Properties

Label 1629.2.a.b.1.4
Level $1629$
Weight $2$
Character 1629.1
Self dual yes
Analytic conductor $13.008$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1629,2,Mod(1,1629)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1629.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1629, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1629 = 3^{2} \cdot 181 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1629.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,1,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.0076304893\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.170701.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 6x^{3} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 543)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.89398\) of defining polynomial
Character \(\chi\) \(=\) 1629.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.34554 q^{2} -0.189509 q^{4} -4.08349 q^{5} +0.669650 q^{7} -2.94608 q^{8} -5.49452 q^{10} -1.08874 q^{11} +1.39765 q^{13} +0.901044 q^{14} -3.58507 q^{16} +2.39556 q^{17} +1.54030 q^{19} +0.773856 q^{20} -1.46495 q^{22} +5.64530 q^{23} +11.6749 q^{25} +1.88060 q^{26} -0.126904 q^{28} +5.54843 q^{29} -3.57800 q^{31} +1.06829 q^{32} +3.22333 q^{34} -2.73451 q^{35} +2.52980 q^{37} +2.07255 q^{38} +12.0303 q^{40} -6.18036 q^{41} +12.3660 q^{43} +0.206325 q^{44} +7.59601 q^{46} +9.28737 q^{47} -6.55157 q^{49} +15.7091 q^{50} -0.264866 q^{52} -3.33560 q^{53} +4.44585 q^{55} -1.97284 q^{56} +7.46567 q^{58} -5.41988 q^{59} +4.93270 q^{61} -4.81437 q^{62} +8.60757 q^{64} -5.70728 q^{65} -3.07018 q^{67} -0.453979 q^{68} -3.67940 q^{70} -4.02992 q^{71} +4.74454 q^{73} +3.40396 q^{74} -0.291901 q^{76} -0.729073 q^{77} -13.7984 q^{79} +14.6396 q^{80} -8.31595 q^{82} +6.47380 q^{83} -9.78224 q^{85} +16.6390 q^{86} +3.20751 q^{88} -3.68537 q^{89} +0.935935 q^{91} -1.06983 q^{92} +12.4966 q^{94} -6.28981 q^{95} +2.70412 q^{97} -8.81543 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + 3 q^{4} - 3 q^{5} + 9 q^{7} - 9 q^{8} - 14 q^{10} + 4 q^{11} + 9 q^{13} - 3 q^{14} + 7 q^{16} - 9 q^{17} + 6 q^{19} + 25 q^{20} - 17 q^{22} + 5 q^{23} + 12 q^{25} - 6 q^{26} + 27 q^{28} + 20 q^{29}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34554 0.951444 0.475722 0.879596i \(-0.342187\pi\)
0.475722 + 0.879596i \(0.342187\pi\)
\(3\) 0 0
\(4\) −0.189509 −0.0947543
\(5\) −4.08349 −1.82619 −0.913096 0.407745i \(-0.866315\pi\)
−0.913096 + 0.407745i \(0.866315\pi\)
\(6\) 0 0
\(7\) 0.669650 0.253104 0.126552 0.991960i \(-0.459609\pi\)
0.126552 + 0.991960i \(0.459609\pi\)
\(8\) −2.94608 −1.04160
\(9\) 0 0
\(10\) −5.49452 −1.73752
\(11\) −1.08874 −0.328267 −0.164133 0.986438i \(-0.552483\pi\)
−0.164133 + 0.986438i \(0.552483\pi\)
\(12\) 0 0
\(13\) 1.39765 0.387638 0.193819 0.981037i \(-0.437913\pi\)
0.193819 + 0.981037i \(0.437913\pi\)
\(14\) 0.901044 0.240814
\(15\) 0 0
\(16\) −3.58507 −0.896267
\(17\) 2.39556 0.581009 0.290504 0.956874i \(-0.406177\pi\)
0.290504 + 0.956874i \(0.406177\pi\)
\(18\) 0 0
\(19\) 1.54030 0.353370 0.176685 0.984267i \(-0.443463\pi\)
0.176685 + 0.984267i \(0.443463\pi\)
\(20\) 0.773856 0.173040
\(21\) 0 0
\(22\) −1.46495 −0.312328
\(23\) 5.64530 1.17713 0.588563 0.808451i \(-0.299694\pi\)
0.588563 + 0.808451i \(0.299694\pi\)
\(24\) 0 0
\(25\) 11.6749 2.33497
\(26\) 1.88060 0.368816
\(27\) 0 0
\(28\) −0.126904 −0.0239827
\(29\) 5.54843 1.03032 0.515159 0.857095i \(-0.327733\pi\)
0.515159 + 0.857095i \(0.327733\pi\)
\(30\) 0 0
\(31\) −3.57800 −0.642629 −0.321314 0.946973i \(-0.604125\pi\)
−0.321314 + 0.946973i \(0.604125\pi\)
\(32\) 1.06829 0.188849
\(33\) 0 0
\(34\) 3.22333 0.552797
\(35\) −2.73451 −0.462216
\(36\) 0 0
\(37\) 2.52980 0.415897 0.207949 0.978140i \(-0.433321\pi\)
0.207949 + 0.978140i \(0.433321\pi\)
\(38\) 2.07255 0.336212
\(39\) 0 0
\(40\) 12.0303 1.90216
\(41\) −6.18036 −0.965209 −0.482605 0.875838i \(-0.660309\pi\)
−0.482605 + 0.875838i \(0.660309\pi\)
\(42\) 0 0
\(43\) 12.3660 1.88579 0.942896 0.333088i \(-0.108091\pi\)
0.942896 + 0.333088i \(0.108091\pi\)
\(44\) 0.206325 0.0311047
\(45\) 0 0
\(46\) 7.59601 1.11997
\(47\) 9.28737 1.35470 0.677351 0.735660i \(-0.263128\pi\)
0.677351 + 0.735660i \(0.263128\pi\)
\(48\) 0 0
\(49\) −6.55157 −0.935938
\(50\) 15.7091 2.22160
\(51\) 0 0
\(52\) −0.264866 −0.0367304
\(53\) −3.33560 −0.458180 −0.229090 0.973405i \(-0.573575\pi\)
−0.229090 + 0.973405i \(0.573575\pi\)
\(54\) 0 0
\(55\) 4.44585 0.599478
\(56\) −1.97284 −0.263632
\(57\) 0 0
\(58\) 7.46567 0.980290
\(59\) −5.41988 −0.705608 −0.352804 0.935697i \(-0.614772\pi\)
−0.352804 + 0.935697i \(0.614772\pi\)
\(60\) 0 0
\(61\) 4.93270 0.631568 0.315784 0.948831i \(-0.397733\pi\)
0.315784 + 0.948831i \(0.397733\pi\)
\(62\) −4.81437 −0.611425
\(63\) 0 0
\(64\) 8.60757 1.07595
\(65\) −5.70728 −0.707901
\(66\) 0 0
\(67\) −3.07018 −0.375082 −0.187541 0.982257i \(-0.560052\pi\)
−0.187541 + 0.982257i \(0.560052\pi\)
\(68\) −0.453979 −0.0550531
\(69\) 0 0
\(70\) −3.67940 −0.439773
\(71\) −4.02992 −0.478264 −0.239132 0.970987i \(-0.576863\pi\)
−0.239132 + 0.970987i \(0.576863\pi\)
\(72\) 0 0
\(73\) 4.74454 0.555307 0.277653 0.960681i \(-0.410443\pi\)
0.277653 + 0.960681i \(0.410443\pi\)
\(74\) 3.40396 0.395703
\(75\) 0 0
\(76\) −0.291901 −0.0334833
\(77\) −0.729073 −0.0830856
\(78\) 0 0
\(79\) −13.7984 −1.55244 −0.776222 0.630459i \(-0.782867\pi\)
−0.776222 + 0.630459i \(0.782867\pi\)
\(80\) 14.6396 1.63676
\(81\) 0 0
\(82\) −8.31595 −0.918343
\(83\) 6.47380 0.710592 0.355296 0.934754i \(-0.384380\pi\)
0.355296 + 0.934754i \(0.384380\pi\)
\(84\) 0 0
\(85\) −9.78224 −1.06103
\(86\) 16.6390 1.79423
\(87\) 0 0
\(88\) 3.20751 0.341922
\(89\) −3.68537 −0.390649 −0.195324 0.980739i \(-0.562576\pi\)
−0.195324 + 0.980739i \(0.562576\pi\)
\(90\) 0 0
\(91\) 0.935935 0.0981126
\(92\) −1.06983 −0.111538
\(93\) 0 0
\(94\) 12.4966 1.28892
\(95\) −6.28981 −0.645321
\(96\) 0 0
\(97\) 2.70412 0.274561 0.137281 0.990532i \(-0.456164\pi\)
0.137281 + 0.990532i \(0.456164\pi\)
\(98\) −8.81543 −0.890493
\(99\) 0 0
\(100\) −2.21249 −0.221249
\(101\) 4.70285 0.467951 0.233975 0.972243i \(-0.424826\pi\)
0.233975 + 0.972243i \(0.424826\pi\)
\(102\) 0 0
\(103\) 3.56750 0.351517 0.175758 0.984433i \(-0.443762\pi\)
0.175758 + 0.984433i \(0.443762\pi\)
\(104\) −4.11759 −0.403763
\(105\) 0 0
\(106\) −4.48820 −0.435933
\(107\) 14.5489 1.40649 0.703246 0.710946i \(-0.251733\pi\)
0.703246 + 0.710946i \(0.251733\pi\)
\(108\) 0 0
\(109\) 19.3555 1.85392 0.926958 0.375164i \(-0.122414\pi\)
0.926958 + 0.375164i \(0.122414\pi\)
\(110\) 5.98209 0.570370
\(111\) 0 0
\(112\) −2.40074 −0.226849
\(113\) 18.7806 1.76673 0.883365 0.468686i \(-0.155272\pi\)
0.883365 + 0.468686i \(0.155272\pi\)
\(114\) 0 0
\(115\) −23.0525 −2.14966
\(116\) −1.05148 −0.0976271
\(117\) 0 0
\(118\) −7.29269 −0.671347
\(119\) 1.60419 0.147056
\(120\) 0 0
\(121\) −9.81465 −0.892241
\(122\) 6.63717 0.600901
\(123\) 0 0
\(124\) 0.678063 0.0608918
\(125\) −27.2568 −2.43792
\(126\) 0 0
\(127\) −11.4442 −1.01551 −0.507755 0.861501i \(-0.669525\pi\)
−0.507755 + 0.861501i \(0.669525\pi\)
\(128\) 9.44529 0.834854
\(129\) 0 0
\(130\) −7.67940 −0.673528
\(131\) 12.8950 1.12664 0.563320 0.826239i \(-0.309524\pi\)
0.563320 + 0.826239i \(0.309524\pi\)
\(132\) 0 0
\(133\) 1.03146 0.0894393
\(134\) −4.13106 −0.356869
\(135\) 0 0
\(136\) −7.05752 −0.605177
\(137\) 4.00363 0.342053 0.171027 0.985266i \(-0.445292\pi\)
0.171027 + 0.985266i \(0.445292\pi\)
\(138\) 0 0
\(139\) −6.78922 −0.575854 −0.287927 0.957652i \(-0.592966\pi\)
−0.287927 + 0.957652i \(0.592966\pi\)
\(140\) 0.518213 0.0437970
\(141\) 0 0
\(142\) −5.42244 −0.455041
\(143\) −1.52167 −0.127249
\(144\) 0 0
\(145\) −22.6570 −1.88156
\(146\) 6.38399 0.528343
\(147\) 0 0
\(148\) −0.479420 −0.0394081
\(149\) −5.98868 −0.490612 −0.245306 0.969446i \(-0.578888\pi\)
−0.245306 + 0.969446i \(0.578888\pi\)
\(150\) 0 0
\(151\) −2.38661 −0.194220 −0.0971098 0.995274i \(-0.530960\pi\)
−0.0971098 + 0.995274i \(0.530960\pi\)
\(152\) −4.53786 −0.368069
\(153\) 0 0
\(154\) −0.981001 −0.0790513
\(155\) 14.6107 1.17356
\(156\) 0 0
\(157\) 4.38478 0.349943 0.174972 0.984573i \(-0.444017\pi\)
0.174972 + 0.984573i \(0.444017\pi\)
\(158\) −18.5664 −1.47706
\(159\) 0 0
\(160\) −4.36236 −0.344875
\(161\) 3.78038 0.297935
\(162\) 0 0
\(163\) 13.0225 1.02000 0.510001 0.860174i \(-0.329645\pi\)
0.510001 + 0.860174i \(0.329645\pi\)
\(164\) 1.17123 0.0914578
\(165\) 0 0
\(166\) 8.71079 0.676088
\(167\) −1.06884 −0.0827092 −0.0413546 0.999145i \(-0.513167\pi\)
−0.0413546 + 0.999145i \(0.513167\pi\)
\(168\) 0 0
\(169\) −11.0466 −0.849737
\(170\) −13.1624 −1.00951
\(171\) 0 0
\(172\) −2.34346 −0.178687
\(173\) 8.05626 0.612506 0.306253 0.951950i \(-0.400925\pi\)
0.306253 + 0.951950i \(0.400925\pi\)
\(174\) 0 0
\(175\) 7.81808 0.590991
\(176\) 3.90320 0.294215
\(177\) 0 0
\(178\) −4.95884 −0.371680
\(179\) 6.92281 0.517435 0.258718 0.965953i \(-0.416700\pi\)
0.258718 + 0.965953i \(0.416700\pi\)
\(180\) 0 0
\(181\) −1.00000 −0.0743294
\(182\) 1.25934 0.0933487
\(183\) 0 0
\(184\) −16.6315 −1.22609
\(185\) −10.3304 −0.759508
\(186\) 0 0
\(187\) −2.60814 −0.190726
\(188\) −1.76004 −0.128364
\(189\) 0 0
\(190\) −8.46323 −0.613987
\(191\) 26.8490 1.94273 0.971363 0.237601i \(-0.0763610\pi\)
0.971363 + 0.237601i \(0.0763610\pi\)
\(192\) 0 0
\(193\) 19.6947 1.41765 0.708827 0.705382i \(-0.249224\pi\)
0.708827 + 0.705382i \(0.249224\pi\)
\(194\) 3.63851 0.261230
\(195\) 0 0
\(196\) 1.24158 0.0886842
\(197\) −4.83087 −0.344185 −0.172092 0.985081i \(-0.555053\pi\)
−0.172092 + 0.985081i \(0.555053\pi\)
\(198\) 0 0
\(199\) −12.1320 −0.860013 −0.430006 0.902826i \(-0.641489\pi\)
−0.430006 + 0.902826i \(0.641489\pi\)
\(200\) −34.3951 −2.43210
\(201\) 0 0
\(202\) 6.32789 0.445229
\(203\) 3.71551 0.260778
\(204\) 0 0
\(205\) 25.2374 1.76266
\(206\) 4.80024 0.334448
\(207\) 0 0
\(208\) −5.01067 −0.347427
\(209\) −1.67699 −0.116000
\(210\) 0 0
\(211\) −11.1701 −0.768984 −0.384492 0.923128i \(-0.625623\pi\)
−0.384492 + 0.923128i \(0.625623\pi\)
\(212\) 0.632125 0.0434145
\(213\) 0 0
\(214\) 19.5762 1.33820
\(215\) −50.4963 −3.44382
\(216\) 0 0
\(217\) −2.39601 −0.162652
\(218\) 26.0436 1.76390
\(219\) 0 0
\(220\) −0.842527 −0.0568032
\(221\) 3.34815 0.225221
\(222\) 0 0
\(223\) −12.7690 −0.855078 −0.427539 0.903997i \(-0.640619\pi\)
−0.427539 + 0.903997i \(0.640619\pi\)
\(224\) 0.715382 0.0477985
\(225\) 0 0
\(226\) 25.2701 1.68094
\(227\) −25.8466 −1.71550 −0.857750 0.514068i \(-0.828138\pi\)
−0.857750 + 0.514068i \(0.828138\pi\)
\(228\) 0 0
\(229\) 13.3599 0.882848 0.441424 0.897299i \(-0.354473\pi\)
0.441424 + 0.897299i \(0.354473\pi\)
\(230\) −31.0182 −2.04528
\(231\) 0 0
\(232\) −16.3461 −1.07318
\(233\) −20.4320 −1.33854 −0.669272 0.743017i \(-0.733394\pi\)
−0.669272 + 0.743017i \(0.733394\pi\)
\(234\) 0 0
\(235\) −37.9249 −2.47395
\(236\) 1.02711 0.0668594
\(237\) 0 0
\(238\) 2.15851 0.139915
\(239\) −1.89949 −0.122868 −0.0614340 0.998111i \(-0.519567\pi\)
−0.0614340 + 0.998111i \(0.519567\pi\)
\(240\) 0 0
\(241\) 4.83473 0.311432 0.155716 0.987802i \(-0.450231\pi\)
0.155716 + 0.987802i \(0.450231\pi\)
\(242\) −13.2061 −0.848917
\(243\) 0 0
\(244\) −0.934790 −0.0598438
\(245\) 26.7533 1.70920
\(246\) 0 0
\(247\) 2.15280 0.136980
\(248\) 10.5411 0.669360
\(249\) 0 0
\(250\) −36.6752 −2.31954
\(251\) −12.2118 −0.770804 −0.385402 0.922749i \(-0.625937\pi\)
−0.385402 + 0.922749i \(0.625937\pi\)
\(252\) 0 0
\(253\) −6.14626 −0.386412
\(254\) −15.3987 −0.966202
\(255\) 0 0
\(256\) −4.50608 −0.281630
\(257\) 29.5345 1.84231 0.921155 0.389197i \(-0.127247\pi\)
0.921155 + 0.389197i \(0.127247\pi\)
\(258\) 0 0
\(259\) 1.69408 0.105265
\(260\) 1.08158 0.0670767
\(261\) 0 0
\(262\) 17.3508 1.07193
\(263\) −29.3589 −1.81035 −0.905173 0.425043i \(-0.860259\pi\)
−0.905173 + 0.425043i \(0.860259\pi\)
\(264\) 0 0
\(265\) 13.6209 0.836724
\(266\) 1.38788 0.0850965
\(267\) 0 0
\(268\) 0.581825 0.0355406
\(269\) 5.39718 0.329072 0.164536 0.986371i \(-0.447387\pi\)
0.164536 + 0.986371i \(0.447387\pi\)
\(270\) 0 0
\(271\) −7.08604 −0.430446 −0.215223 0.976565i \(-0.569048\pi\)
−0.215223 + 0.976565i \(0.569048\pi\)
\(272\) −8.58825 −0.520739
\(273\) 0 0
\(274\) 5.38706 0.325444
\(275\) −12.7109 −0.766495
\(276\) 0 0
\(277\) 20.9729 1.26014 0.630071 0.776538i \(-0.283026\pi\)
0.630071 + 0.776538i \(0.283026\pi\)
\(278\) −9.13520 −0.547893
\(279\) 0 0
\(280\) 8.05608 0.481443
\(281\) 14.1393 0.843478 0.421739 0.906717i \(-0.361420\pi\)
0.421739 + 0.906717i \(0.361420\pi\)
\(282\) 0 0
\(283\) 30.0104 1.78393 0.891966 0.452103i \(-0.149326\pi\)
0.891966 + 0.452103i \(0.149326\pi\)
\(284\) 0.763705 0.0453176
\(285\) 0 0
\(286\) −2.04748 −0.121070
\(287\) −4.13867 −0.244298
\(288\) 0 0
\(289\) −11.2613 −0.662429
\(290\) −30.4860 −1.79020
\(291\) 0 0
\(292\) −0.899132 −0.0526177
\(293\) −18.4790 −1.07956 −0.539779 0.841807i \(-0.681492\pi\)
−0.539779 + 0.841807i \(0.681492\pi\)
\(294\) 0 0
\(295\) 22.1320 1.28858
\(296\) −7.45301 −0.433197
\(297\) 0 0
\(298\) −8.05804 −0.466790
\(299\) 7.89015 0.456299
\(300\) 0 0
\(301\) 8.28086 0.477301
\(302\) −3.21129 −0.184789
\(303\) 0 0
\(304\) −5.52210 −0.316714
\(305\) −20.1426 −1.15336
\(306\) 0 0
\(307\) 17.6509 1.00739 0.503696 0.863881i \(-0.331973\pi\)
0.503696 + 0.863881i \(0.331973\pi\)
\(308\) 0.138166 0.00787272
\(309\) 0 0
\(310\) 19.6594 1.11658
\(311\) 24.3424 1.38033 0.690164 0.723653i \(-0.257538\pi\)
0.690164 + 0.723653i \(0.257538\pi\)
\(312\) 0 0
\(313\) −22.4588 −1.26945 −0.634725 0.772738i \(-0.718886\pi\)
−0.634725 + 0.772738i \(0.718886\pi\)
\(314\) 5.89991 0.332951
\(315\) 0 0
\(316\) 2.61492 0.147101
\(317\) 13.7599 0.772835 0.386417 0.922324i \(-0.373712\pi\)
0.386417 + 0.922324i \(0.373712\pi\)
\(318\) 0 0
\(319\) −6.04079 −0.338219
\(320\) −35.1489 −1.96488
\(321\) 0 0
\(322\) 5.08667 0.283469
\(323\) 3.68989 0.205311
\(324\) 0 0
\(325\) 16.3174 0.905125
\(326\) 17.5224 0.970475
\(327\) 0 0
\(328\) 18.2078 1.00536
\(329\) 6.21929 0.342880
\(330\) 0 0
\(331\) 27.9101 1.53408 0.767040 0.641600i \(-0.221729\pi\)
0.767040 + 0.641600i \(0.221729\pi\)
\(332\) −1.22684 −0.0673316
\(333\) 0 0
\(334\) −1.43817 −0.0786932
\(335\) 12.5370 0.684971
\(336\) 0 0
\(337\) 28.6615 1.56129 0.780645 0.624974i \(-0.214890\pi\)
0.780645 + 0.624974i \(0.214890\pi\)
\(338\) −14.8637 −0.808477
\(339\) 0 0
\(340\) 1.85382 0.100537
\(341\) 3.89551 0.210954
\(342\) 0 0
\(343\) −9.07481 −0.489993
\(344\) −36.4311 −1.96424
\(345\) 0 0
\(346\) 10.8401 0.582765
\(347\) 10.2561 0.550575 0.275287 0.961362i \(-0.411227\pi\)
0.275287 + 0.961362i \(0.411227\pi\)
\(348\) 0 0
\(349\) −6.11407 −0.327279 −0.163639 0.986520i \(-0.552323\pi\)
−0.163639 + 0.986520i \(0.552323\pi\)
\(350\) 10.5196 0.562295
\(351\) 0 0
\(352\) −1.16309 −0.0619930
\(353\) 22.2256 1.18295 0.591474 0.806324i \(-0.298546\pi\)
0.591474 + 0.806324i \(0.298546\pi\)
\(354\) 0 0
\(355\) 16.4561 0.873401
\(356\) 0.698410 0.0370157
\(357\) 0 0
\(358\) 9.31495 0.492311
\(359\) 23.0110 1.21447 0.607237 0.794521i \(-0.292278\pi\)
0.607237 + 0.794521i \(0.292278\pi\)
\(360\) 0 0
\(361\) −16.6275 −0.875130
\(362\) −1.34554 −0.0707203
\(363\) 0 0
\(364\) −0.177368 −0.00929660
\(365\) −19.3743 −1.01410
\(366\) 0 0
\(367\) −35.7818 −1.86779 −0.933897 0.357543i \(-0.883615\pi\)
−0.933897 + 0.357543i \(0.883615\pi\)
\(368\) −20.2388 −1.05502
\(369\) 0 0
\(370\) −13.9000 −0.722629
\(371\) −2.23368 −0.115967
\(372\) 0 0
\(373\) 16.7186 0.865655 0.432827 0.901477i \(-0.357516\pi\)
0.432827 + 0.901477i \(0.357516\pi\)
\(374\) −3.50937 −0.181465
\(375\) 0 0
\(376\) −27.3614 −1.41105
\(377\) 7.75476 0.399390
\(378\) 0 0
\(379\) 10.2247 0.525206 0.262603 0.964904i \(-0.415419\pi\)
0.262603 + 0.964904i \(0.415419\pi\)
\(380\) 1.19197 0.0611470
\(381\) 0 0
\(382\) 36.1265 1.84839
\(383\) −25.6793 −1.31215 −0.656075 0.754696i \(-0.727784\pi\)
−0.656075 + 0.754696i \(0.727784\pi\)
\(384\) 0 0
\(385\) 2.97716 0.151730
\(386\) 26.5001 1.34882
\(387\) 0 0
\(388\) −0.512454 −0.0260159
\(389\) −12.8963 −0.653868 −0.326934 0.945047i \(-0.606016\pi\)
−0.326934 + 0.945047i \(0.606016\pi\)
\(390\) 0 0
\(391\) 13.5237 0.683921
\(392\) 19.3015 0.974871
\(393\) 0 0
\(394\) −6.50015 −0.327473
\(395\) 56.3457 2.83506
\(396\) 0 0
\(397\) −15.2937 −0.767569 −0.383784 0.923423i \(-0.625379\pi\)
−0.383784 + 0.923423i \(0.625379\pi\)
\(398\) −16.3241 −0.818254
\(399\) 0 0
\(400\) −41.8552 −2.09276
\(401\) 35.5621 1.77589 0.887943 0.459954i \(-0.152134\pi\)
0.887943 + 0.459954i \(0.152134\pi\)
\(402\) 0 0
\(403\) −5.00079 −0.249107
\(404\) −0.891231 −0.0443404
\(405\) 0 0
\(406\) 4.99938 0.248115
\(407\) −2.75429 −0.136525
\(408\) 0 0
\(409\) −26.1340 −1.29224 −0.646121 0.763235i \(-0.723610\pi\)
−0.646121 + 0.763235i \(0.723610\pi\)
\(410\) 33.9581 1.67707
\(411\) 0 0
\(412\) −0.676073 −0.0333077
\(413\) −3.62942 −0.178592
\(414\) 0 0
\(415\) −26.4357 −1.29768
\(416\) 1.49310 0.0732052
\(417\) 0 0
\(418\) −2.25646 −0.110367
\(419\) 6.43693 0.314464 0.157232 0.987562i \(-0.449743\pi\)
0.157232 + 0.987562i \(0.449743\pi\)
\(420\) 0 0
\(421\) −37.1347 −1.80984 −0.904918 0.425586i \(-0.860068\pi\)
−0.904918 + 0.425586i \(0.860068\pi\)
\(422\) −15.0299 −0.731645
\(423\) 0 0
\(424\) 9.82695 0.477239
\(425\) 27.9679 1.35664
\(426\) 0 0
\(427\) 3.30318 0.159852
\(428\) −2.75714 −0.133271
\(429\) 0 0
\(430\) −67.9450 −3.27660
\(431\) 12.9880 0.625608 0.312804 0.949818i \(-0.398732\pi\)
0.312804 + 0.949818i \(0.398732\pi\)
\(432\) 0 0
\(433\) 32.9228 1.58217 0.791085 0.611707i \(-0.209517\pi\)
0.791085 + 0.611707i \(0.209517\pi\)
\(434\) −3.22394 −0.154754
\(435\) 0 0
\(436\) −3.66803 −0.175667
\(437\) 8.69548 0.415961
\(438\) 0 0
\(439\) −27.3876 −1.30714 −0.653568 0.756867i \(-0.726729\pi\)
−0.653568 + 0.756867i \(0.726729\pi\)
\(440\) −13.0978 −0.624415
\(441\) 0 0
\(442\) 4.50509 0.214285
\(443\) 17.5116 0.832001 0.416001 0.909364i \(-0.363431\pi\)
0.416001 + 0.909364i \(0.363431\pi\)
\(444\) 0 0
\(445\) 15.0492 0.713399
\(446\) −17.1813 −0.813559
\(447\) 0 0
\(448\) 5.76406 0.272326
\(449\) −41.2447 −1.94646 −0.973229 0.229837i \(-0.926181\pi\)
−0.973229 + 0.229837i \(0.926181\pi\)
\(450\) 0 0
\(451\) 6.72879 0.316846
\(452\) −3.55909 −0.167405
\(453\) 0 0
\(454\) −34.7778 −1.63220
\(455\) −3.82188 −0.179172
\(456\) 0 0
\(457\) 5.02878 0.235236 0.117618 0.993059i \(-0.462474\pi\)
0.117618 + 0.993059i \(0.462474\pi\)
\(458\) 17.9764 0.839981
\(459\) 0 0
\(460\) 4.36865 0.203690
\(461\) 34.5652 1.60986 0.804932 0.593367i \(-0.202202\pi\)
0.804932 + 0.593367i \(0.202202\pi\)
\(462\) 0 0
\(463\) 10.8253 0.503096 0.251548 0.967845i \(-0.419060\pi\)
0.251548 + 0.967845i \(0.419060\pi\)
\(464\) −19.8915 −0.923441
\(465\) 0 0
\(466\) −27.4922 −1.27355
\(467\) 13.8713 0.641889 0.320945 0.947098i \(-0.396000\pi\)
0.320945 + 0.947098i \(0.396000\pi\)
\(468\) 0 0
\(469\) −2.05594 −0.0949347
\(470\) −51.0296 −2.35382
\(471\) 0 0
\(472\) 15.9674 0.734960
\(473\) −13.4633 −0.619043
\(474\) 0 0
\(475\) 17.9829 0.825110
\(476\) −0.304007 −0.0139341
\(477\) 0 0
\(478\) −2.55585 −0.116902
\(479\) 27.9865 1.27873 0.639367 0.768901i \(-0.279196\pi\)
0.639367 + 0.768901i \(0.279196\pi\)
\(480\) 0 0
\(481\) 3.53578 0.161217
\(482\) 6.50535 0.296311
\(483\) 0 0
\(484\) 1.85996 0.0845437
\(485\) −11.0422 −0.501402
\(486\) 0 0
\(487\) −27.5749 −1.24954 −0.624769 0.780810i \(-0.714807\pi\)
−0.624769 + 0.780810i \(0.714807\pi\)
\(488\) −14.5321 −0.657839
\(489\) 0 0
\(490\) 35.9977 1.62621
\(491\) 7.54344 0.340431 0.170215 0.985407i \(-0.445554\pi\)
0.170215 + 0.985407i \(0.445554\pi\)
\(492\) 0 0
\(493\) 13.2916 0.598624
\(494\) 2.89669 0.130328
\(495\) 0 0
\(496\) 12.8274 0.575967
\(497\) −2.69864 −0.121050
\(498\) 0 0
\(499\) 8.52283 0.381534 0.190767 0.981635i \(-0.438902\pi\)
0.190767 + 0.981635i \(0.438902\pi\)
\(500\) 5.16539 0.231003
\(501\) 0 0
\(502\) −16.4316 −0.733377
\(503\) −1.82245 −0.0812592 −0.0406296 0.999174i \(-0.512936\pi\)
−0.0406296 + 0.999174i \(0.512936\pi\)
\(504\) 0 0
\(505\) −19.2040 −0.854568
\(506\) −8.27007 −0.367649
\(507\) 0 0
\(508\) 2.16878 0.0962241
\(509\) −38.3732 −1.70086 −0.850432 0.526085i \(-0.823659\pi\)
−0.850432 + 0.526085i \(0.823659\pi\)
\(510\) 0 0
\(511\) 3.17718 0.140550
\(512\) −24.9537 −1.10281
\(513\) 0 0
\(514\) 39.7399 1.75285
\(515\) −14.5679 −0.641936
\(516\) 0 0
\(517\) −10.1115 −0.444704
\(518\) 2.27946 0.100154
\(519\) 0 0
\(520\) 16.8141 0.737348
\(521\) −20.2464 −0.887012 −0.443506 0.896271i \(-0.646266\pi\)
−0.443506 + 0.896271i \(0.646266\pi\)
\(522\) 0 0
\(523\) −15.7698 −0.689567 −0.344784 0.938682i \(-0.612048\pi\)
−0.344784 + 0.938682i \(0.612048\pi\)
\(524\) −2.44371 −0.106754
\(525\) 0 0
\(526\) −39.5037 −1.72244
\(527\) −8.57133 −0.373373
\(528\) 0 0
\(529\) 8.86944 0.385628
\(530\) 18.3275 0.796096
\(531\) 0 0
\(532\) −0.195471 −0.00847476
\(533\) −8.63796 −0.374152
\(534\) 0 0
\(535\) −59.4101 −2.56852
\(536\) 9.04500 0.390684
\(537\) 0 0
\(538\) 7.26215 0.313094
\(539\) 7.13294 0.307238
\(540\) 0 0
\(541\) 14.1376 0.607822 0.303911 0.952700i \(-0.401707\pi\)
0.303911 + 0.952700i \(0.401707\pi\)
\(542\) −9.53459 −0.409546
\(543\) 0 0
\(544\) 2.55916 0.109723
\(545\) −79.0378 −3.38561
\(546\) 0 0
\(547\) 35.9270 1.53613 0.768064 0.640373i \(-0.221220\pi\)
0.768064 + 0.640373i \(0.221220\pi\)
\(548\) −0.758722 −0.0324110
\(549\) 0 0
\(550\) −17.1031 −0.729277
\(551\) 8.54628 0.364084
\(552\) 0 0
\(553\) −9.24012 −0.392930
\(554\) 28.2200 1.19895
\(555\) 0 0
\(556\) 1.28662 0.0545646
\(557\) −32.6234 −1.38230 −0.691149 0.722713i \(-0.742895\pi\)
−0.691149 + 0.722713i \(0.742895\pi\)
\(558\) 0 0
\(559\) 17.2833 0.731004
\(560\) 9.80340 0.414269
\(561\) 0 0
\(562\) 19.0250 0.802522
\(563\) 20.8936 0.880559 0.440279 0.897861i \(-0.354879\pi\)
0.440279 + 0.897861i \(0.354879\pi\)
\(564\) 0 0
\(565\) −76.6903 −3.22639
\(566\) 40.3803 1.69731
\(567\) 0 0
\(568\) 11.8725 0.498158
\(569\) −25.2856 −1.06003 −0.530015 0.847989i \(-0.677814\pi\)
−0.530015 + 0.847989i \(0.677814\pi\)
\(570\) 0 0
\(571\) 25.0196 1.04704 0.523518 0.852014i \(-0.324619\pi\)
0.523518 + 0.852014i \(0.324619\pi\)
\(572\) 0.288370 0.0120574
\(573\) 0 0
\(574\) −5.56877 −0.232436
\(575\) 65.9082 2.74856
\(576\) 0 0
\(577\) 30.9305 1.28765 0.643827 0.765171i \(-0.277346\pi\)
0.643827 + 0.765171i \(0.277346\pi\)
\(578\) −15.1526 −0.630264
\(579\) 0 0
\(580\) 4.29369 0.178286
\(581\) 4.33518 0.179853
\(582\) 0 0
\(583\) 3.63160 0.150405
\(584\) −13.9778 −0.578406
\(585\) 0 0
\(586\) −24.8644 −1.02714
\(587\) −23.5644 −0.972608 −0.486304 0.873790i \(-0.661655\pi\)
−0.486304 + 0.873790i \(0.661655\pi\)
\(588\) 0 0
\(589\) −5.51121 −0.227086
\(590\) 29.7796 1.22601
\(591\) 0 0
\(592\) −9.06952 −0.372755
\(593\) −28.5071 −1.17065 −0.585323 0.810800i \(-0.699032\pi\)
−0.585323 + 0.810800i \(0.699032\pi\)
\(594\) 0 0
\(595\) −6.55068 −0.268552
\(596\) 1.13491 0.0464876
\(597\) 0 0
\(598\) 10.6165 0.434143
\(599\) −7.64261 −0.312269 −0.156134 0.987736i \(-0.549903\pi\)
−0.156134 + 0.987736i \(0.549903\pi\)
\(600\) 0 0
\(601\) 4.90792 0.200198 0.100099 0.994977i \(-0.468084\pi\)
0.100099 + 0.994977i \(0.468084\pi\)
\(602\) 11.1423 0.454125
\(603\) 0 0
\(604\) 0.452284 0.0184032
\(605\) 40.0780 1.62940
\(606\) 0 0
\(607\) 0.275203 0.0111701 0.00558507 0.999984i \(-0.498222\pi\)
0.00558507 + 0.999984i \(0.498222\pi\)
\(608\) 1.64550 0.0667337
\(609\) 0 0
\(610\) −27.1028 −1.09736
\(611\) 12.9805 0.525134
\(612\) 0 0
\(613\) 26.0551 1.05235 0.526177 0.850375i \(-0.323625\pi\)
0.526177 + 0.850375i \(0.323625\pi\)
\(614\) 23.7501 0.958476
\(615\) 0 0
\(616\) 2.14791 0.0865418
\(617\) −47.5994 −1.91628 −0.958139 0.286304i \(-0.907573\pi\)
−0.958139 + 0.286304i \(0.907573\pi\)
\(618\) 0 0
\(619\) −2.33389 −0.0938069 −0.0469035 0.998899i \(-0.514935\pi\)
−0.0469035 + 0.998899i \(0.514935\pi\)
\(620\) −2.76886 −0.111200
\(621\) 0 0
\(622\) 32.7537 1.31331
\(623\) −2.46791 −0.0988747
\(624\) 0 0
\(625\) 52.9283 2.11713
\(626\) −30.2194 −1.20781
\(627\) 0 0
\(628\) −0.830953 −0.0331586
\(629\) 6.06030 0.241640
\(630\) 0 0
\(631\) 18.0965 0.720409 0.360204 0.932873i \(-0.382707\pi\)
0.360204 + 0.932873i \(0.382707\pi\)
\(632\) 40.6513 1.61702
\(633\) 0 0
\(634\) 18.5146 0.735309
\(635\) 46.7324 1.85452
\(636\) 0 0
\(637\) −9.15679 −0.362805
\(638\) −8.12816 −0.321797
\(639\) 0 0
\(640\) −38.5697 −1.52460
\(641\) 21.5079 0.849509 0.424755 0.905308i \(-0.360360\pi\)
0.424755 + 0.905308i \(0.360360\pi\)
\(642\) 0 0
\(643\) −18.7956 −0.741227 −0.370613 0.928787i \(-0.620852\pi\)
−0.370613 + 0.928787i \(0.620852\pi\)
\(644\) −0.716414 −0.0282307
\(645\) 0 0
\(646\) 4.96492 0.195342
\(647\) −1.56661 −0.0615899 −0.0307950 0.999526i \(-0.509804\pi\)
−0.0307950 + 0.999526i \(0.509804\pi\)
\(648\) 0 0
\(649\) 5.90083 0.231628
\(650\) 21.9557 0.861175
\(651\) 0 0
\(652\) −2.46788 −0.0966496
\(653\) 8.95996 0.350630 0.175315 0.984512i \(-0.443906\pi\)
0.175315 + 0.984512i \(0.443906\pi\)
\(654\) 0 0
\(655\) −52.6565 −2.05746
\(656\) 22.1570 0.865086
\(657\) 0 0
\(658\) 8.36833 0.326231
\(659\) −49.0075 −1.90906 −0.954531 0.298112i \(-0.903643\pi\)
−0.954531 + 0.298112i \(0.903643\pi\)
\(660\) 0 0
\(661\) −7.84298 −0.305056 −0.152528 0.988299i \(-0.548742\pi\)
−0.152528 + 0.988299i \(0.548742\pi\)
\(662\) 37.5543 1.45959
\(663\) 0 0
\(664\) −19.0723 −0.740150
\(665\) −4.21197 −0.163333
\(666\) 0 0
\(667\) 31.3226 1.21282
\(668\) 0.202554 0.00783706
\(669\) 0 0
\(670\) 16.8691 0.651712
\(671\) −5.37042 −0.207323
\(672\) 0 0
\(673\) 18.3858 0.708722 0.354361 0.935109i \(-0.384698\pi\)
0.354361 + 0.935109i \(0.384698\pi\)
\(674\) 38.5653 1.48548
\(675\) 0 0
\(676\) 2.09342 0.0805163
\(677\) 33.0120 1.26876 0.634378 0.773023i \(-0.281256\pi\)
0.634378 + 0.773023i \(0.281256\pi\)
\(678\) 0 0
\(679\) 1.81081 0.0694926
\(680\) 28.8193 1.10517
\(681\) 0 0
\(682\) 5.24158 0.200711
\(683\) 21.0365 0.804940 0.402470 0.915433i \(-0.368152\pi\)
0.402470 + 0.915433i \(0.368152\pi\)
\(684\) 0 0
\(685\) −16.3488 −0.624654
\(686\) −12.2106 −0.466201
\(687\) 0 0
\(688\) −44.3328 −1.69017
\(689\) −4.66200 −0.177608
\(690\) 0 0
\(691\) 35.0190 1.33219 0.666093 0.745869i \(-0.267965\pi\)
0.666093 + 0.745869i \(0.267965\pi\)
\(692\) −1.52673 −0.0580376
\(693\) 0 0
\(694\) 13.8000 0.523841
\(695\) 27.7237 1.05162
\(696\) 0 0
\(697\) −14.8054 −0.560795
\(698\) −8.22676 −0.311387
\(699\) 0 0
\(700\) −1.48159 −0.0559990
\(701\) −46.3525 −1.75071 −0.875354 0.483482i \(-0.839372\pi\)
−0.875354 + 0.483482i \(0.839372\pi\)
\(702\) 0 0
\(703\) 3.89667 0.146966
\(704\) −9.37140 −0.353198
\(705\) 0 0
\(706\) 29.9055 1.12551
\(707\) 3.14926 0.118440
\(708\) 0 0
\(709\) 1.37355 0.0515849 0.0257925 0.999667i \(-0.491789\pi\)
0.0257925 + 0.999667i \(0.491789\pi\)
\(710\) 22.1425 0.830993
\(711\) 0 0
\(712\) 10.8574 0.406899
\(713\) −20.1989 −0.756455
\(714\) 0 0
\(715\) 6.21373 0.232380
\(716\) −1.31193 −0.0490292
\(717\) 0 0
\(718\) 30.9623 1.15550
\(719\) −1.20707 −0.0450163 −0.0225081 0.999747i \(-0.507165\pi\)
−0.0225081 + 0.999747i \(0.507165\pi\)
\(720\) 0 0
\(721\) 2.38898 0.0889702
\(722\) −22.3730 −0.832637
\(723\) 0 0
\(724\) 0.189509 0.00704303
\(725\) 64.7773 2.40577
\(726\) 0 0
\(727\) 4.63685 0.171971 0.0859856 0.996296i \(-0.472596\pi\)
0.0859856 + 0.996296i \(0.472596\pi\)
\(728\) −2.75734 −0.102194
\(729\) 0 0
\(730\) −26.0690 −0.964856
\(731\) 29.6234 1.09566
\(732\) 0 0
\(733\) −34.8149 −1.28592 −0.642960 0.765900i \(-0.722294\pi\)
−0.642960 + 0.765900i \(0.722294\pi\)
\(734\) −48.1460 −1.77710
\(735\) 0 0
\(736\) 6.03084 0.222300
\(737\) 3.34262 0.123127
\(738\) 0 0
\(739\) −9.09889 −0.334708 −0.167354 0.985897i \(-0.553522\pi\)
−0.167354 + 0.985897i \(0.553522\pi\)
\(740\) 1.95770 0.0719666
\(741\) 0 0
\(742\) −3.00552 −0.110336
\(743\) −32.6879 −1.19920 −0.599601 0.800299i \(-0.704674\pi\)
−0.599601 + 0.800299i \(0.704674\pi\)
\(744\) 0 0
\(745\) 24.4547 0.895951
\(746\) 22.4956 0.823622
\(747\) 0 0
\(748\) 0.494265 0.0180721
\(749\) 9.74265 0.355989
\(750\) 0 0
\(751\) 36.7776 1.34203 0.671017 0.741442i \(-0.265858\pi\)
0.671017 + 0.741442i \(0.265858\pi\)
\(752\) −33.2959 −1.21418
\(753\) 0 0
\(754\) 10.4344 0.379998
\(755\) 9.74570 0.354682
\(756\) 0 0
\(757\) −21.1101 −0.767260 −0.383630 0.923487i \(-0.625326\pi\)
−0.383630 + 0.923487i \(0.625326\pi\)
\(758\) 13.7577 0.499704
\(759\) 0 0
\(760\) 18.5303 0.672165
\(761\) −15.4759 −0.561002 −0.280501 0.959854i \(-0.590501\pi\)
−0.280501 + 0.959854i \(0.590501\pi\)
\(762\) 0 0
\(763\) 12.9614 0.469233
\(764\) −5.08812 −0.184082
\(765\) 0 0
\(766\) −34.5526 −1.24844
\(767\) −7.57509 −0.273521
\(768\) 0 0
\(769\) −10.1275 −0.365205 −0.182603 0.983187i \(-0.558452\pi\)
−0.182603 + 0.983187i \(0.558452\pi\)
\(770\) 4.00591 0.144363
\(771\) 0 0
\(772\) −3.73231 −0.134329
\(773\) −9.39181 −0.337800 −0.168900 0.985633i \(-0.554021\pi\)
−0.168900 + 0.985633i \(0.554021\pi\)
\(774\) 0 0
\(775\) −41.7727 −1.50052
\(776\) −7.96655 −0.285983
\(777\) 0 0
\(778\) −17.3526 −0.622119
\(779\) −9.51963 −0.341076
\(780\) 0 0
\(781\) 4.38753 0.156998
\(782\) 18.1967 0.650713
\(783\) 0 0
\(784\) 23.4878 0.838851
\(785\) −17.9052 −0.639063
\(786\) 0 0
\(787\) −19.6658 −0.701009 −0.350505 0.936561i \(-0.613990\pi\)
−0.350505 + 0.936561i \(0.613990\pi\)
\(788\) 0.915491 0.0326130
\(789\) 0 0
\(790\) 75.8157 2.69740
\(791\) 12.5764 0.447166
\(792\) 0 0
\(793\) 6.89418 0.244820
\(794\) −20.5784 −0.730299
\(795\) 0 0
\(796\) 2.29911 0.0814899
\(797\) −40.7846 −1.44467 −0.722333 0.691545i \(-0.756930\pi\)
−0.722333 + 0.691545i \(0.756930\pi\)
\(798\) 0 0
\(799\) 22.2485 0.787094
\(800\) 12.4722 0.440958
\(801\) 0 0
\(802\) 47.8504 1.68966
\(803\) −5.16556 −0.182289
\(804\) 0 0
\(805\) −15.4371 −0.544087
\(806\) −6.72879 −0.237012
\(807\) 0 0
\(808\) −13.8550 −0.487416
\(809\) 52.6652 1.85161 0.925805 0.378002i \(-0.123389\pi\)
0.925805 + 0.378002i \(0.123389\pi\)
\(810\) 0 0
\(811\) −43.3746 −1.52309 −0.761544 0.648113i \(-0.775559\pi\)
−0.761544 + 0.648113i \(0.775559\pi\)
\(812\) −0.704121 −0.0247098
\(813\) 0 0
\(814\) −3.70603 −0.129896
\(815\) −53.1773 −1.86272
\(816\) 0 0
\(817\) 19.0473 0.666382
\(818\) −35.1644 −1.22950
\(819\) 0 0
\(820\) −4.78271 −0.167019
\(821\) 0.995948 0.0347588 0.0173794 0.999849i \(-0.494468\pi\)
0.0173794 + 0.999849i \(0.494468\pi\)
\(822\) 0 0
\(823\) −19.6725 −0.685740 −0.342870 0.939383i \(-0.611399\pi\)
−0.342870 + 0.939383i \(0.611399\pi\)
\(824\) −10.5102 −0.366139
\(825\) 0 0
\(826\) −4.88355 −0.169920
\(827\) −1.01496 −0.0352938 −0.0176469 0.999844i \(-0.505617\pi\)
−0.0176469 + 0.999844i \(0.505617\pi\)
\(828\) 0 0
\(829\) 1.60769 0.0558373 0.0279186 0.999610i \(-0.491112\pi\)
0.0279186 + 0.999610i \(0.491112\pi\)
\(830\) −35.5704 −1.23467
\(831\) 0 0
\(832\) 12.0304 0.417078
\(833\) −15.6947 −0.543788
\(834\) 0 0
\(835\) 4.36459 0.151043
\(836\) 0.317804 0.0109915
\(837\) 0 0
\(838\) 8.66118 0.299195
\(839\) 2.56818 0.0886634 0.0443317 0.999017i \(-0.485884\pi\)
0.0443317 + 0.999017i \(0.485884\pi\)
\(840\) 0 0
\(841\) 1.78512 0.0615559
\(842\) −49.9664 −1.72196
\(843\) 0 0
\(844\) 2.11684 0.0728646
\(845\) 45.1086 1.55178
\(846\) 0 0
\(847\) −6.57238 −0.225830
\(848\) 11.9584 0.410652
\(849\) 0 0
\(850\) 37.6320 1.29077
\(851\) 14.2815 0.489564
\(852\) 0 0
\(853\) 14.7385 0.504638 0.252319 0.967644i \(-0.418807\pi\)
0.252319 + 0.967644i \(0.418807\pi\)
\(854\) 4.44458 0.152090
\(855\) 0 0
\(856\) −42.8622 −1.46500
\(857\) 1.19358 0.0407719 0.0203859 0.999792i \(-0.493511\pi\)
0.0203859 + 0.999792i \(0.493511\pi\)
\(858\) 0 0
\(859\) 30.3736 1.03633 0.518167 0.855279i \(-0.326614\pi\)
0.518167 + 0.855279i \(0.326614\pi\)
\(860\) 9.56948 0.326317
\(861\) 0 0
\(862\) 17.4759 0.595231
\(863\) 15.6622 0.533148 0.266574 0.963814i \(-0.414108\pi\)
0.266574 + 0.963814i \(0.414108\pi\)
\(864\) 0 0
\(865\) −32.8976 −1.11855
\(866\) 44.2991 1.50535
\(867\) 0 0
\(868\) 0.454065 0.0154120
\(869\) 15.0229 0.509616
\(870\) 0 0
\(871\) −4.29103 −0.145396
\(872\) −57.0228 −1.93104
\(873\) 0 0
\(874\) 11.7002 0.395764
\(875\) −18.2525 −0.617047
\(876\) 0 0
\(877\) 21.7304 0.733784 0.366892 0.930263i \(-0.380422\pi\)
0.366892 + 0.930263i \(0.380422\pi\)
\(878\) −36.8512 −1.24367
\(879\) 0 0
\(880\) −15.9387 −0.537293
\(881\) 19.2140 0.647335 0.323668 0.946171i \(-0.395084\pi\)
0.323668 + 0.946171i \(0.395084\pi\)
\(882\) 0 0
\(883\) 38.8852 1.30859 0.654295 0.756239i \(-0.272965\pi\)
0.654295 + 0.756239i \(0.272965\pi\)
\(884\) −0.634504 −0.0213407
\(885\) 0 0
\(886\) 23.5626 0.791602
\(887\) 26.2541 0.881526 0.440763 0.897624i \(-0.354708\pi\)
0.440763 + 0.897624i \(0.354708\pi\)
\(888\) 0 0
\(889\) −7.66362 −0.257030
\(890\) 20.2493 0.678760
\(891\) 0 0
\(892\) 2.41984 0.0810224
\(893\) 14.3054 0.478711
\(894\) 0 0
\(895\) −28.2692 −0.944935
\(896\) 6.32504 0.211305
\(897\) 0 0
\(898\) −55.4966 −1.85195
\(899\) −19.8523 −0.662112
\(900\) 0 0
\(901\) −7.99063 −0.266207
\(902\) 9.05389 0.301462
\(903\) 0 0
\(904\) −55.3292 −1.84022
\(905\) 4.08349 0.135740
\(906\) 0 0
\(907\) 26.8223 0.890621 0.445310 0.895376i \(-0.353093\pi\)
0.445310 + 0.895376i \(0.353093\pi\)
\(908\) 4.89816 0.162551
\(909\) 0 0
\(910\) −5.14251 −0.170473
\(911\) 4.39537 0.145625 0.0728125 0.997346i \(-0.476803\pi\)
0.0728125 + 0.997346i \(0.476803\pi\)
\(912\) 0 0
\(913\) −7.04827 −0.233264
\(914\) 6.76645 0.223814
\(915\) 0 0
\(916\) −2.53182 −0.0836537
\(917\) 8.63512 0.285157
\(918\) 0 0
\(919\) 27.0703 0.892967 0.446484 0.894792i \(-0.352676\pi\)
0.446484 + 0.894792i \(0.352676\pi\)
\(920\) 67.9146 2.23908
\(921\) 0 0
\(922\) 46.5091 1.53169
\(923\) −5.63242 −0.185393
\(924\) 0 0
\(925\) 29.5351 0.971109
\(926\) 14.5660 0.478668
\(927\) 0 0
\(928\) 5.92735 0.194575
\(929\) 27.5526 0.903972 0.451986 0.892025i \(-0.350716\pi\)
0.451986 + 0.892025i \(0.350716\pi\)
\(930\) 0 0
\(931\) −10.0914 −0.330733
\(932\) 3.87204 0.126833
\(933\) 0 0
\(934\) 18.6645 0.610722
\(935\) 10.6503 0.348302
\(936\) 0 0
\(937\) −46.7565 −1.52747 −0.763734 0.645531i \(-0.776636\pi\)
−0.763734 + 0.645531i \(0.776636\pi\)
\(938\) −2.76636 −0.0903250
\(939\) 0 0
\(940\) 7.18709 0.234417
\(941\) −55.0405 −1.79427 −0.897135 0.441757i \(-0.854355\pi\)
−0.897135 + 0.441757i \(0.854355\pi\)
\(942\) 0 0
\(943\) −34.8900 −1.13617
\(944\) 19.4306 0.632414
\(945\) 0 0
\(946\) −18.1155 −0.588985
\(947\) 35.1897 1.14351 0.571755 0.820424i \(-0.306263\pi\)
0.571755 + 0.820424i \(0.306263\pi\)
\(948\) 0 0
\(949\) 6.63120 0.215258
\(950\) 24.1967 0.785046
\(951\) 0 0
\(952\) −4.72607 −0.153173
\(953\) 6.39216 0.207062 0.103531 0.994626i \(-0.466986\pi\)
0.103531 + 0.994626i \(0.466986\pi\)
\(954\) 0 0
\(955\) −109.638 −3.54779
\(956\) 0.359970 0.0116423
\(957\) 0 0
\(958\) 37.6571 1.21664
\(959\) 2.68103 0.0865749
\(960\) 0 0
\(961\) −18.1979 −0.587029
\(962\) 4.75754 0.153389
\(963\) 0 0
\(964\) −0.916224 −0.0295096
\(965\) −80.4230 −2.58891
\(966\) 0 0
\(967\) 36.7900 1.18309 0.591543 0.806273i \(-0.298519\pi\)
0.591543 + 0.806273i \(0.298519\pi\)
\(968\) 28.9148 0.929356
\(969\) 0 0
\(970\) −14.8578 −0.477056
\(971\) −9.76929 −0.313511 −0.156756 0.987637i \(-0.550104\pi\)
−0.156756 + 0.987637i \(0.550104\pi\)
\(972\) 0 0
\(973\) −4.54640 −0.145751
\(974\) −37.1033 −1.18887
\(975\) 0 0
\(976\) −17.6841 −0.566054
\(977\) −1.41735 −0.0453452 −0.0226726 0.999743i \(-0.507218\pi\)
−0.0226726 + 0.999743i \(0.507218\pi\)
\(978\) 0 0
\(979\) 4.01241 0.128237
\(980\) −5.06997 −0.161954
\(981\) 0 0
\(982\) 10.1500 0.323901
\(983\) −26.9669 −0.860110 −0.430055 0.902803i \(-0.641506\pi\)
−0.430055 + 0.902803i \(0.641506\pi\)
\(984\) 0 0
\(985\) 19.7268 0.628548
\(986\) 17.8845 0.569557
\(987\) 0 0
\(988\) −0.407975 −0.0129794
\(989\) 69.8096 2.21982
\(990\) 0 0
\(991\) 40.6222 1.29041 0.645203 0.764011i \(-0.276773\pi\)
0.645203 + 0.764011i \(0.276773\pi\)
\(992\) −3.82236 −0.121360
\(993\) 0 0
\(994\) −3.63114 −0.115173
\(995\) 49.5408 1.57055
\(996\) 0 0
\(997\) 12.2955 0.389401 0.194701 0.980863i \(-0.437626\pi\)
0.194701 + 0.980863i \(0.437626\pi\)
\(998\) 11.4679 0.363008
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1629.2.a.b.1.4 5
3.2 odd 2 543.2.a.b.1.2 5
12.11 even 2 8688.2.a.z.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
543.2.a.b.1.2 5 3.2 odd 2
1629.2.a.b.1.4 5 1.1 even 1 trivial
8688.2.a.z.1.5 5 12.11 even 2