Properties

Label 1629.2.a.b
Level $1629$
Weight $2$
Character orbit 1629.a
Self dual yes
Analytic conductor $13.008$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1629,2,Mod(1,1629)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1629.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1629, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1629 = 3^{2} \cdot 181 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1629.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,1,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.0076304893\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.170701.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 6x^{3} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 543)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + ( - \beta_{4} + \beta_{2} + \beta_1 + 1) q^{4} + ( - \beta_{4} + \beta_{2}) q^{5} + ( - \beta_{4} + 2 \beta_{3} + \beta_1 + 2) q^{7} + (\beta_{3} - 2 \beta_{2} - \beta_1 - 2) q^{8}+ \cdots + ( - 4 \beta_{4} + \beta_{3} - 10 \beta_{2} + \cdots + 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + 3 q^{4} - 3 q^{5} + 9 q^{7} - 9 q^{8} - 14 q^{10} + 4 q^{11} + 9 q^{13} - 3 q^{14} + 7 q^{16} - 9 q^{17} + 6 q^{19} + 25 q^{20} - 17 q^{22} + 5 q^{23} + 12 q^{25} - 6 q^{26} + 27 q^{28} + 20 q^{29}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 6x^{3} + 4x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{4} - \nu^{3} - 6\nu^{2} + 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{4} + 2\nu^{3} + 4\nu^{2} - 4\nu - 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\nu^{4} + 2\nu^{3} + 5\nu^{2} - 5\nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - \beta_{3} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{4} - \beta_{3} + \beta_{2} + 6\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 8\beta_{4} - 7\beta_{3} + 2\beta_{2} + 12\beta _1 + 11 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.281423
−0.757742
−1.77019
2.89398
0.915381
−2.55337 0 4.51968 3.80110 0 3.74959 −6.43367 0 −9.70561
1.2 −0.319710 0 −1.89779 −2.14004 0 5.03818 1.24616 0 0.684193
1.3 0.435090 0 −1.81070 −1.04050 0 −4.97235 −1.65800 0 −0.452712
1.4 1.34554 0 −0.189509 −4.08349 0 0.669650 −2.94608 0 −5.49452
1.5 2.09244 0 2.37831 0.462928 0 4.51493 0.791590 0 0.968650
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(181\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1629.2.a.b 5
3.b odd 2 1 543.2.a.b 5
12.b even 2 1 8688.2.a.z 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
543.2.a.b 5 3.b odd 2 1
1629.2.a.b 5 1.a even 1 1 trivial
8688.2.a.z 5 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{5} - T_{2}^{4} - 6T_{2}^{3} + 8T_{2}^{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1629))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - T^{4} - 6 T^{3} + \cdots - 1 \) Copy content Toggle raw display
$3$ \( T^{5} \) Copy content Toggle raw display
$5$ \( T^{5} + 3 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$7$ \( T^{5} - 9 T^{4} + \cdots + 284 \) Copy content Toggle raw display
$11$ \( T^{5} - 4 T^{4} + \cdots + 52 \) Copy content Toggle raw display
$13$ \( T^{5} - 9 T^{4} + \cdots + 7 \) Copy content Toggle raw display
$17$ \( T^{5} + 9 T^{4} + \cdots + 1492 \) Copy content Toggle raw display
$19$ \( T^{5} - 6 T^{4} + \cdots - 368 \) Copy content Toggle raw display
$23$ \( T^{5} - 5 T^{4} + \cdots + 197 \) Copy content Toggle raw display
$29$ \( T^{5} - 20 T^{4} + \cdots - 628 \) Copy content Toggle raw display
$31$ \( T^{5} - 13 T^{4} + \cdots + 52 \) Copy content Toggle raw display
$37$ \( T^{5} + 5 T^{4} + \cdots + 269 \) Copy content Toggle raw display
$41$ \( T^{5} - 2 T^{4} + \cdots - 7 \) Copy content Toggle raw display
$43$ \( T^{5} - 4 T^{4} + \cdots + 1163 \) Copy content Toggle raw display
$47$ \( T^{5} - 2 T^{4} + \cdots - 1472 \) Copy content Toggle raw display
$53$ \( T^{5} + 19 T^{4} + \cdots - 2743 \) Copy content Toggle raw display
$59$ \( T^{5} - 25 T^{4} + \cdots + 15856 \) Copy content Toggle raw display
$61$ \( T^{5} - 17 T^{4} + \cdots + 212 \) Copy content Toggle raw display
$67$ \( T^{5} + 9 T^{4} + \cdots + 24173 \) Copy content Toggle raw display
$71$ \( T^{5} + 9 T^{4} + \cdots + 81989 \) Copy content Toggle raw display
$73$ \( T^{5} - 7 T^{4} + \cdots + 5357 \) Copy content Toggle raw display
$79$ \( T^{5} - 2 T^{4} + \cdots - 9103 \) Copy content Toggle raw display
$83$ \( T^{5} + 14 T^{4} + \cdots - 329 \) Copy content Toggle raw display
$89$ \( T^{5} - 12 T^{4} + \cdots - 5071 \) Copy content Toggle raw display
$97$ \( T^{5} + 8 T^{4} + \cdots - 16324 \) Copy content Toggle raw display
show more
show less