409i 0.592225 0.341921i −0.173752 0.984789i \(-0.555589\pi\)
0.765977 + 0.642868i \(0.222256\pi\)
\(510\) 0 0
\(511\) 1.64084 2.84202i 0.0725866 0.125724i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −15.4876 8.94177i −0.683129 0.394405i
\(515\) 15.9193i 0.701488i
\(516\) 0 0
\(517\) −6.91634 11.9794i −0.304180 0.526856i
\(518\) 3.71625 2.14558i 0.163282 0.0942712i
\(519\) 0 0
\(520\) −0.462632 + 4.84043i −0.0202878 + 0.212267i
\(521\) −24.0874 −1.05529 −0.527643 0.849466i \(-0.676924\pi\)
−0.527643 + 0.849466i \(0.676924\pi\)
\(522\) 0 0
\(523\) −10.2046 17.6748i −0.446215 0.772866i 0.551921 0.833896i \(-0.313895\pi\)
−0.998136 + 0.0610299i \(0.980561\pi\)
\(524\) 6.42801 11.1336i 0.280809 0.486375i
\(525\) 0 0
\(526\) 6.01037 + 3.47009i 0.262065 + 0.151303i
\(527\) 30.2927 + 17.4895i 1.31957 + 0.761855i
\(528\) 0 0
\(529\) −7.47993 + 12.9556i −0.325214 + 0.563288i
\(530\) −2.23136 3.86483i −0.0969242 0.167878i
\(531\) 0 0
\(532\) −2.29655 −0.0995682
\(533\) −11.8325 25.9155i −0.512522 1.12253i
\(534\) 0 0
\(535\) 12.0268 6.94370i 0.519966 0.300202i
\(536\) −4.53784 7.85978i −0.196005 0.339491i
\(537\) 0 0
\(538\) 7.68513i 0.331330i
\(539\) −1.11892 0.646009i −0.0481953 0.0278256i
\(540\) 0 0
\(541\) 0.995612i 0.0428047i −0.999771 0.0214024i \(-0.993187\pi\)
0.999771 0.0214024i \(-0.00681310\pi\)
\(542\) −2.34569 + 4.06286i −0.100756 + 0.174515i
\(543\) 0 0
\(544\) −3.05803 + 1.76555i −0.131112 + 0.0756975i
\(545\) 25.4720 1.09110
\(546\) 0 0
\(547\) 10.8590 0.464296 0.232148 0.972680i \(-0.425425\pi\)
0.232148 + 0.972680i \(0.425425\pi\)
\(548\) −10.0049 + 5.77635i −0.427390 + 0.246753i
\(549\) 0 0
\(550\) 2.05511 3.55956i 0.0876303 0.151780i
\(551\) 18.8857i 0.804557i
\(552\) 0 0
\(553\) 2.88072 + 1.66318i 0.122501 + 0.0707257i
\(554\) 23.5951i 1.00246i
\(555\) 0 0
\(556\) −4.29208 7.43409i −0.182025 0.315276i
\(557\) −14.4876 + 8.36441i −0.613859 + 0.354411i −0.774474 0.632606i \(-0.781985\pi\)
0.160616 + 0.987017i \(0.448652\pi\)
\(558\) 0 0
\(559\) −36.8070 26.2150i −1.55677 1.10878i
\(560\) 1.34861 0.0569893
\(561\) 0 0
\(562\) 4.66383 + 8.07798i 0.196732 + 0.340749i
\(563\) 12.0094 20.8010i 0.506138 0.876656i −0.493837 0.869555i \(-0.664406\pi\)
0.999975 0.00710189i \(-0.00226062\pi\)
\(564\) 0 0
\(565\) 14.9971 + 8.65857i 0.630932 + 0.364269i
\(566\) 14.0058 + 8.08625i 0.588707 + 0.339890i
\(567\) 0 0
\(568\) 3.97895 6.89175i 0.166953 0.289171i
\(569\) 21.4551 + 37.1613i 0.899445 + 1.55788i 0.828205 + 0.560425i \(0.189362\pi\)
0.0712394 + 0.997459i \(0.477305\pi\)
\(570\) 0 0
\(571\) −10.7484 −0.449807 −0.224904 0.974381i \(-0.572207\pi\)
−0.224904 + 0.974381i \(0.572207\pi\)
\(572\) −4.63730 0.443218i −0.193895 0.0185319i
\(573\) 0 0
\(574\) −6.84283 + 3.95071i −0.285614 + 0.164899i
\(575\) −9.80008 16.9742i −0.408691 0.707874i
\(576\) 0 0
\(577\) 3.70579i 0.154274i −0.997020 0.0771371i \(-0.975422\pi\)
0.997020 0.0771371i \(-0.0245779\pi\)
\(578\) −3.92420 2.26564i −0.163225 0.0942380i
\(579\) 0 0
\(580\) 11.0903i 0.460499i
\(581\) −0.365592 + 0.633224i −0.0151673 + 0.0262706i
\(582\) 0 0
\(583\) 3.70265 2.13772i 0.153348 0.0885354i
\(584\) −3.28169 −0.135797
\(585\) 0 0
\(586\) −27.6000 −1.14014
\(587\) 14.3886 8.30727i 0.593881 0.342878i −0.172749 0.984966i \(-0.555265\pi\)
0.766631 + 0.642088i \(0.221932\pi\)
\(588\) 0 0
\(589\) 11.3748 19.7017i 0.468689 0.811794i
\(590\) 14.6437i 0.602873i
\(591\) 0 0
\(592\) −3.71625 2.14558i −0.152737 0.0881826i
\(593\) 12.2152i 0.501620i 0.968036 + 0.250810i \(0.0806969\pi\)
−0.968036 + 0.250810i \(0.919303\pi\)
\(594\) 0 0
\(595\) −2.38105 4.12410i −0.0976134 0.169071i
\(596\) −8.76683 + 5.06153i −0.359103 + 0.207328i
\(597\) 0 0
\(598\) −12.8872 + 18.0942i −0.526996 + 0.739925i
\(599\) −32.8665 −1.34289 −0.671443 0.741056i \(-0.734325\pi\)
−0.671443 + 0.741056i \(0.734325\pi\)
\(600\) 0 0
\(601\) 14.4802 + 25.0805i 0.590661 + 1.02306i 0.994144 + 0.108068i \(0.0344664\pi\)
−0.403482 + 0.914988i \(0.632200\pi\)
\(602\) −6.26649 + 10.8539i −0.255403 + 0.442371i
\(603\) 0 0
\(604\) 3.34797 + 1.93295i 0.136227 + 0.0786507i
\(605\) 10.8976 + 6.29174i 0.443051 + 0.255796i
\(606\) 0 0
\(607\) 10.6364 18.4227i 0.431716 0.747755i −0.565305 0.824882i \(-0.691241\pi\)
0.997021 + 0.0771273i \(0.0245748\pi\)
\(608\) 1.14828 + 1.98887i 0.0465687 + 0.0806594i
\(609\) 0 0
\(610\) −7.12529 −0.288495
\(611\) −38.4269 3.67271i −1.55458 0.148582i
\(612\) 0 0
\(613\) 16.4098 9.47422i 0.662787 0.382660i −0.130551 0.991442i \(-0.541675\pi\)
0.793338 + 0.608781i \(0.208341\pi\)
\(614\) 7.96860 + 13.8020i 0.321586 + 0.557004i
\(615\) 0 0
\(616\) 1.29202i 0.0520569i
\(617\) −36.0364 20.8056i −1.45077 0.837602i −0.452244 0.891894i \(-0.649377\pi\)
−0.998525 + 0.0542919i \(0.982710\pi\)
\(618\) 0 0
\(619\) 33.3758i 1.34149i 0.741690 + 0.670743i \(0.234025\pi\)
−0.741690 + 0.670743i \(0.765975\pi\)
\(620\) −6.67965 + 11.5695i −0.268261 + 0.464642i
\(621\) 0 0
\(622\) 7.42144 4.28477i 0.297572 0.171804i
\(623\) 13.3063 0.533104
\(624\) 0 0
\(625\) 1.02655 0.0410621
\(626\) −16.5929 + 9.57994i −0.663188 + 0.382892i
\(627\) 0 0
\(628\) 2.35948 4.08674i 0.0941535 0.163079i
\(629\) 15.1525i 0.604171i
\(630\) 0 0
\(631\) −15.6685 9.04620i −0.623752 0.360123i 0.154576 0.987981i \(-0.450599\pi\)
−0.778328 + 0.627857i \(0.783932\pi\)
\(632\) 3.32636i 0.132316i
\(633\) 0 0
\(634\) 2.11982 + 3.67163i 0.0841886 + 0.145819i
\(635\) −13.2455 + 7.64728i −0.525631 + 0.303473i
\(636\) 0 0
\(637\) −3.27986 + 1.49751i −0.129953 + 0.0593336i
\(638\) −10.6249 −0.420643
\(639\) 0 0
\(640\) −0.674306 1.16793i −0.0266543 0.0461666i
\(641\) −4.70086 + 8.14213i −0.185673 + 0.321595i −0.943803 0.330508i \(-0.892780\pi\)
0.758130 + 0.652103i \(0.226113\pi\)
\(642\) 0 0
\(643\) −35.7323 20.6300i −1.40914 0.813569i −0.413837 0.910351i \(-0.635812\pi\)
−0.995306 + 0.0967822i \(0.969145\pi\)
\(644\) 5.33572 + 3.08058i 0.210257 + 0.121392i
\(645\) 0 0
\(646\) 4.05469 7.02292i 0.159530 0.276313i
\(647\) 9.47607 + 16.4130i 0.372543 + 0.645263i 0.989956 0.141376i \(-0.0451527\pi\)
−0.617413 + 0.786639i \(0.711819\pi\)
\(648\) 0 0
\(649\) 14.0292 0.550695
\(650\) −4.76396 10.4340i −0.186858 0.409256i
\(651\) 0 0
\(652\) −20.2815 + 11.7095i −0.794284 + 0.458580i
\(653\) 2.84907 + 4.93473i 0.111493 + 0.193111i 0.916372 0.400327i \(-0.131104\pi\)
−0.804880 + 0.593438i \(0.797770\pi\)
\(654\) 0 0
\(655\) 17.3378i 0.677443i
\(656\) 6.84283 + 3.95071i 0.267168 + 0.154249i
\(657\) 0 0
\(658\) 10.7063i 0.417373i
\(659\) −2.06833 + 3.58246i −0.0805709 + 0.139553i −0.903495 0.428598i \(-0.859008\pi\)
0.822924 + 0.568151i \(0.192341\pi\)
\(660\) 0 0
\(661\) −0.636113 + 0.367260i −0.0247419 + 0.0142848i −0.512320 0.858795i \(-0.671214\pi\)
0.487578 + 0.873079i \(0.337880\pi\)
\(662\) 0.0625502 0.00243108
\(663\) 0 0
\(664\) 0.731184 0.0283754
\(665\) −2.68222 + 1.54858i −0.104012 + 0.0600513i
\(666\) 0 0
\(667\) −25.3331 + 43.8782i −0.980902 + 1.69897i
\(668\) 24.3472i 0.942021i
\(669\) 0 0
\(670\) −10.5998 6.11979i −0.409506 0.236428i
\(671\) 6.82628i 0.263526i
\(672\) 0 0
\(673\) 9.17498 + 15.8915i 0.353669 + 0.612573i 0.986889 0.161399i \(-0.0516005\pi\)
−0.633220 + 0.773972i \(0.718267\pi\)
\(674\) 8.92415 5.15236i 0.343745 0.198461i
\(675\) 0 0
\(676\) −8.51491 + 9.82326i −0.327496 + 0.377818i
\(677\) 26.0206 1.00005 0.500026 0.866010i \(-0.333324\pi\)
0.500026 + 0.866010i \(0.333324\pi\)
\(678\) 0 0
\(679\) 6.10870 + 10.5806i 0.234430 + 0.406045i
\(680\) −2.38105 + 4.12410i −0.0913090 + 0.158152i
\(681\) 0 0
\(682\) −11.0840 6.39933i −0.424427 0.245043i
\(683\) 33.2640 + 19.2050i 1.27281 + 0.734859i 0.975516 0.219927i \(-0.0705818\pi\)
0.297296 + 0.954785i \(0.403915\pi\)
\(684\) 0 0
\(685\) −7.79005 + 13.4928i −0.297643 + 0.515532i
\(686\) 0.500000 + 0.866025i 0.0190901 + 0.0330650i
\(687\) 0 0
\(688\) 12.5330 0.477815
\(689\) 1.13517 11.8771i 0.0432466 0.452481i
\(690\) 0 0
\(691\) 4.37089 2.52354i 0.166277 0.0959998i −0.414552 0.910025i \(-0.636062\pi\)
0.580829 + 0.814026i \(0.302729\pi\)
\(692\) −9.06378 15.6989i −0.344553 0.596784i
\(693\) 0 0
\(694\) 18.1142i 0.687605i
\(695\) −10.0257 5.78835i −0.380297 0.219564i
\(696\) 0 0
\(697\) 27.9008i 1.05682i
\(698\) −1.27891 + 2.21514i −0.0484076 + 0.0838444i
\(699\) 0 0
\(700\) −2.75504 + 1.59062i −0.104131 + 0.0601199i
\(701\) −41.3523 −1.56185 −0.780927 0.624623i \(-0.785253\pi\)
−0.780927 + 0.624623i \(0.785253\pi\)
\(702\) 0 0
\(703\) 9.85485 0.371683
\(704\) 1.11892 0.646009i 0.0421709 0.0243474i
\(705\) 0 0
\(706\) 3.10350 5.37541i 0.116802 0.202306i
\(707\) 12.6581i 0.476057i
\(708\) 0 0
\(709\) 28.7863 + 16.6198i 1.08109 + 0.624170i 0.931191 0.364531i \(-0.118771\pi\)
0.149902 + 0.988701i \(0.452104\pi\)
\(710\) 10.7321i 0.402770i
\(711\) 0 0
\(712\) −6.65313 11.5236i −0.249337 0.431864i
\(713\) −52.8554 + 30.5161i −1.97945 + 1.14284i
\(714\) 0 0
\(715\) −5.71492 + 2.60931i −0.213726 + 0.0975828i
\(716\) 17.5122 0.654463
\(717\) 0 0
\(718\) 3.96093 + 6.86053i 0.147821 + 0.256033i
\(719\) −7.34020 + 12.7136i −0.273743 + 0.474137i −0.969817 0.243833i \(-0.921595\pi\)
0.696074 + 0.717970i \(0.254929\pi\)
\(720\) 0 0
\(721\) −10.2227 5.90210i −0.380715 0.219806i
\(722\) 11.8869 + 6.86292i 0.442386 + 0.255412i
\(723\) 0 0
\(724\) −12.2820 + 21.2731i −0.456457 + 0.790607i
\(725\) −13.0805 22.6560i −0.485796 0.841424i
\(726\) 0 0
\(727\) 25.4749 0.944812 0.472406 0.881381i \(-0.343386\pi\)
0.472406 + 0.881381i \(0.343386\pi\)
\(728\) 2.93681 + 2.09168i 0.108846 + 0.0775229i
\(729\) 0 0
\(730\) −3.83279 + 2.21286i −0.141858 + 0.0819017i
\(731\) −22.1276 38.3262i −0.818420 1.41755i
\(732\) 0 0
\(733\) 13.7814i 0.509027i −0.967069 0.254514i \(-0.918085\pi\)
0.967069 0.254514i \(-0.0819154\pi\)
\(734\) −13.8480 7.99513i −0.511138 0.295105i
\(735\) 0 0
\(736\) 6.16116i 0.227103i
\(737\) 5.86298 10.1550i 0.215965 0.374063i
\(738\) 0 0
\(739\) 29.1960 16.8563i 1.07399 0.620069i 0.144722 0.989472i \(-0.453771\pi\)
0.929269 + 0.369403i \(0.120438\pi\)
\(740\) −5.78710 −0.212738
\(741\) 0 0
\(742\) −3.30912 −0.121482
\(743\) −25.1238 + 14.5052i −0.921701 + 0.532144i −0.884177 0.467151i \(-0.845280\pi\)
−0.0375238 + 0.999296i \(0.511947\pi\)
\(744\) 0 0
\(745\) −6.82604 + 11.8231i −0.250087 + 0.433163i
\(746\) 15.1899i 0.556142i
\(747\) 0 0
\(748\) −3.95103 2.28113i −0.144464 0.0834063i
\(749\) 10.2975i 0.376264i
\(750\) 0 0
\(751\) −13.9330 24.1326i −0.508422 0.880613i −0.999952 0.00975221i \(-0.996896\pi\)
0.491531 0.870860i \(-0.336438\pi\)
\(752\) 9.27189 5.35313i 0.338111 0.195209i
\(753\) 0 0
\(754\) −17.2009 + 24.1508i −0.626421 + 0.879522i
\(755\) 5.21360 0.189742
\(756\) 0 0
\(757\) 7.24779 + 12.5535i 0.263426 + 0.456266i 0.967150 0.254207i \(-0.0818143\pi\)
−0.703724 + 0.710473i \(0.748481\pi\)
\(758\) −6.86310 + 11.8872i −0.249279 + 0.431764i
\(759\) 0 0
\(760\) 2.68222 + 1.54858i 0.0972942 + 0.0561729i
\(761\) 8.33828 + 4.81411i 0.302262 + 0.174511i 0.643459 0.765481i \(-0.277499\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(762\) 0 0
\(763\) 9.44378 16.3571i 0.341888 0.592167i
\(764\) 6.64065 + 11.5020i 0.240250 + 0.416126i
\(765\) 0 0
\(766\) 0.423704 0.0153091
\(767\) 22.7123 31.8890i 0.820093 1.15145i
\(768\) 0 0
\(769\) 15.7328 9.08333i 0.567339 0.327553i −0.188747 0.982026i \(-0.560443\pi\)
0.756086 + 0.654473i \(0.227109\pi\)
\(770\) 0.871215 + 1.50899i 0.0313964 + 0.0543802i
\(771\) 0 0
\(772\) 21.9388i 0.789596i
\(773\) −18.5429 10.7058i −0.666944 0.385060i 0.127974 0.991778i \(-0.459153\pi\)
−0.794918 + 0.606718i \(0.792486\pi\)
\(774\) 0 0
\(775\) 31.5133i 1.13199i
\(776\) 6.10870 10.5806i 0.219289 0.379820i
\(777\) 0 0
\(778\) −20.2032 + 11.6643i −0.724321 + 0.418187i
\(779\) −18.1460 −0.650149
\(780\) 0 0
\(781\) 10.2818 0.367910
\(782\) −18.8410 + 10.8779i −0.673753 +