Properties

Label 1629.2.a.b.1.3
Level $1629$
Weight $2$
Character 1629.1
Self dual yes
Analytic conductor $13.008$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1629,2,Mod(1,1629)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1629.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1629, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1629 = 3^{2} \cdot 181 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1629.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,1,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.0076304893\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.170701.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 6x^{3} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 543)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.77019\) of defining polynomial
Character \(\chi\) \(=\) 1629.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.435090 q^{2} -1.81070 q^{4} -1.04050 q^{5} -4.97235 q^{7} -1.65800 q^{8} -0.452712 q^{10} -1.73346 q^{11} +3.86328 q^{13} -2.16342 q^{14} +2.90001 q^{16} -5.71071 q^{17} +5.93875 q^{19} +1.88403 q^{20} -0.754213 q^{22} -5.61586 q^{23} -3.91736 q^{25} +1.68088 q^{26} +9.00342 q^{28} +1.79471 q^{29} +4.50679 q^{31} +4.57776 q^{32} -2.48468 q^{34} +5.17374 q^{35} -0.447175 q^{37} +2.58389 q^{38} +1.72515 q^{40} +4.37007 q^{41} -5.04718 q^{43} +3.13878 q^{44} -2.44340 q^{46} +10.0870 q^{47} +17.7243 q^{49} -1.70440 q^{50} -6.99523 q^{52} -12.6653 q^{53} +1.80367 q^{55} +8.24415 q^{56} +0.780863 q^{58} +10.7052 q^{59} +8.10907 q^{61} +1.96086 q^{62} -3.80829 q^{64} -4.01975 q^{65} +11.9461 q^{67} +10.3404 q^{68} +2.25104 q^{70} +11.7832 q^{71} +1.50353 q^{73} -0.194562 q^{74} -10.7533 q^{76} +8.61939 q^{77} +1.79243 q^{79} -3.01747 q^{80} +1.90137 q^{82} -8.36317 q^{83} +5.94200 q^{85} -2.19598 q^{86} +2.87408 q^{88} +4.53143 q^{89} -19.2096 q^{91} +10.1686 q^{92} +4.38874 q^{94} -6.17928 q^{95} +7.90078 q^{97} +7.71167 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + 3 q^{4} - 3 q^{5} + 9 q^{7} - 9 q^{8} - 14 q^{10} + 4 q^{11} + 9 q^{13} - 3 q^{14} + 7 q^{16} - 9 q^{17} + 6 q^{19} + 25 q^{20} - 17 q^{22} + 5 q^{23} + 12 q^{25} - 6 q^{26} + 27 q^{28} + 20 q^{29}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.435090 0.307655 0.153828 0.988098i \(-0.450840\pi\)
0.153828 + 0.988098i \(0.450840\pi\)
\(3\) 0 0
\(4\) −1.81070 −0.905348
\(5\) −1.04050 −0.465326 −0.232663 0.972557i \(-0.574744\pi\)
−0.232663 + 0.972557i \(0.574744\pi\)
\(6\) 0 0
\(7\) −4.97235 −1.87937 −0.939686 0.342038i \(-0.888883\pi\)
−0.939686 + 0.342038i \(0.888883\pi\)
\(8\) −1.65800 −0.586191
\(9\) 0 0
\(10\) −0.452712 −0.143160
\(11\) −1.73346 −0.522659 −0.261329 0.965250i \(-0.584161\pi\)
−0.261329 + 0.965250i \(0.584161\pi\)
\(12\) 0 0
\(13\) 3.86328 1.07148 0.535741 0.844382i \(-0.320032\pi\)
0.535741 + 0.844382i \(0.320032\pi\)
\(14\) −2.16342 −0.578199
\(15\) 0 0
\(16\) 2.90001 0.725003
\(17\) −5.71071 −1.38505 −0.692525 0.721394i \(-0.743502\pi\)
−0.692525 + 0.721394i \(0.743502\pi\)
\(18\) 0 0
\(19\) 5.93875 1.36244 0.681221 0.732078i \(-0.261449\pi\)
0.681221 + 0.732078i \(0.261449\pi\)
\(20\) 1.88403 0.421282
\(21\) 0 0
\(22\) −0.754213 −0.160799
\(23\) −5.61586 −1.17099 −0.585493 0.810677i \(-0.699099\pi\)
−0.585493 + 0.810677i \(0.699099\pi\)
\(24\) 0 0
\(25\) −3.91736 −0.783471
\(26\) 1.68088 0.329647
\(27\) 0 0
\(28\) 9.00342 1.70149
\(29\) 1.79471 0.333270 0.166635 0.986019i \(-0.446710\pi\)
0.166635 + 0.986019i \(0.446710\pi\)
\(30\) 0 0
\(31\) 4.50679 0.809443 0.404721 0.914440i \(-0.367369\pi\)
0.404721 + 0.914440i \(0.367369\pi\)
\(32\) 4.57776 0.809242
\(33\) 0 0
\(34\) −2.48468 −0.426118
\(35\) 5.17374 0.874522
\(36\) 0 0
\(37\) −0.447175 −0.0735151 −0.0367576 0.999324i \(-0.511703\pi\)
−0.0367576 + 0.999324i \(0.511703\pi\)
\(38\) 2.58389 0.419163
\(39\) 0 0
\(40\) 1.72515 0.272770
\(41\) 4.37007 0.682490 0.341245 0.939974i \(-0.389151\pi\)
0.341245 + 0.939974i \(0.389151\pi\)
\(42\) 0 0
\(43\) −5.04718 −0.769687 −0.384844 0.922982i \(-0.625745\pi\)
−0.384844 + 0.922982i \(0.625745\pi\)
\(44\) 3.13878 0.473188
\(45\) 0 0
\(46\) −2.44340 −0.360260
\(47\) 10.0870 1.47133 0.735667 0.677343i \(-0.236869\pi\)
0.735667 + 0.677343i \(0.236869\pi\)
\(48\) 0 0
\(49\) 17.7243 2.53204
\(50\) −1.70440 −0.241039
\(51\) 0 0
\(52\) −6.99523 −0.970064
\(53\) −12.6653 −1.73971 −0.869857 0.493303i \(-0.835789\pi\)
−0.869857 + 0.493303i \(0.835789\pi\)
\(54\) 0 0
\(55\) 1.80367 0.243207
\(56\) 8.24415 1.10167
\(57\) 0 0
\(58\) 0.780863 0.102532
\(59\) 10.7052 1.39369 0.696847 0.717219i \(-0.254585\pi\)
0.696847 + 0.717219i \(0.254585\pi\)
\(60\) 0 0
\(61\) 8.10907 1.03826 0.519130 0.854695i \(-0.326256\pi\)
0.519130 + 0.854695i \(0.326256\pi\)
\(62\) 1.96086 0.249029
\(63\) 0 0
\(64\) −3.80829 −0.476036
\(65\) −4.01975 −0.498589
\(66\) 0 0
\(67\) 11.9461 1.45944 0.729722 0.683744i \(-0.239649\pi\)
0.729722 + 0.683744i \(0.239649\pi\)
\(68\) 10.3404 1.25395
\(69\) 0 0
\(70\) 2.25104 0.269051
\(71\) 11.7832 1.39841 0.699203 0.714923i \(-0.253538\pi\)
0.699203 + 0.714923i \(0.253538\pi\)
\(72\) 0 0
\(73\) 1.50353 0.175975 0.0879875 0.996122i \(-0.471956\pi\)
0.0879875 + 0.996122i \(0.471956\pi\)
\(74\) −0.194562 −0.0226173
\(75\) 0 0
\(76\) −10.7533 −1.23348
\(77\) 8.61939 0.982271
\(78\) 0 0
\(79\) 1.79243 0.201664 0.100832 0.994903i \(-0.467849\pi\)
0.100832 + 0.994903i \(0.467849\pi\)
\(80\) −3.01747 −0.337363
\(81\) 0 0
\(82\) 1.90137 0.209972
\(83\) −8.36317 −0.917977 −0.458989 0.888442i \(-0.651788\pi\)
−0.458989 + 0.888442i \(0.651788\pi\)
\(84\) 0 0
\(85\) 5.94200 0.644501
\(86\) −2.19598 −0.236798
\(87\) 0 0
\(88\) 2.87408 0.306378
\(89\) 4.53143 0.480331 0.240165 0.970732i \(-0.422798\pi\)
0.240165 + 0.970732i \(0.422798\pi\)
\(90\) 0 0
\(91\) −19.2096 −2.01371
\(92\) 10.1686 1.06015
\(93\) 0 0
\(94\) 4.38874 0.452664
\(95\) −6.17928 −0.633980
\(96\) 0 0
\(97\) 7.90078 0.802203 0.401101 0.916034i \(-0.368627\pi\)
0.401101 + 0.916034i \(0.368627\pi\)
\(98\) 7.71167 0.778996
\(99\) 0 0
\(100\) 7.09314 0.709314
\(101\) −9.44623 −0.939935 −0.469968 0.882684i \(-0.655734\pi\)
−0.469968 + 0.882684i \(0.655734\pi\)
\(102\) 0 0
\(103\) −11.8927 −1.17182 −0.585912 0.810375i \(-0.699263\pi\)
−0.585912 + 0.810375i \(0.699263\pi\)
\(104\) −6.40531 −0.628093
\(105\) 0 0
\(106\) −5.51056 −0.535233
\(107\) −0.134599 −0.0130122 −0.00650611 0.999979i \(-0.502071\pi\)
−0.00650611 + 0.999979i \(0.502071\pi\)
\(108\) 0 0
\(109\) −5.43310 −0.520397 −0.260198 0.965555i \(-0.583788\pi\)
−0.260198 + 0.965555i \(0.583788\pi\)
\(110\) 0.784760 0.0748239
\(111\) 0 0
\(112\) −14.4199 −1.36255
\(113\) −18.4453 −1.73519 −0.867594 0.497272i \(-0.834335\pi\)
−0.867594 + 0.497272i \(0.834335\pi\)
\(114\) 0 0
\(115\) 5.84331 0.544891
\(116\) −3.24968 −0.301726
\(117\) 0 0
\(118\) 4.65772 0.428778
\(119\) 28.3957 2.60303
\(120\) 0 0
\(121\) −7.99510 −0.726828
\(122\) 3.52818 0.319426
\(123\) 0 0
\(124\) −8.16042 −0.732827
\(125\) 9.27852 0.829896
\(126\) 0 0
\(127\) −0.938331 −0.0832634 −0.0416317 0.999133i \(-0.513256\pi\)
−0.0416317 + 0.999133i \(0.513256\pi\)
\(128\) −10.8125 −0.955697
\(129\) 0 0
\(130\) −1.74896 −0.153394
\(131\) 14.9166 1.30327 0.651636 0.758532i \(-0.274083\pi\)
0.651636 + 0.758532i \(0.274083\pi\)
\(132\) 0 0
\(133\) −29.5295 −2.56054
\(134\) 5.19762 0.449006
\(135\) 0 0
\(136\) 9.46834 0.811904
\(137\) −0.172379 −0.0147273 −0.00736367 0.999973i \(-0.502344\pi\)
−0.00736367 + 0.999973i \(0.502344\pi\)
\(138\) 0 0
\(139\) 22.2427 1.88660 0.943302 0.331937i \(-0.107702\pi\)
0.943302 + 0.331937i \(0.107702\pi\)
\(140\) −9.36807 −0.791747
\(141\) 0 0
\(142\) 5.12675 0.430227
\(143\) −6.69686 −0.560019
\(144\) 0 0
\(145\) −1.86740 −0.155079
\(146\) 0.654172 0.0541397
\(147\) 0 0
\(148\) 0.809698 0.0665568
\(149\) −7.38710 −0.605175 −0.302587 0.953122i \(-0.597850\pi\)
−0.302587 + 0.953122i \(0.597850\pi\)
\(150\) 0 0
\(151\) −11.2063 −0.911959 −0.455980 0.889990i \(-0.650711\pi\)
−0.455980 + 0.889990i \(0.650711\pi\)
\(152\) −9.84643 −0.798651
\(153\) 0 0
\(154\) 3.75021 0.302201
\(155\) −4.68932 −0.376655
\(156\) 0 0
\(157\) −16.0526 −1.28114 −0.640568 0.767901i \(-0.721301\pi\)
−0.640568 + 0.767901i \(0.721301\pi\)
\(158\) 0.779870 0.0620431
\(159\) 0 0
\(160\) −4.76317 −0.376562
\(161\) 27.9240 2.20072
\(162\) 0 0
\(163\) −0.612491 −0.0479740 −0.0239870 0.999712i \(-0.507636\pi\)
−0.0239870 + 0.999712i \(0.507636\pi\)
\(164\) −7.91287 −0.617891
\(165\) 0 0
\(166\) −3.63874 −0.282421
\(167\) 16.8554 1.30431 0.652157 0.758084i \(-0.273864\pi\)
0.652157 + 0.758084i \(0.273864\pi\)
\(168\) 0 0
\(169\) 1.92495 0.148073
\(170\) 2.58531 0.198284
\(171\) 0 0
\(172\) 9.13890 0.696835
\(173\) 11.2340 0.854105 0.427052 0.904227i \(-0.359552\pi\)
0.427052 + 0.904227i \(0.359552\pi\)
\(174\) 0 0
\(175\) 19.4785 1.47243
\(176\) −5.02707 −0.378929
\(177\) 0 0
\(178\) 1.97158 0.147776
\(179\) −17.4405 −1.30357 −0.651783 0.758405i \(-0.725979\pi\)
−0.651783 + 0.758405i \(0.725979\pi\)
\(180\) 0 0
\(181\) −1.00000 −0.0743294
\(182\) −8.35791 −0.619530
\(183\) 0 0
\(184\) 9.31107 0.686421
\(185\) 0.465286 0.0342085
\(186\) 0 0
\(187\) 9.89931 0.723909
\(188\) −18.2644 −1.33207
\(189\) 0 0
\(190\) −2.68854 −0.195047
\(191\) 21.6779 1.56856 0.784279 0.620408i \(-0.213033\pi\)
0.784279 + 0.620408i \(0.213033\pi\)
\(192\) 0 0
\(193\) 0.0598354 0.00430705 0.00215352 0.999998i \(-0.499315\pi\)
0.00215352 + 0.999998i \(0.499315\pi\)
\(194\) 3.43755 0.246802
\(195\) 0 0
\(196\) −32.0933 −2.29238
\(197\) −16.7826 −1.19571 −0.597857 0.801603i \(-0.703981\pi\)
−0.597857 + 0.801603i \(0.703981\pi\)
\(198\) 0 0
\(199\) −8.93685 −0.633517 −0.316758 0.948506i \(-0.602594\pi\)
−0.316758 + 0.948506i \(0.602594\pi\)
\(200\) 6.49497 0.459264
\(201\) 0 0
\(202\) −4.10996 −0.289176
\(203\) −8.92395 −0.626339
\(204\) 0 0
\(205\) −4.54706 −0.317581
\(206\) −5.17440 −0.360518
\(207\) 0 0
\(208\) 11.2036 0.776828
\(209\) −10.2946 −0.712093
\(210\) 0 0
\(211\) 1.80003 0.123919 0.0619595 0.998079i \(-0.480265\pi\)
0.0619595 + 0.998079i \(0.480265\pi\)
\(212\) 22.9330 1.57505
\(213\) 0 0
\(214\) −0.0585629 −0.00400328
\(215\) 5.25159 0.358156
\(216\) 0 0
\(217\) −22.4093 −1.52124
\(218\) −2.36389 −0.160103
\(219\) 0 0
\(220\) −3.26590 −0.220187
\(221\) −22.0621 −1.48406
\(222\) 0 0
\(223\) 0.738244 0.0494364 0.0247182 0.999694i \(-0.492131\pi\)
0.0247182 + 0.999694i \(0.492131\pi\)
\(224\) −22.7622 −1.52087
\(225\) 0 0
\(226\) −8.02538 −0.533840
\(227\) 8.49001 0.563502 0.281751 0.959488i \(-0.409085\pi\)
0.281751 + 0.959488i \(0.409085\pi\)
\(228\) 0 0
\(229\) 14.6709 0.969477 0.484739 0.874659i \(-0.338915\pi\)
0.484739 + 0.874659i \(0.338915\pi\)
\(230\) 2.54237 0.167639
\(231\) 0 0
\(232\) −2.97563 −0.195360
\(233\) 19.5033 1.27770 0.638851 0.769331i \(-0.279410\pi\)
0.638851 + 0.769331i \(0.279410\pi\)
\(234\) 0 0
\(235\) −10.4955 −0.684651
\(236\) −19.3838 −1.26178
\(237\) 0 0
\(238\) 12.3547 0.800835
\(239\) 25.4664 1.64728 0.823642 0.567110i \(-0.191938\pi\)
0.823642 + 0.567110i \(0.191938\pi\)
\(240\) 0 0
\(241\) 19.3367 1.24559 0.622793 0.782387i \(-0.285998\pi\)
0.622793 + 0.782387i \(0.285998\pi\)
\(242\) −3.47859 −0.223612
\(243\) 0 0
\(244\) −14.6831 −0.939987
\(245\) −18.4421 −1.17823
\(246\) 0 0
\(247\) 22.9431 1.45983
\(248\) −7.47224 −0.474488
\(249\) 0 0
\(250\) 4.03700 0.255322
\(251\) −10.1497 −0.640646 −0.320323 0.947308i \(-0.603791\pi\)
−0.320323 + 0.947308i \(0.603791\pi\)
\(252\) 0 0
\(253\) 9.73488 0.612027
\(254\) −0.408259 −0.0256164
\(255\) 0 0
\(256\) 2.91217 0.182011
\(257\) 16.6988 1.04165 0.520823 0.853665i \(-0.325625\pi\)
0.520823 + 0.853665i \(0.325625\pi\)
\(258\) 0 0
\(259\) 2.22351 0.138162
\(260\) 7.27855 0.451396
\(261\) 0 0
\(262\) 6.49009 0.400959
\(263\) 10.9961 0.678051 0.339025 0.940777i \(-0.389903\pi\)
0.339025 + 0.940777i \(0.389903\pi\)
\(264\) 0 0
\(265\) 13.1783 0.809535
\(266\) −12.8480 −0.787763
\(267\) 0 0
\(268\) −21.6307 −1.32131
\(269\) 5.15463 0.314283 0.157142 0.987576i \(-0.449772\pi\)
0.157142 + 0.987576i \(0.449772\pi\)
\(270\) 0 0
\(271\) −17.3231 −1.05231 −0.526153 0.850390i \(-0.676366\pi\)
−0.526153 + 0.850390i \(0.676366\pi\)
\(272\) −16.5611 −1.00417
\(273\) 0 0
\(274\) −0.0750005 −0.00453094
\(275\) 6.79059 0.409488
\(276\) 0 0
\(277\) 11.3082 0.679445 0.339722 0.940526i \(-0.389667\pi\)
0.339722 + 0.940526i \(0.389667\pi\)
\(278\) 9.67760 0.580424
\(279\) 0 0
\(280\) −8.57805 −0.512636
\(281\) −27.4835 −1.63953 −0.819764 0.572701i \(-0.805896\pi\)
−0.819764 + 0.572701i \(0.805896\pi\)
\(282\) 0 0
\(283\) 26.5476 1.57809 0.789046 0.614334i \(-0.210575\pi\)
0.789046 + 0.614334i \(0.210575\pi\)
\(284\) −21.3358 −1.26604
\(285\) 0 0
\(286\) −2.91374 −0.172293
\(287\) −21.7295 −1.28265
\(288\) 0 0
\(289\) 15.6122 0.918365
\(290\) −0.812489 −0.0477110
\(291\) 0 0
\(292\) −2.72244 −0.159319
\(293\) −7.32979 −0.428211 −0.214105 0.976811i \(-0.568684\pi\)
−0.214105 + 0.976811i \(0.568684\pi\)
\(294\) 0 0
\(295\) −11.1387 −0.648523
\(296\) 0.741415 0.0430939
\(297\) 0 0
\(298\) −3.21406 −0.186185
\(299\) −21.6956 −1.25469
\(300\) 0 0
\(301\) 25.0963 1.44653
\(302\) −4.87577 −0.280569
\(303\) 0 0
\(304\) 17.2225 0.987775
\(305\) −8.43750 −0.483130
\(306\) 0 0
\(307\) 15.5854 0.889507 0.444754 0.895653i \(-0.353291\pi\)
0.444754 + 0.895653i \(0.353291\pi\)
\(308\) −15.6071 −0.889297
\(309\) 0 0
\(310\) −2.04028 −0.115880
\(311\) 8.97394 0.508865 0.254433 0.967090i \(-0.418111\pi\)
0.254433 + 0.967090i \(0.418111\pi\)
\(312\) 0 0
\(313\) −13.1963 −0.745899 −0.372950 0.927852i \(-0.621654\pi\)
−0.372950 + 0.927852i \(0.621654\pi\)
\(314\) −6.98433 −0.394149
\(315\) 0 0
\(316\) −3.24555 −0.182576
\(317\) −5.98526 −0.336166 −0.168083 0.985773i \(-0.553758\pi\)
−0.168083 + 0.985773i \(0.553758\pi\)
\(318\) 0 0
\(319\) −3.11107 −0.174187
\(320\) 3.96253 0.221512
\(321\) 0 0
\(322\) 12.1495 0.677063
\(323\) −33.9145 −1.88705
\(324\) 0 0
\(325\) −15.1339 −0.839475
\(326\) −0.266489 −0.0147595
\(327\) 0 0
\(328\) −7.24556 −0.400069
\(329\) −50.1559 −2.76518
\(330\) 0 0
\(331\) 17.4456 0.958898 0.479449 0.877570i \(-0.340836\pi\)
0.479449 + 0.877570i \(0.340836\pi\)
\(332\) 15.1432 0.831089
\(333\) 0 0
\(334\) 7.33364 0.401279
\(335\) −12.4299 −0.679118
\(336\) 0 0
\(337\) 17.5337 0.955122 0.477561 0.878599i \(-0.341521\pi\)
0.477561 + 0.878599i \(0.341521\pi\)
\(338\) 0.837528 0.0455555
\(339\) 0 0
\(340\) −10.7592 −0.583498
\(341\) −7.81235 −0.423062
\(342\) 0 0
\(343\) −53.3249 −2.87927
\(344\) 8.36820 0.451183
\(345\) 0 0
\(346\) 4.88780 0.262770
\(347\) −6.66721 −0.357914 −0.178957 0.983857i \(-0.557272\pi\)
−0.178957 + 0.983857i \(0.557272\pi\)
\(348\) 0 0
\(349\) −26.7680 −1.43286 −0.716430 0.697659i \(-0.754225\pi\)
−0.716430 + 0.697659i \(0.754225\pi\)
\(350\) 8.47490 0.453002
\(351\) 0 0
\(352\) −7.93538 −0.422957
\(353\) 21.2070 1.12873 0.564367 0.825524i \(-0.309120\pi\)
0.564367 + 0.825524i \(0.309120\pi\)
\(354\) 0 0
\(355\) −12.2604 −0.650715
\(356\) −8.20505 −0.434867
\(357\) 0 0
\(358\) −7.58821 −0.401049
\(359\) 3.01897 0.159335 0.0796676 0.996821i \(-0.474614\pi\)
0.0796676 + 0.996821i \(0.474614\pi\)
\(360\) 0 0
\(361\) 16.2687 0.856249
\(362\) −0.435090 −0.0228678
\(363\) 0 0
\(364\) 34.7828 1.82311
\(365\) −1.56443 −0.0818858
\(366\) 0 0
\(367\) 4.71001 0.245860 0.122930 0.992415i \(-0.460771\pi\)
0.122930 + 0.992415i \(0.460771\pi\)
\(368\) −16.2861 −0.848970
\(369\) 0 0
\(370\) 0.202442 0.0105244
\(371\) 62.9764 3.26957
\(372\) 0 0
\(373\) −0.00531301 −0.000275097 0 −0.000137549 1.00000i \(-0.500044\pi\)
−0.000137549 1.00000i \(0.500044\pi\)
\(374\) 4.30709 0.222714
\(375\) 0 0
\(376\) −16.7242 −0.862482
\(377\) 6.93349 0.357093
\(378\) 0 0
\(379\) −31.6246 −1.62445 −0.812225 0.583345i \(-0.801744\pi\)
−0.812225 + 0.583345i \(0.801744\pi\)
\(380\) 11.1888 0.573973
\(381\) 0 0
\(382\) 9.43185 0.482576
\(383\) 30.1387 1.54002 0.770008 0.638035i \(-0.220252\pi\)
0.770008 + 0.638035i \(0.220252\pi\)
\(384\) 0 0
\(385\) −8.96849 −0.457077
\(386\) 0.0260338 0.00132509
\(387\) 0 0
\(388\) −14.3059 −0.726273
\(389\) 21.2233 1.07607 0.538033 0.842924i \(-0.319168\pi\)
0.538033 + 0.842924i \(0.319168\pi\)
\(390\) 0 0
\(391\) 32.0705 1.62188
\(392\) −29.3868 −1.48426
\(393\) 0 0
\(394\) −7.30197 −0.367868
\(395\) −1.86503 −0.0938398
\(396\) 0 0
\(397\) −2.32490 −0.116683 −0.0583416 0.998297i \(-0.518581\pi\)
−0.0583416 + 0.998297i \(0.518581\pi\)
\(398\) −3.88834 −0.194905
\(399\) 0 0
\(400\) −11.3604 −0.568019
\(401\) 18.6616 0.931918 0.465959 0.884806i \(-0.345709\pi\)
0.465959 + 0.884806i \(0.345709\pi\)
\(402\) 0 0
\(403\) 17.4110 0.867303
\(404\) 17.1043 0.850969
\(405\) 0 0
\(406\) −3.88273 −0.192696
\(407\) 0.775161 0.0384233
\(408\) 0 0
\(409\) −36.3105 −1.79544 −0.897720 0.440567i \(-0.854777\pi\)
−0.897720 + 0.440567i \(0.854777\pi\)
\(410\) −1.97838 −0.0977054
\(411\) 0 0
\(412\) 21.5341 1.06091
\(413\) −53.2299 −2.61927
\(414\) 0 0
\(415\) 8.70189 0.427159
\(416\) 17.6852 0.867088
\(417\) 0 0
\(418\) −4.47908 −0.219079
\(419\) 34.3587 1.67853 0.839266 0.543721i \(-0.182985\pi\)
0.839266 + 0.543721i \(0.182985\pi\)
\(420\) 0 0
\(421\) −11.2616 −0.548855 −0.274428 0.961608i \(-0.588488\pi\)
−0.274428 + 0.961608i \(0.588488\pi\)
\(422\) 0.783175 0.0381244
\(423\) 0 0
\(424\) 20.9991 1.01980
\(425\) 22.3709 1.08515
\(426\) 0 0
\(427\) −40.3211 −1.95128
\(428\) 0.243719 0.0117806
\(429\) 0 0
\(430\) 2.28492 0.110189
\(431\) 20.3604 0.980728 0.490364 0.871518i \(-0.336864\pi\)
0.490364 + 0.871518i \(0.336864\pi\)
\(432\) 0 0
\(433\) 8.55947 0.411342 0.205671 0.978621i \(-0.434062\pi\)
0.205671 + 0.978621i \(0.434062\pi\)
\(434\) −9.75008 −0.468019
\(435\) 0 0
\(436\) 9.83769 0.471140
\(437\) −33.3512 −1.59540
\(438\) 0 0
\(439\) 2.08992 0.0997465 0.0498733 0.998756i \(-0.484118\pi\)
0.0498733 + 0.998756i \(0.484118\pi\)
\(440\) −2.99048 −0.142566
\(441\) 0 0
\(442\) −9.59900 −0.456578
\(443\) −12.6084 −0.599042 −0.299521 0.954090i \(-0.596827\pi\)
−0.299521 + 0.954090i \(0.596827\pi\)
\(444\) 0 0
\(445\) −4.71496 −0.223511
\(446\) 0.321203 0.0152094
\(447\) 0 0
\(448\) 18.9361 0.894649
\(449\) 26.9674 1.27267 0.636336 0.771412i \(-0.280449\pi\)
0.636336 + 0.771412i \(0.280449\pi\)
\(450\) 0 0
\(451\) −7.57535 −0.356709
\(452\) 33.3989 1.57095
\(453\) 0 0
\(454\) 3.69392 0.173364
\(455\) 19.9876 0.937034
\(456\) 0 0
\(457\) 23.1095 1.08102 0.540508 0.841339i \(-0.318232\pi\)
0.540508 + 0.841339i \(0.318232\pi\)
\(458\) 6.38315 0.298265
\(459\) 0 0
\(460\) −10.5805 −0.493316
\(461\) 10.7806 0.502103 0.251052 0.967974i \(-0.419224\pi\)
0.251052 + 0.967974i \(0.419224\pi\)
\(462\) 0 0
\(463\) 14.1337 0.656849 0.328425 0.944530i \(-0.393482\pi\)
0.328425 + 0.944530i \(0.393482\pi\)
\(464\) 5.20470 0.241622
\(465\) 0 0
\(466\) 8.48568 0.393092
\(467\) 4.29978 0.198970 0.0994851 0.995039i \(-0.468280\pi\)
0.0994851 + 0.995039i \(0.468280\pi\)
\(468\) 0 0
\(469\) −59.4000 −2.74284
\(470\) −4.56649 −0.210636
\(471\) 0 0
\(472\) −17.7491 −0.816971
\(473\) 8.74909 0.402284
\(474\) 0 0
\(475\) −23.2642 −1.06743
\(476\) −51.4159 −2.35664
\(477\) 0 0
\(478\) 11.0802 0.506796
\(479\) 4.62278 0.211220 0.105610 0.994408i \(-0.466320\pi\)
0.105610 + 0.994408i \(0.466320\pi\)
\(480\) 0 0
\(481\) −1.72756 −0.0787701
\(482\) 8.41321 0.383211
\(483\) 0 0
\(484\) 14.4767 0.658032
\(485\) −8.22078 −0.373286
\(486\) 0 0
\(487\) 19.1098 0.865947 0.432974 0.901407i \(-0.357464\pi\)
0.432974 + 0.901407i \(0.357464\pi\)
\(488\) −13.4448 −0.608618
\(489\) 0 0
\(490\) −8.02400 −0.362487
\(491\) −8.58025 −0.387221 −0.193611 0.981078i \(-0.562020\pi\)
−0.193611 + 0.981078i \(0.562020\pi\)
\(492\) 0 0
\(493\) −10.2491 −0.461596
\(494\) 9.98231 0.449125
\(495\) 0 0
\(496\) 13.0697 0.586849
\(497\) −58.5901 −2.62812
\(498\) 0 0
\(499\) 18.8535 0.844001 0.422000 0.906596i \(-0.361328\pi\)
0.422000 + 0.906596i \(0.361328\pi\)
\(500\) −16.8006 −0.751345
\(501\) 0 0
\(502\) −4.41605 −0.197098
\(503\) −16.9707 −0.756687 −0.378343 0.925665i \(-0.623506\pi\)
−0.378343 + 0.925665i \(0.623506\pi\)
\(504\) 0 0
\(505\) 9.82882 0.437377
\(506\) 4.23555 0.188293
\(507\) 0 0
\(508\) 1.69903 0.0753823
\(509\) −7.94385 −0.352105 −0.176052 0.984381i \(-0.556333\pi\)
−0.176052 + 0.984381i \(0.556333\pi\)
\(510\) 0 0
\(511\) −7.47609 −0.330723
\(512\) 22.8920 1.01169
\(513\) 0 0
\(514\) 7.26551 0.320468
\(515\) 12.3744 0.545280
\(516\) 0 0
\(517\) −17.4854 −0.769006
\(518\) 0.967428 0.0425064
\(519\) 0 0
\(520\) 6.66474 0.292268
\(521\) 42.9018 1.87956 0.939780 0.341780i \(-0.111030\pi\)
0.939780 + 0.341780i \(0.111030\pi\)
\(522\) 0 0
\(523\) −18.9001 −0.826445 −0.413222 0.910630i \(-0.635597\pi\)
−0.413222 + 0.910630i \(0.635597\pi\)
\(524\) −27.0095 −1.17992
\(525\) 0 0
\(526\) 4.78431 0.208606
\(527\) −25.7369 −1.12112
\(528\) 0 0
\(529\) 8.53783 0.371210
\(530\) 5.73374 0.249058
\(531\) 0 0
\(532\) 53.4690 2.31818
\(533\) 16.8828 0.731276
\(534\) 0 0
\(535\) 0.140051 0.00605493
\(536\) −19.8065 −0.855512
\(537\) 0 0
\(538\) 2.24273 0.0966910
\(539\) −30.7244 −1.32339
\(540\) 0 0
\(541\) 20.1381 0.865806 0.432903 0.901440i \(-0.357489\pi\)
0.432903 + 0.901440i \(0.357489\pi\)
\(542\) −7.53713 −0.323748
\(543\) 0 0
\(544\) −26.1423 −1.12084
\(545\) 5.65315 0.242154
\(546\) 0 0
\(547\) −26.4146 −1.12940 −0.564702 0.825295i \(-0.691009\pi\)
−0.564702 + 0.825295i \(0.691009\pi\)
\(548\) 0.312126 0.0133334
\(549\) 0 0
\(550\) 2.95452 0.125981
\(551\) 10.6584 0.454061
\(552\) 0 0
\(553\) −8.91260 −0.379002
\(554\) 4.92010 0.209035
\(555\) 0 0
\(556\) −40.2748 −1.70803
\(557\) −18.1850 −0.770523 −0.385261 0.922807i \(-0.625889\pi\)
−0.385261 + 0.922807i \(0.625889\pi\)
\(558\) 0 0
\(559\) −19.4987 −0.824706
\(560\) 15.0039 0.634031
\(561\) 0 0
\(562\) −11.9578 −0.504410
\(563\) −24.2587 −1.02238 −0.511191 0.859467i \(-0.670795\pi\)
−0.511191 + 0.859467i \(0.670795\pi\)
\(564\) 0 0
\(565\) 19.1924 0.807429
\(566\) 11.5506 0.485509
\(567\) 0 0
\(568\) −19.5365 −0.819732
\(569\) −4.03129 −0.169001 −0.0845003 0.996423i \(-0.526929\pi\)
−0.0845003 + 0.996423i \(0.526929\pi\)
\(570\) 0 0
\(571\) −14.0544 −0.588157 −0.294079 0.955781i \(-0.595013\pi\)
−0.294079 + 0.955781i \(0.595013\pi\)
\(572\) 12.1260 0.507013
\(573\) 0 0
\(574\) −9.45431 −0.394615
\(575\) 21.9993 0.917435
\(576\) 0 0
\(577\) 12.6968 0.528574 0.264287 0.964444i \(-0.414863\pi\)
0.264287 + 0.964444i \(0.414863\pi\)
\(578\) 6.79272 0.282540
\(579\) 0 0
\(580\) 3.38130 0.140401
\(581\) 41.5846 1.72522
\(582\) 0 0
\(583\) 21.9549 0.909277
\(584\) −2.49285 −0.103155
\(585\) 0 0
\(586\) −3.18912 −0.131741
\(587\) −15.5407 −0.641433 −0.320716 0.947175i \(-0.603924\pi\)
−0.320716 + 0.947175i \(0.603924\pi\)
\(588\) 0 0
\(589\) 26.7647 1.10282
\(590\) −4.84636 −0.199522
\(591\) 0 0
\(592\) −1.29681 −0.0532987
\(593\) 31.3473 1.28728 0.643641 0.765328i \(-0.277423\pi\)
0.643641 + 0.765328i \(0.277423\pi\)
\(594\) 0 0
\(595\) −29.5457 −1.21126
\(596\) 13.3758 0.547894
\(597\) 0 0
\(598\) −9.43956 −0.386012
\(599\) −15.9768 −0.652793 −0.326397 0.945233i \(-0.605835\pi\)
−0.326397 + 0.945233i \(0.605835\pi\)
\(600\) 0 0
\(601\) 13.3949 0.546389 0.273194 0.961959i \(-0.411920\pi\)
0.273194 + 0.961959i \(0.411920\pi\)
\(602\) 10.9192 0.445032
\(603\) 0 0
\(604\) 20.2913 0.825641
\(605\) 8.31892 0.338212
\(606\) 0 0
\(607\) 37.9707 1.54118 0.770591 0.637330i \(-0.219961\pi\)
0.770591 + 0.637330i \(0.219961\pi\)
\(608\) 27.1862 1.10255
\(609\) 0 0
\(610\) −3.67108 −0.148637
\(611\) 38.9688 1.57651
\(612\) 0 0
\(613\) 10.4393 0.421641 0.210820 0.977525i \(-0.432386\pi\)
0.210820 + 0.977525i \(0.432386\pi\)
\(614\) 6.78107 0.273662
\(615\) 0 0
\(616\) −14.2909 −0.575798
\(617\) 36.6275 1.47457 0.737284 0.675583i \(-0.236108\pi\)
0.737284 + 0.675583i \(0.236108\pi\)
\(618\) 0 0
\(619\) −35.6460 −1.43274 −0.716368 0.697723i \(-0.754197\pi\)
−0.716368 + 0.697723i \(0.754197\pi\)
\(620\) 8.49093 0.341004
\(621\) 0 0
\(622\) 3.90447 0.156555
\(623\) −22.5319 −0.902721
\(624\) 0 0
\(625\) 9.93246 0.397299
\(626\) −5.74159 −0.229480
\(627\) 0 0
\(628\) 29.0664 1.15987
\(629\) 2.55369 0.101822
\(630\) 0 0
\(631\) −37.6033 −1.49696 −0.748481 0.663156i \(-0.769217\pi\)
−0.748481 + 0.663156i \(0.769217\pi\)
\(632\) −2.97185 −0.118214
\(633\) 0 0
\(634\) −2.60413 −0.103423
\(635\) 0.976334 0.0387447
\(636\) 0 0
\(637\) 68.4739 2.71304
\(638\) −1.35360 −0.0535894
\(639\) 0 0
\(640\) 11.2504 0.444711
\(641\) −40.6857 −1.60699 −0.803494 0.595313i \(-0.797028\pi\)
−0.803494 + 0.595313i \(0.797028\pi\)
\(642\) 0 0
\(643\) 40.4424 1.59489 0.797447 0.603389i \(-0.206183\pi\)
0.797447 + 0.603389i \(0.206183\pi\)
\(644\) −50.5619 −1.99242
\(645\) 0 0
\(646\) −14.7559 −0.580562
\(647\) −11.3180 −0.444955 −0.222477 0.974938i \(-0.571414\pi\)
−0.222477 + 0.974938i \(0.571414\pi\)
\(648\) 0 0
\(649\) −18.5570 −0.728427
\(650\) −6.58459 −0.258269
\(651\) 0 0
\(652\) 1.10904 0.0434332
\(653\) 29.5565 1.15663 0.578317 0.815812i \(-0.303710\pi\)
0.578317 + 0.815812i \(0.303710\pi\)
\(654\) 0 0
\(655\) −15.5208 −0.606447
\(656\) 12.6733 0.494808
\(657\) 0 0
\(658\) −21.8224 −0.850724
\(659\) −13.6711 −0.532549 −0.266274 0.963897i \(-0.585793\pi\)
−0.266274 + 0.963897i \(0.585793\pi\)
\(660\) 0 0
\(661\) 4.01544 0.156183 0.0780913 0.996946i \(-0.475117\pi\)
0.0780913 + 0.996946i \(0.475117\pi\)
\(662\) 7.59043 0.295010
\(663\) 0 0
\(664\) 13.8661 0.538110
\(665\) 30.7255 1.19149
\(666\) 0 0
\(667\) −10.0789 −0.390255
\(668\) −30.5201 −1.18086
\(669\) 0 0
\(670\) −5.40813 −0.208934
\(671\) −14.0568 −0.542656
\(672\) 0 0
\(673\) 5.90376 0.227573 0.113787 0.993505i \(-0.463702\pi\)
0.113787 + 0.993505i \(0.463702\pi\)
\(674\) 7.62875 0.293849
\(675\) 0 0
\(676\) −3.48550 −0.134058
\(677\) 7.33737 0.281998 0.140999 0.990010i \(-0.454969\pi\)
0.140999 + 0.990010i \(0.454969\pi\)
\(678\) 0 0
\(679\) −39.2855 −1.50764
\(680\) −9.85183 −0.377800
\(681\) 0 0
\(682\) −3.39908 −0.130157
\(683\) −10.2402 −0.391830 −0.195915 0.980621i \(-0.562768\pi\)
−0.195915 + 0.980621i \(0.562768\pi\)
\(684\) 0 0
\(685\) 0.179361 0.00685302
\(686\) −23.2012 −0.885824
\(687\) 0 0
\(688\) −14.6369 −0.558026
\(689\) −48.9297 −1.86407
\(690\) 0 0
\(691\) −43.0127 −1.63628 −0.818140 0.575019i \(-0.804995\pi\)
−0.818140 + 0.575019i \(0.804995\pi\)
\(692\) −20.3414 −0.773262
\(693\) 0 0
\(694\) −2.90084 −0.110114
\(695\) −23.1436 −0.877886
\(696\) 0 0
\(697\) −24.9562 −0.945283
\(698\) −11.6465 −0.440827
\(699\) 0 0
\(700\) −35.2696 −1.33307
\(701\) −22.5656 −0.852291 −0.426146 0.904655i \(-0.640129\pi\)
−0.426146 + 0.904655i \(0.640129\pi\)
\(702\) 0 0
\(703\) −2.65566 −0.100160
\(704\) 6.60153 0.248804
\(705\) 0 0
\(706\) 9.22696 0.347261
\(707\) 46.9700 1.76649
\(708\) 0 0
\(709\) −20.4652 −0.768586 −0.384293 0.923211i \(-0.625555\pi\)
−0.384293 + 0.923211i \(0.625555\pi\)
\(710\) −5.33439 −0.200196
\(711\) 0 0
\(712\) −7.51310 −0.281565
\(713\) −25.3095 −0.947847
\(714\) 0 0
\(715\) 6.96809 0.260592
\(716\) 31.5795 1.18018
\(717\) 0 0
\(718\) 1.31353 0.0490203
\(719\) −11.8034 −0.440192 −0.220096 0.975478i \(-0.570637\pi\)
−0.220096 + 0.975478i \(0.570637\pi\)
\(720\) 0 0
\(721\) 59.1347 2.20229
\(722\) 7.07837 0.263430
\(723\) 0 0
\(724\) 1.81070 0.0672940
\(725\) −7.03054 −0.261108
\(726\) 0 0
\(727\) 26.6478 0.988313 0.494156 0.869373i \(-0.335477\pi\)
0.494156 + 0.869373i \(0.335477\pi\)
\(728\) 31.8495 1.18042
\(729\) 0 0
\(730\) −0.680667 −0.0251926
\(731\) 28.8230 1.06606
\(732\) 0 0
\(733\) 5.76250 0.212843 0.106421 0.994321i \(-0.466061\pi\)
0.106421 + 0.994321i \(0.466061\pi\)
\(734\) 2.04928 0.0756403
\(735\) 0 0
\(736\) −25.7081 −0.947611
\(737\) −20.7081 −0.762791
\(738\) 0 0
\(739\) 54.1619 1.99238 0.996188 0.0872308i \(-0.0278018\pi\)
0.996188 + 0.0872308i \(0.0278018\pi\)
\(740\) −0.842492 −0.0309706
\(741\) 0 0
\(742\) 27.4004 1.00590
\(743\) −24.1132 −0.884629 −0.442315 0.896860i \(-0.645843\pi\)
−0.442315 + 0.896860i \(0.645843\pi\)
\(744\) 0 0
\(745\) 7.68629 0.281604
\(746\) −0.00231164 −8.46351e−5 0
\(747\) 0 0
\(748\) −17.9246 −0.655390
\(749\) 0.669276 0.0244548
\(750\) 0 0
\(751\) −41.8480 −1.52705 −0.763527 0.645775i \(-0.776534\pi\)
−0.763527 + 0.645775i \(0.776534\pi\)
\(752\) 29.2523 1.06672
\(753\) 0 0
\(754\) 3.01670 0.109862
\(755\) 11.6602 0.424359
\(756\) 0 0
\(757\) −2.96428 −0.107739 −0.0538694 0.998548i \(-0.517155\pi\)
−0.0538694 + 0.998548i \(0.517155\pi\)
\(758\) −13.7596 −0.499771
\(759\) 0 0
\(760\) 10.2452 0.371633
\(761\) −34.8517 −1.26337 −0.631687 0.775223i \(-0.717637\pi\)
−0.631687 + 0.775223i \(0.717637\pi\)
\(762\) 0 0
\(763\) 27.0153 0.978019
\(764\) −39.2521 −1.42009
\(765\) 0 0
\(766\) 13.1131 0.473794
\(767\) 41.3571 1.49332
\(768\) 0 0
\(769\) 46.4430 1.67478 0.837389 0.546607i \(-0.184081\pi\)
0.837389 + 0.546607i \(0.184081\pi\)
\(770\) −3.90210 −0.140622
\(771\) 0 0
\(772\) −0.108344 −0.00389938
\(773\) −12.9256 −0.464900 −0.232450 0.972608i \(-0.574674\pi\)
−0.232450 + 0.972608i \(0.574674\pi\)
\(774\) 0 0
\(775\) −17.6547 −0.634175
\(776\) −13.0995 −0.470244
\(777\) 0 0
\(778\) 9.23407 0.331057
\(779\) 25.9527 0.929853
\(780\) 0 0
\(781\) −20.4257 −0.730889
\(782\) 13.9536 0.498979
\(783\) 0 0
\(784\) 51.4007 1.83574
\(785\) 16.7028 0.596147
\(786\) 0 0
\(787\) 6.82859 0.243413 0.121707 0.992566i \(-0.461163\pi\)
0.121707 + 0.992566i \(0.461163\pi\)
\(788\) 30.3883 1.08254
\(789\) 0 0
\(790\) −0.811456 −0.0288703
\(791\) 91.7166 3.26107
\(792\) 0 0
\(793\) 31.3276 1.11248
\(794\) −1.01154 −0.0358982
\(795\) 0 0
\(796\) 16.1819 0.573553
\(797\) −13.8644 −0.491102 −0.245551 0.969384i \(-0.578969\pi\)
−0.245551 + 0.969384i \(0.578969\pi\)
\(798\) 0 0
\(799\) −57.6037 −2.03787
\(800\) −17.9327 −0.634018
\(801\) 0 0
\(802\) 8.11950 0.286710
\(803\) −2.60632 −0.0919749
\(804\) 0 0
\(805\) −29.0550 −1.02405
\(806\) 7.57535 0.266830
\(807\) 0 0
\(808\) 15.6618 0.550981
\(809\) −26.4249 −0.929050 −0.464525 0.885560i \(-0.653775\pi\)
−0.464525 + 0.885560i \(0.653775\pi\)
\(810\) 0 0
\(811\) 43.2688 1.51937 0.759686 0.650290i \(-0.225353\pi\)
0.759686 + 0.650290i \(0.225353\pi\)
\(812\) 16.1586 0.567055
\(813\) 0 0
\(814\) 0.337265 0.0118211
\(815\) 0.637298 0.0223236
\(816\) 0 0
\(817\) −29.9739 −1.04865
\(818\) −15.7984 −0.552377
\(819\) 0 0
\(820\) 8.23335 0.287521
\(821\) 33.0917 1.15491 0.577454 0.816423i \(-0.304046\pi\)
0.577454 + 0.816423i \(0.304046\pi\)
\(822\) 0 0
\(823\) 11.4473 0.399028 0.199514 0.979895i \(-0.436064\pi\)
0.199514 + 0.979895i \(0.436064\pi\)
\(824\) 19.7181 0.686912
\(825\) 0 0
\(826\) −23.1598 −0.805833
\(827\) 48.2730 1.67862 0.839309 0.543654i \(-0.182960\pi\)
0.839309 + 0.543654i \(0.182960\pi\)
\(828\) 0 0
\(829\) 3.38204 0.117463 0.0587315 0.998274i \(-0.481294\pi\)
0.0587315 + 0.998274i \(0.481294\pi\)
\(830\) 3.78611 0.131418
\(831\) 0 0
\(832\) −14.7125 −0.510064
\(833\) −101.218 −3.50700
\(834\) 0 0
\(835\) −17.5381 −0.606931
\(836\) 18.6404 0.644692
\(837\) 0 0
\(838\) 14.9491 0.516409
\(839\) 33.2689 1.14857 0.574285 0.818655i \(-0.305280\pi\)
0.574285 + 0.818655i \(0.305280\pi\)
\(840\) 0 0
\(841\) −25.7790 −0.888931
\(842\) −4.89980 −0.168858
\(843\) 0 0
\(844\) −3.25930 −0.112190
\(845\) −2.00292 −0.0689024
\(846\) 0 0
\(847\) 39.7545 1.36598
\(848\) −36.7296 −1.26130
\(849\) 0 0
\(850\) 9.73336 0.333851
\(851\) 2.51127 0.0860852
\(852\) 0 0
\(853\) 0.145953 0.00499735 0.00249867 0.999997i \(-0.499205\pi\)
0.00249867 + 0.999997i \(0.499205\pi\)
\(854\) −17.5433 −0.600321
\(855\) 0 0
\(856\) 0.223166 0.00762764
\(857\) 44.4655 1.51891 0.759457 0.650558i \(-0.225465\pi\)
0.759457 + 0.650558i \(0.225465\pi\)
\(858\) 0 0
\(859\) −26.9463 −0.919395 −0.459697 0.888076i \(-0.652042\pi\)
−0.459697 + 0.888076i \(0.652042\pi\)
\(860\) −9.50904 −0.324256
\(861\) 0 0
\(862\) 8.85864 0.301726
\(863\) −1.43963 −0.0490057 −0.0245029 0.999700i \(-0.507800\pi\)
−0.0245029 + 0.999700i \(0.507800\pi\)
\(864\) 0 0
\(865\) −11.6890 −0.397438
\(866\) 3.72414 0.126552
\(867\) 0 0
\(868\) 40.5765 1.37726
\(869\) −3.10712 −0.105402
\(870\) 0 0
\(871\) 46.1510 1.56377
\(872\) 9.00806 0.305052
\(873\) 0 0
\(874\) −14.5108 −0.490834
\(875\) −46.1361 −1.55968
\(876\) 0 0
\(877\) 32.2800 1.09002 0.545009 0.838430i \(-0.316526\pi\)
0.545009 + 0.838430i \(0.316526\pi\)
\(878\) 0.909305 0.0306876
\(879\) 0 0
\(880\) 5.23067 0.176326
\(881\) 14.6381 0.493171 0.246585 0.969121i \(-0.420691\pi\)
0.246585 + 0.969121i \(0.420691\pi\)
\(882\) 0 0
\(883\) 52.9687 1.78254 0.891270 0.453473i \(-0.149815\pi\)
0.891270 + 0.453473i \(0.149815\pi\)
\(884\) 39.9477 1.34359
\(885\) 0 0
\(886\) −5.48578 −0.184299
\(887\) 38.3605 1.28802 0.644010 0.765017i \(-0.277270\pi\)
0.644010 + 0.765017i \(0.277270\pi\)
\(888\) 0 0
\(889\) 4.66571 0.156483
\(890\) −2.05144 −0.0687643
\(891\) 0 0
\(892\) −1.33673 −0.0447572
\(893\) 59.9039 2.00461
\(894\) 0 0
\(895\) 18.1469 0.606584
\(896\) 53.7634 1.79611
\(897\) 0 0
\(898\) 11.7333 0.391544
\(899\) 8.08840 0.269763
\(900\) 0 0
\(901\) 72.3279 2.40959
\(902\) −3.29596 −0.109744
\(903\) 0 0
\(904\) 30.5823 1.01715
\(905\) 1.04050 0.0345874
\(906\) 0 0
\(907\) −11.2690 −0.374180 −0.187090 0.982343i \(-0.559906\pi\)
−0.187090 + 0.982343i \(0.559906\pi\)
\(908\) −15.3728 −0.510165
\(909\) 0 0
\(910\) 8.69642 0.288284
\(911\) −40.5127 −1.34225 −0.671124 0.741345i \(-0.734188\pi\)
−0.671124 + 0.741345i \(0.734188\pi\)
\(912\) 0 0
\(913\) 14.4972 0.479789
\(914\) 10.0547 0.332580
\(915\) 0 0
\(916\) −26.5645 −0.877714
\(917\) −74.1708 −2.44933
\(918\) 0 0
\(919\) −7.46636 −0.246293 −0.123146 0.992389i \(-0.539298\pi\)
−0.123146 + 0.992389i \(0.539298\pi\)
\(920\) −9.68819 −0.319410
\(921\) 0 0
\(922\) 4.69054 0.154475
\(923\) 45.5217 1.49837
\(924\) 0 0
\(925\) 1.75174 0.0575970
\(926\) 6.14944 0.202083
\(927\) 0 0
\(928\) 8.21578 0.269696
\(929\) 15.8963 0.521541 0.260770 0.965401i \(-0.416023\pi\)
0.260770 + 0.965401i \(0.416023\pi\)
\(930\) 0 0
\(931\) 105.260 3.44976
\(932\) −35.3145 −1.15676
\(933\) 0 0
\(934\) 1.87079 0.0612143
\(935\) −10.3002 −0.336854
\(936\) 0 0
\(937\) 43.8202 1.43154 0.715771 0.698335i \(-0.246075\pi\)
0.715771 + 0.698335i \(0.246075\pi\)
\(938\) −25.8444 −0.843849
\(939\) 0 0
\(940\) 19.0042 0.619847
\(941\) 35.6078 1.16078 0.580391 0.814338i \(-0.302900\pi\)
0.580391 + 0.814338i \(0.302900\pi\)
\(942\) 0 0
\(943\) −24.5417 −0.799187
\(944\) 31.0452 1.01043
\(945\) 0 0
\(946\) 3.80665 0.123765
\(947\) 38.6326 1.25539 0.627695 0.778459i \(-0.283998\pi\)
0.627695 + 0.778459i \(0.283998\pi\)
\(948\) 0 0
\(949\) 5.80857 0.188554
\(950\) −10.1220 −0.328402
\(951\) 0 0
\(952\) −47.0799 −1.52587
\(953\) −19.8583 −0.643273 −0.321637 0.946863i \(-0.604233\pi\)
−0.321637 + 0.946863i \(0.604233\pi\)
\(954\) 0 0
\(955\) −22.5559 −0.729892
\(956\) −46.1119 −1.49137
\(957\) 0 0
\(958\) 2.01133 0.0649830
\(959\) 0.857129 0.0276782
\(960\) 0 0
\(961\) −10.6889 −0.344803
\(962\) −0.751646 −0.0242340
\(963\) 0 0
\(964\) −35.0129 −1.12769
\(965\) −0.0622588 −0.00200418
\(966\) 0 0
\(967\) −18.2887 −0.588126 −0.294063 0.955786i \(-0.595008\pi\)
−0.294063 + 0.955786i \(0.595008\pi\)
\(968\) 13.2559 0.426060
\(969\) 0 0
\(970\) −3.57678 −0.114844
\(971\) 29.4102 0.943820 0.471910 0.881647i \(-0.343565\pi\)
0.471910 + 0.881647i \(0.343565\pi\)
\(972\) 0 0
\(973\) −110.599 −3.54563
\(974\) 8.31449 0.266413
\(975\) 0 0
\(976\) 23.5164 0.752742
\(977\) 14.3499 0.459092 0.229546 0.973298i \(-0.426276\pi\)
0.229546 + 0.973298i \(0.426276\pi\)
\(978\) 0 0
\(979\) −7.85507 −0.251049
\(980\) 33.3931 1.06670
\(981\) 0 0
\(982\) −3.73318 −0.119131
\(983\) 3.02311 0.0964223 0.0482111 0.998837i \(-0.484648\pi\)
0.0482111 + 0.998837i \(0.484648\pi\)
\(984\) 0 0
\(985\) 17.4624 0.556397
\(986\) −4.45928 −0.142013
\(987\) 0 0
\(988\) −41.5429 −1.32166
\(989\) 28.3442 0.901293
\(990\) 0 0
\(991\) −16.5867 −0.526894 −0.263447 0.964674i \(-0.584859\pi\)
−0.263447 + 0.964674i \(0.584859\pi\)
\(992\) 20.6310 0.655035
\(993\) 0 0
\(994\) −25.4920 −0.808557
\(995\) 9.29881 0.294792
\(996\) 0 0
\(997\) −25.6850 −0.813453 −0.406727 0.913550i \(-0.633330\pi\)
−0.406727 + 0.913550i \(0.633330\pi\)
\(998\) 8.20300 0.259661
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1629.2.a.b.1.3 5
3.2 odd 2 543.2.a.b.1.3 5
12.11 even 2 8688.2.a.z.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
543.2.a.b.1.3 5 3.2 odd 2
1629.2.a.b.1.3 5 1.1 even 1 trivial
8688.2.a.z.1.3 5 12.11 even 2