Properties

Label 162.4.e.b.73.3
Level $162$
Weight $4$
Character 162.73
Analytic conductor $9.558$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,4,Mod(19,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([16])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.19"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 162.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55830942093\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 73.3
Character \(\chi\) \(=\) 162.73
Dual form 162.4.e.b.91.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.347296 - 1.96962i) q^{2} +(-3.75877 - 1.36808i) q^{4} +(-0.657259 + 0.551505i) q^{5} +(-20.5288 + 7.47187i) q^{7} +(-4.00000 + 6.92820i) q^{8} +(0.857990 + 1.48608i) q^{10} +(37.2066 + 31.2201i) q^{11} +(9.56100 + 54.2231i) q^{13} +(7.58714 + 43.0288i) q^{14} +(12.2567 + 10.2846i) q^{16} +(-39.6041 - 68.5963i) q^{17} +(-55.0156 + 95.2899i) q^{19} +(3.22499 - 1.17380i) q^{20} +(74.4132 - 62.4401i) q^{22} +(42.5012 + 15.4692i) q^{23} +(-21.5782 + 122.376i) q^{25} +110.119 q^{26} +87.3852 q^{28} +(-21.6890 + 123.004i) q^{29} +(125.635 + 45.7274i) q^{31} +(24.5134 - 20.5692i) q^{32} +(-148.863 + 54.1816i) q^{34} +(9.37195 - 16.2327i) q^{35} +(-84.1614 - 145.772i) q^{37} +(168.578 + 141.453i) q^{38} +(-1.19191 - 6.75964i) q^{40} +(3.71508 + 21.0693i) q^{41} +(-128.831 - 108.102i) q^{43} +(-97.1396 - 168.251i) q^{44} +(45.2289 - 78.3387i) q^{46} +(298.913 - 108.795i) q^{47} +(102.849 - 86.3009i) q^{49} +(233.540 + 85.0015i) q^{50} +(38.2440 - 216.893i) q^{52} -463.685 q^{53} -41.6724 q^{55} +(30.3485 - 172.115i) q^{56} +(234.739 + 85.4380i) q^{58} +(-415.527 + 348.668i) q^{59} +(-648.554 + 236.054i) q^{61} +(133.698 - 231.571i) q^{62} +(-32.0000 - 55.4256i) q^{64} +(-36.1884 - 30.3657i) q^{65} +(111.664 + 633.280i) q^{67} +(55.0174 + 312.019i) q^{68} +(-28.7173 - 24.0967i) q^{70} +(-524.772 - 908.932i) q^{71} +(480.157 - 831.656i) q^{73} +(-316.343 + 115.140i) q^{74} +(337.155 - 282.907i) q^{76} +(-997.080 - 362.907i) q^{77} +(39.7859 - 225.637i) q^{79} -13.7278 q^{80} +42.7886 q^{82} +(29.5416 - 167.539i) q^{83} +(63.8613 + 23.2436i) q^{85} +(-257.663 + 216.205i) q^{86} +(-365.125 + 132.895i) q^{88} +(-379.679 + 657.623i) q^{89} +(-601.424 - 1041.70i) q^{91} +(-138.589 - 116.290i) q^{92} +(-110.474 - 626.528i) q^{94} +(-16.3934 - 92.9715i) q^{95} +(1232.17 + 1033.92i) q^{97} +(-134.260 - 232.546i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 12 q^{5} + 33 q^{7} - 120 q^{8} - 30 q^{10} + 39 q^{11} - 60 q^{13} + 66 q^{14} - 102 q^{17} - 171 q^{19} - 96 q^{20} + 78 q^{22} - 48 q^{23} - 432 q^{25} + 468 q^{26} + 336 q^{28} + 381 q^{29} - 801 q^{31}+ \cdots - 4002 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.347296 1.96962i 0.122788 0.696364i
\(3\) 0 0
\(4\) −3.75877 1.36808i −0.469846 0.171010i
\(5\) −0.657259 + 0.551505i −0.0587870 + 0.0493282i −0.671708 0.740816i \(-0.734439\pi\)
0.612921 + 0.790144i \(0.289994\pi\)
\(6\) 0 0
\(7\) −20.5288 + 7.47187i −1.10845 + 0.403443i −0.830425 0.557130i \(-0.811902\pi\)
−0.278026 + 0.960574i \(0.589680\pi\)
\(8\) −4.00000 + 6.92820i −0.176777 + 0.306186i
\(9\) 0 0
\(10\) 0.857990 + 1.48608i 0.0271320 + 0.0469941i
\(11\) 37.2066 + 31.2201i 1.01984 + 0.855746i 0.989607 0.143797i \(-0.0459313\pi\)
0.0302309 + 0.999543i \(0.490376\pi\)
\(12\) 0 0
\(13\) 9.56100 + 54.2231i 0.203980 + 1.15683i 0.899036 + 0.437874i \(0.144269\pi\)
−0.695056 + 0.718956i \(0.744620\pi\)
\(14\) 7.58714 + 43.0288i 0.144839 + 0.821423i
\(15\) 0 0
\(16\) 12.2567 + 10.2846i 0.191511 + 0.160697i
\(17\) −39.6041 68.5963i −0.565024 0.978649i −0.997047 0.0767873i \(-0.975534\pi\)
0.432024 0.901862i \(-0.357800\pi\)
\(18\) 0 0
\(19\) −55.0156 + 95.2899i −0.664287 + 1.15058i 0.315191 + 0.949028i \(0.397931\pi\)
−0.979478 + 0.201550i \(0.935402\pi\)
\(20\) 3.22499 1.17380i 0.0360565 0.0131235i
\(21\) 0 0
\(22\) 74.4132 62.4401i 0.721134 0.605104i
\(23\) 42.5012 + 15.4692i 0.385310 + 0.140241i 0.527410 0.849611i \(-0.323163\pi\)
−0.142100 + 0.989852i \(0.545386\pi\)
\(24\) 0 0
\(25\) −21.5782 + 122.376i −0.172626 + 0.979008i
\(26\) 110.119 0.830621
\(27\) 0 0
\(28\) 87.3852 0.589794
\(29\) −21.6890 + 123.004i −0.138881 + 0.787633i 0.833197 + 0.552976i \(0.186508\pi\)
−0.972078 + 0.234657i \(0.924603\pi\)
\(30\) 0 0
\(31\) 125.635 + 45.7274i 0.727893 + 0.264931i 0.679273 0.733886i \(-0.262295\pi\)
0.0486205 + 0.998817i \(0.484518\pi\)
\(32\) 24.5134 20.5692i 0.135419 0.113630i
\(33\) 0 0
\(34\) −148.863 + 54.1816i −0.750874 + 0.273296i
\(35\) 9.37195 16.2327i 0.0452614 0.0783950i
\(36\) 0 0
\(37\) −84.1614 145.772i −0.373947 0.647696i 0.616222 0.787573i \(-0.288663\pi\)
−0.990169 + 0.139877i \(0.955329\pi\)
\(38\) 168.578 + 141.453i 0.719655 + 0.603863i
\(39\) 0 0
\(40\) −1.19191 6.75964i −0.00471143 0.0267198i
\(41\) 3.71508 + 21.0693i 0.0141512 + 0.0802554i 0.991065 0.133376i \(-0.0425819\pi\)
−0.976914 + 0.213632i \(0.931471\pi\)
\(42\) 0 0
\(43\) −128.831 108.102i −0.456898 0.383383i 0.385090 0.922879i \(-0.374170\pi\)
−0.841988 + 0.539496i \(0.818615\pi\)
\(44\) −97.1396 168.251i −0.332826 0.576472i
\(45\) 0 0
\(46\) 45.2289 78.3387i 0.144970 0.251096i
\(47\) 298.913 108.795i 0.927680 0.337648i 0.166390 0.986060i \(-0.446789\pi\)
0.761289 + 0.648412i \(0.224567\pi\)
\(48\) 0 0
\(49\) 102.849 86.3009i 0.299853 0.251606i
\(50\) 233.540 + 85.0015i 0.660550 + 0.240420i
\(51\) 0 0
\(52\) 38.2440 216.893i 0.101990 0.578415i
\(53\) −463.685 −1.20174 −0.600869 0.799348i \(-0.705178\pi\)
−0.600869 + 0.799348i \(0.705178\pi\)
\(54\) 0 0
\(55\) −41.6724 −0.102166
\(56\) 30.3485 172.115i 0.0724196 0.410712i
\(57\) 0 0
\(58\) 234.739 + 85.4380i 0.531427 + 0.193423i
\(59\) −415.527 + 348.668i −0.916898 + 0.769369i −0.973419 0.229033i \(-0.926444\pi\)
0.0565206 + 0.998401i \(0.481999\pi\)
\(60\) 0 0
\(61\) −648.554 + 236.054i −1.36129 + 0.495470i −0.916453 0.400141i \(-0.868961\pi\)
−0.444838 + 0.895611i \(0.646739\pi\)
\(62\) 133.698 231.571i 0.273865 0.474349i
\(63\) 0 0
\(64\) −32.0000 55.4256i −0.0625000 0.108253i
\(65\) −36.1884 30.3657i −0.0690557 0.0579446i
\(66\) 0 0
\(67\) 111.664 + 633.280i 0.203611 + 1.15474i 0.899610 + 0.436695i \(0.143851\pi\)
−0.695998 + 0.718043i \(0.745038\pi\)
\(68\) 55.0174 + 312.019i 0.0981153 + 0.556440i
\(69\) 0 0
\(70\) −28.7173 24.0967i −0.0490340 0.0411444i
\(71\) −524.772 908.932i −0.877169 1.51930i −0.854434 0.519560i \(-0.826096\pi\)
−0.0227353 0.999742i \(-0.507237\pi\)
\(72\) 0 0
\(73\) 480.157 831.656i 0.769837 1.33340i −0.167814 0.985819i \(-0.553671\pi\)
0.937651 0.347578i \(-0.112996\pi\)
\(74\) −316.343 + 115.140i −0.496948 + 0.180874i
\(75\) 0 0
\(76\) 337.155 282.907i 0.508873 0.426995i
\(77\) −997.080 362.907i −1.47569 0.537105i
\(78\) 0 0
\(79\) 39.7859 225.637i 0.0566616 0.321344i −0.943282 0.331993i \(-0.892279\pi\)
0.999943 + 0.0106497i \(0.00338996\pi\)
\(80\) −13.7278 −0.0191852
\(81\) 0 0
\(82\) 42.7886 0.0576246
\(83\) 29.5416 167.539i 0.0390676 0.221564i −0.959023 0.283328i \(-0.908562\pi\)
0.998091 + 0.0617642i \(0.0196727\pi\)
\(84\) 0 0
\(85\) 63.8613 + 23.2436i 0.0814910 + 0.0296603i
\(86\) −257.663 + 216.205i −0.323075 + 0.271092i
\(87\) 0 0
\(88\) −365.125 + 132.895i −0.442301 + 0.160984i
\(89\) −379.679 + 657.623i −0.452201 + 0.783235i −0.998522 0.0543405i \(-0.982694\pi\)
0.546322 + 0.837576i \(0.316028\pi\)
\(90\) 0 0
\(91\) −601.424 1041.70i −0.692817 1.19999i
\(92\) −138.589 116.290i −0.157054 0.131784i
\(93\) 0 0
\(94\) −110.474 626.528i −0.121218 0.687462i
\(95\) −16.3934 92.9715i −0.0177045 0.100407i
\(96\) 0 0
\(97\) 1232.17 + 1033.92i 1.28978 + 1.08225i 0.991816 + 0.127673i \(0.0407509\pi\)
0.297961 + 0.954578i \(0.403694\pi\)
\(98\) −134.260 232.546i −0.138391 0.239701i
\(99\) 0 0
\(100\) 248.528 430.463i 0.248528 0.430463i
\(101\) 1527.30 555.893i 1.50468 0.547657i 0.547410 0.836865i \(-0.315614\pi\)
0.957267 + 0.289207i \(0.0933916\pi\)
\(102\) 0 0
\(103\) −5.96157 + 5.00235i −0.00570302 + 0.00478540i −0.645635 0.763646i \(-0.723407\pi\)
0.639932 + 0.768432i \(0.278963\pi\)
\(104\) −413.913 150.652i −0.390264 0.142045i
\(105\) 0 0
\(106\) −161.036 + 913.282i −0.147559 + 0.836847i
\(107\) 1846.09 1.66792 0.833962 0.551822i \(-0.186067\pi\)
0.833962 + 0.551822i \(0.186067\pi\)
\(108\) 0 0
\(109\) −1637.48 −1.43892 −0.719461 0.694532i \(-0.755611\pi\)
−0.719461 + 0.694532i \(0.755611\pi\)
\(110\) −14.4727 + 82.0786i −0.0125447 + 0.0711445i
\(111\) 0 0
\(112\) −328.461 119.550i −0.277113 0.100861i
\(113\) −300.868 + 252.458i −0.250471 + 0.210170i −0.759375 0.650653i \(-0.774495\pi\)
0.508904 + 0.860823i \(0.330051\pi\)
\(114\) 0 0
\(115\) −36.4656 + 13.2724i −0.0295690 + 0.0107622i
\(116\) 249.804 432.673i 0.199946 0.346316i
\(117\) 0 0
\(118\) 542.432 + 939.519i 0.423177 + 0.732964i
\(119\) 1325.57 + 1112.28i 1.02113 + 0.856830i
\(120\) 0 0
\(121\) 178.515 + 1012.41i 0.134121 + 0.760637i
\(122\) 239.696 + 1359.38i 0.177877 + 1.00879i
\(123\) 0 0
\(124\) −409.674 343.757i −0.296692 0.248954i
\(125\) −106.933 185.213i −0.0765150 0.132528i
\(126\) 0 0
\(127\) 315.575 546.591i 0.220494 0.381907i −0.734464 0.678647i \(-0.762566\pi\)
0.954958 + 0.296741i \(0.0958998\pi\)
\(128\) −120.281 + 43.7786i −0.0830579 + 0.0302306i
\(129\) 0 0
\(130\) −72.3768 + 60.7314i −0.0488297 + 0.0409730i
\(131\) 1695.44 + 617.090i 1.13077 + 0.411568i 0.838573 0.544789i \(-0.183390\pi\)
0.292200 + 0.956357i \(0.405613\pi\)
\(132\) 0 0
\(133\) 417.411 2367.26i 0.272136 1.54336i
\(134\) 1286.10 0.829119
\(135\) 0 0
\(136\) 633.665 0.399532
\(137\) 39.3700 223.278i 0.0245518 0.139240i −0.970068 0.242834i \(-0.921923\pi\)
0.994620 + 0.103594i \(0.0330341\pi\)
\(138\) 0 0
\(139\) 1267.23 + 461.235i 0.773275 + 0.281449i 0.698365 0.715741i \(-0.253911\pi\)
0.0749093 + 0.997190i \(0.476133\pi\)
\(140\) −57.4347 + 48.1934i −0.0346722 + 0.0290935i
\(141\) 0 0
\(142\) −1972.50 + 717.931i −1.16569 + 0.424278i
\(143\) −1337.12 + 2315.95i −0.781926 + 1.35433i
\(144\) 0 0
\(145\) −53.5824 92.8074i −0.0306881 0.0531533i
\(146\) −1471.29 1234.56i −0.834003 0.699812i
\(147\) 0 0
\(148\) 116.916 + 663.062i 0.0649353 + 0.368266i
\(149\) −300.894 1706.46i −0.165438 0.938244i −0.948612 0.316442i \(-0.897512\pi\)
0.783174 0.621802i \(-0.213599\pi\)
\(150\) 0 0
\(151\) 2448.86 + 2054.84i 1.31977 + 1.10742i 0.986353 + 0.164642i \(0.0526468\pi\)
0.333419 + 0.942779i \(0.391798\pi\)
\(152\) −440.125 762.319i −0.234861 0.406791i
\(153\) 0 0
\(154\) −1061.07 + 1837.83i −0.555217 + 0.961664i
\(155\) −107.794 + 39.2336i −0.0558592 + 0.0203311i
\(156\) 0 0
\(157\) −2697.72 + 2263.65i −1.37134 + 1.15069i −0.399052 + 0.916928i \(0.630661\pi\)
−0.972293 + 0.233766i \(0.924895\pi\)
\(158\) −430.601 156.726i −0.216815 0.0789142i
\(159\) 0 0
\(160\) −4.76763 + 27.0386i −0.00235571 + 0.0133599i
\(161\) −988.083 −0.483676
\(162\) 0 0
\(163\) 3109.36 1.49414 0.747068 0.664747i \(-0.231461\pi\)
0.747068 + 0.664747i \(0.231461\pi\)
\(164\) 14.8603 84.2772i 0.00707559 0.0401277i
\(165\) 0 0
\(166\) −319.727 116.371i −0.149492 0.0544106i
\(167\) 354.144 297.162i 0.164099 0.137695i −0.557041 0.830485i \(-0.688063\pi\)
0.721139 + 0.692790i \(0.243619\pi\)
\(168\) 0 0
\(169\) −784.231 + 285.437i −0.356955 + 0.129921i
\(170\) 67.9598 117.710i 0.0306605 0.0531055i
\(171\) 0 0
\(172\) 336.355 + 582.584i 0.149109 + 0.258265i
\(173\) 723.942 + 607.459i 0.318152 + 0.266961i 0.787852 0.615865i \(-0.211193\pi\)
−0.469700 + 0.882826i \(0.655638\pi\)
\(174\) 0 0
\(175\) −471.403 2673.46i −0.203627 1.15483i
\(176\) 134.945 + 765.311i 0.0577946 + 0.327770i
\(177\) 0 0
\(178\) 1163.40 + 976.212i 0.489892 + 0.411068i
\(179\) 2112.20 + 3658.44i 0.881974 + 1.52762i 0.849143 + 0.528164i \(0.177119\pi\)
0.0328318 + 0.999461i \(0.489547\pi\)
\(180\) 0 0
\(181\) −1580.71 + 2737.87i −0.649135 + 1.12433i 0.334195 + 0.942504i \(0.391535\pi\)
−0.983330 + 0.181830i \(0.941798\pi\)
\(182\) −2260.62 + 822.797i −0.920703 + 0.335109i
\(183\) 0 0
\(184\) −277.179 + 232.580i −0.111054 + 0.0931851i
\(185\) 135.710 + 49.3943i 0.0539329 + 0.0196300i
\(186\) 0 0
\(187\) 668.046 3788.68i 0.261243 1.48158i
\(188\) −1272.39 −0.493608
\(189\) 0 0
\(190\) −188.811 −0.0720938
\(191\) 101.947 578.168i 0.0386209 0.219030i −0.959389 0.282086i \(-0.908974\pi\)
0.998010 + 0.0630561i \(0.0200847\pi\)
\(192\) 0 0
\(193\) −1246.84 453.811i −0.465022 0.169254i 0.0988741 0.995100i \(-0.468476\pi\)
−0.563896 + 0.825846i \(0.690698\pi\)
\(194\) 2464.35 2067.83i 0.912010 0.765267i
\(195\) 0 0
\(196\) −504.654 + 183.679i −0.183912 + 0.0669384i
\(197\) 1120.32 1940.45i 0.405174 0.701782i −0.589168 0.808011i \(-0.700544\pi\)
0.994342 + 0.106229i \(0.0338775\pi\)
\(198\) 0 0
\(199\) 273.150 + 473.109i 0.0973019 + 0.168532i 0.910567 0.413362i \(-0.135645\pi\)
−0.813265 + 0.581893i \(0.802312\pi\)
\(200\) −761.533 639.002i −0.269243 0.225921i
\(201\) 0 0
\(202\) −564.468 3201.26i −0.196613 1.11505i
\(203\) −473.824 2687.19i −0.163822 0.929083i
\(204\) 0 0
\(205\) −14.0616 11.7991i −0.00479075 0.00401992i
\(206\) 7.78227 + 13.4793i 0.00263212 + 0.00455896i
\(207\) 0 0
\(208\) −440.477 + 762.928i −0.146835 + 0.254325i
\(209\) −5021.90 + 1827.82i −1.66207 + 0.604943i
\(210\) 0 0
\(211\) 2303.93 1933.23i 0.751703 0.630754i −0.184250 0.982879i \(-0.558985\pi\)
0.935953 + 0.352126i \(0.114541\pi\)
\(212\) 1742.89 + 634.359i 0.564632 + 0.205509i
\(213\) 0 0
\(214\) 641.139 3636.08i 0.204801 1.16148i
\(215\) 144.295 0.0457712
\(216\) 0 0
\(217\) −2920.80 −0.913719
\(218\) −568.692 + 3225.22i −0.176682 + 1.00201i
\(219\) 0 0
\(220\) 156.637 + 57.0112i 0.0480021 + 0.0174713i
\(221\) 3340.85 2803.31i 1.01688 0.853261i
\(222\) 0 0
\(223\) 461.585 168.003i 0.138610 0.0504499i −0.271784 0.962358i \(-0.587614\pi\)
0.410394 + 0.911908i \(0.365391\pi\)
\(224\) −349.541 + 605.422i −0.104262 + 0.180587i
\(225\) 0 0
\(226\) 392.755 + 680.271i 0.115600 + 0.200225i
\(227\) −2585.27 2169.30i −0.755905 0.634280i 0.181152 0.983455i \(-0.442017\pi\)
−0.937057 + 0.349175i \(0.886462\pi\)
\(228\) 0 0
\(229\) 89.6481 + 508.420i 0.0258695 + 0.146713i 0.995007 0.0998092i \(-0.0318232\pi\)
−0.969137 + 0.246522i \(0.920712\pi\)
\(230\) 13.4772 + 76.4328i 0.00386373 + 0.0219123i
\(231\) 0 0
\(232\) −765.444 642.284i −0.216611 0.181759i
\(233\) −659.917 1143.01i −0.185548 0.321378i 0.758213 0.652007i \(-0.226073\pi\)
−0.943761 + 0.330629i \(0.892739\pi\)
\(234\) 0 0
\(235\) −136.462 + 236.359i −0.0378800 + 0.0656100i
\(236\) 2038.88 742.090i 0.562371 0.204686i
\(237\) 0 0
\(238\) 2651.13 2224.56i 0.722048 0.605870i
\(239\) −688.559 250.615i −0.186357 0.0678282i 0.247156 0.968976i \(-0.420504\pi\)
−0.433513 + 0.901147i \(0.642726\pi\)
\(240\) 0 0
\(241\) 678.306 3846.87i 0.181301 1.02821i −0.749315 0.662213i \(-0.769617\pi\)
0.930616 0.365996i \(-0.119272\pi\)
\(242\) 2056.05 0.546148
\(243\) 0 0
\(244\) 2760.71 0.724328
\(245\) −20.0032 + 113.444i −0.00521617 + 0.0295823i
\(246\) 0 0
\(247\) −5692.92 2072.05i −1.46653 0.533772i
\(248\) −819.348 + 687.515i −0.209793 + 0.176037i
\(249\) 0 0
\(250\) −401.937 + 146.293i −0.101683 + 0.0370095i
\(251\) −1383.12 + 2395.63i −0.347816 + 0.602435i −0.985861 0.167564i \(-0.946410\pi\)
0.638045 + 0.769999i \(0.279743\pi\)
\(252\) 0 0
\(253\) 1098.38 + 1902.45i 0.272943 + 0.472750i
\(254\) −966.977 811.390i −0.238872 0.200438i
\(255\) 0 0
\(256\) 44.4539 + 252.111i 0.0108530 + 0.0615505i
\(257\) −811.001 4599.42i −0.196844 1.11636i −0.909768 0.415116i \(-0.863741\pi\)
0.712925 0.701241i \(-0.247370\pi\)
\(258\) 0 0
\(259\) 2816.92 + 2363.68i 0.675811 + 0.567072i
\(260\) 94.4812 + 163.646i 0.0225364 + 0.0390343i
\(261\) 0 0
\(262\) 1804.25 3125.05i 0.425446 0.736895i
\(263\) 2955.79 1075.82i 0.693011 0.252236i 0.0285873 0.999591i \(-0.490899\pi\)
0.664424 + 0.747356i \(0.268677\pi\)
\(264\) 0 0
\(265\) 304.761 255.725i 0.0706465 0.0592795i
\(266\) −4517.62 1644.28i −1.04133 0.379012i
\(267\) 0 0
\(268\) 446.657 2533.12i 0.101806 0.577369i
\(269\) −6454.02 −1.46286 −0.731428 0.681919i \(-0.761146\pi\)
−0.731428 + 0.681919i \(0.761146\pi\)
\(270\) 0 0
\(271\) 535.232 0.119974 0.0599871 0.998199i \(-0.480894\pi\)
0.0599871 + 0.998199i \(0.480894\pi\)
\(272\) 220.070 1248.08i 0.0490577 0.278220i
\(273\) 0 0
\(274\) −426.099 155.087i −0.0939474 0.0341941i
\(275\) −4623.44 + 3879.53i −1.01383 + 0.850706i
\(276\) 0 0
\(277\) −1257.77 + 457.791i −0.272824 + 0.0992997i −0.474809 0.880089i \(-0.657483\pi\)
0.201985 + 0.979389i \(0.435261\pi\)
\(278\) 1348.56 2335.77i 0.290940 0.503922i
\(279\) 0 0
\(280\) 74.9756 + 129.862i 0.0160023 + 0.0277168i
\(281\) −1310.99 1100.05i −0.278316 0.233535i 0.492935 0.870066i \(-0.335924\pi\)
−0.771251 + 0.636531i \(0.780369\pi\)
\(282\) 0 0
\(283\) 89.3278 + 506.603i 0.0187632 + 0.106411i 0.992751 0.120189i \(-0.0383500\pi\)
−0.973988 + 0.226600i \(0.927239\pi\)
\(284\) 729.006 + 4134.40i 0.152319 + 0.863843i
\(285\) 0 0
\(286\) 4097.16 + 3437.93i 0.847099 + 0.710801i
\(287\) −233.693 404.769i −0.0480644 0.0832499i
\(288\) 0 0
\(289\) −680.466 + 1178.60i −0.138503 + 0.239894i
\(290\) −201.404 + 73.3050i −0.0407822 + 0.0148435i
\(291\) 0 0
\(292\) −2942.57 + 2469.11i −0.589729 + 0.494842i
\(293\) 6134.57 + 2232.80i 1.22316 + 0.445193i 0.871249 0.490841i \(-0.163311\pi\)
0.351909 + 0.936034i \(0.385533\pi\)
\(294\) 0 0
\(295\) 80.8161 458.331i 0.0159501 0.0904578i
\(296\) 1346.58 0.264421
\(297\) 0 0
\(298\) −3465.56 −0.673674
\(299\) −432.433 + 2452.45i −0.0836397 + 0.474344i
\(300\) 0 0
\(301\) 3452.48 + 1256.60i 0.661122 + 0.240629i
\(302\) 4897.73 4109.68i 0.933220 0.783065i
\(303\) 0 0
\(304\) −1654.33 + 602.126i −0.312113 + 0.113600i
\(305\) 296.082 512.830i 0.0555857 0.0962772i
\(306\) 0 0
\(307\) 2137.01 + 3701.42i 0.397283 + 0.688114i 0.993390 0.114791i \(-0.0366198\pi\)
−0.596107 + 0.802905i \(0.703287\pi\)
\(308\) 3251.31 + 2728.17i 0.601495 + 0.504714i
\(309\) 0 0
\(310\) 39.8389 + 225.937i 0.00729902 + 0.0413948i
\(311\) −88.5028 501.924i −0.0161368 0.0915161i 0.975676 0.219219i \(-0.0703508\pi\)
−0.991813 + 0.127703i \(0.959240\pi\)
\(312\) 0 0
\(313\) 2293.96 + 1924.86i 0.414257 + 0.347603i 0.825973 0.563709i \(-0.190626\pi\)
−0.411716 + 0.911312i \(0.635070\pi\)
\(314\) 3521.62 + 6099.62i 0.632918 + 1.09625i
\(315\) 0 0
\(316\) −458.236 + 793.687i −0.0815752 + 0.141292i
\(317\) −5173.58 + 1883.03i −0.916648 + 0.333632i −0.756904 0.653526i \(-0.773289\pi\)
−0.159744 + 0.987159i \(0.551067\pi\)
\(318\) 0 0
\(319\) −4647.18 + 3899.45i −0.815650 + 0.684411i
\(320\) 51.5998 + 18.7808i 0.00901412 + 0.00328087i
\(321\) 0 0
\(322\) −343.158 + 1946.14i −0.0593895 + 0.336815i
\(323\) 8715.37 1.50135
\(324\) 0 0
\(325\) −6841.92 −1.16776
\(326\) 1079.87 6124.25i 0.183462 1.04046i
\(327\) 0 0
\(328\) −160.833 58.5383i −0.0270747 0.00985438i
\(329\) −5323.42 + 4466.88i −0.892066 + 0.748532i
\(330\) 0 0
\(331\) −10127.9 + 3686.26i −1.68182 + 0.612131i −0.993557 0.113335i \(-0.963847\pi\)
−0.688258 + 0.725466i \(0.741624\pi\)
\(332\) −340.247 + 589.325i −0.0562454 + 0.0974198i
\(333\) 0 0
\(334\) −462.302 800.731i −0.0757367 0.131180i
\(335\) −422.650 354.645i −0.0689308 0.0578398i
\(336\) 0 0
\(337\) 834.960 + 4735.29i 0.134965 + 0.765424i 0.974884 + 0.222712i \(0.0714911\pi\)
−0.839919 + 0.542711i \(0.817398\pi\)
\(338\) 289.840 + 1643.76i 0.0466427 + 0.264524i
\(339\) 0 0
\(340\) −208.241 174.735i −0.0332160 0.0278716i
\(341\) 3246.84 + 5623.69i 0.515619 + 0.893079i
\(342\) 0 0
\(343\) 2280.09 3949.24i 0.358931 0.621687i
\(344\) 1264.28 460.160i 0.198155 0.0721226i
\(345\) 0 0
\(346\) 1447.88 1214.92i 0.224967 0.188770i
\(347\) 322.471 + 117.370i 0.0498880 + 0.0181577i 0.366844 0.930283i \(-0.380438\pi\)
−0.316956 + 0.948440i \(0.602661\pi\)
\(348\) 0 0
\(349\) −342.291 + 1941.23i −0.0524997 + 0.297741i −0.999740 0.0227823i \(-0.992748\pi\)
0.947241 + 0.320523i \(0.103859\pi\)
\(350\) −5429.41 −0.829183
\(351\) 0 0
\(352\) 1554.23 0.235344
\(353\) −132.796 + 753.122i −0.0200227 + 0.113554i −0.993181 0.116582i \(-0.962806\pi\)
0.973158 + 0.230136i \(0.0739172\pi\)
\(354\) 0 0
\(355\) 846.192 + 307.989i 0.126510 + 0.0460460i
\(356\) 2326.81 1952.42i 0.346406 0.290669i
\(357\) 0 0
\(358\) 7939.28 2889.66i 1.17208 0.426602i
\(359\) 4076.65 7060.97i 0.599325 1.03806i −0.393596 0.919283i \(-0.628769\pi\)
0.992921 0.118777i \(-0.0378975\pi\)
\(360\) 0 0
\(361\) −2623.94 4544.79i −0.382554 0.662603i
\(362\) 4843.58 + 4064.25i 0.703240 + 0.590089i
\(363\) 0 0
\(364\) 835.490 + 4738.30i 0.120306 + 0.682292i
\(365\) 143.076 + 811.422i 0.0205176 + 0.116361i
\(366\) 0 0
\(367\) 2251.99 + 1889.64i 0.320308 + 0.268770i 0.788737 0.614731i \(-0.210735\pi\)
−0.468429 + 0.883501i \(0.655180\pi\)
\(368\) 361.831 + 626.710i 0.0512547 + 0.0887758i
\(369\) 0 0
\(370\) 144.419 250.142i 0.0202919 0.0351466i
\(371\) 9518.90 3464.60i 1.33207 0.484833i
\(372\) 0 0
\(373\) 1766.21 1482.03i 0.245177 0.205728i −0.511915 0.859036i \(-0.671064\pi\)
0.757092 + 0.653308i \(0.226619\pi\)
\(374\) −7230.23 2631.59i −0.999642 0.363840i
\(375\) 0 0
\(376\) −441.895 + 2506.11i −0.0606090 + 0.343731i
\(377\) −6877.06 −0.939487
\(378\) 0 0
\(379\) 10193.5 1.38154 0.690769 0.723075i \(-0.257272\pi\)
0.690769 + 0.723075i \(0.257272\pi\)
\(380\) −65.5735 + 371.886i −0.00885224 + 0.0502036i
\(381\) 0 0
\(382\) −1103.36 401.591i −0.147783 0.0537885i
\(383\) −4508.54 + 3783.11i −0.601503 + 0.504721i −0.891928 0.452177i \(-0.850648\pi\)
0.290425 + 0.956898i \(0.406203\pi\)
\(384\) 0 0
\(385\) 855.485 311.371i 0.113246 0.0412180i
\(386\) −1326.86 + 2298.18i −0.174962 + 0.303042i
\(387\) 0 0
\(388\) −3216.98 5571.97i −0.420921 0.729057i
\(389\) 2291.32 + 1922.65i 0.298649 + 0.250596i 0.779782 0.626051i \(-0.215330\pi\)
−0.481133 + 0.876648i \(0.659774\pi\)
\(390\) 0 0
\(391\) −622.094 3528.07i −0.0804620 0.456323i
\(392\) 186.513 + 1057.77i 0.0240314 + 0.136289i
\(393\) 0 0
\(394\) −3432.85 2880.51i −0.438946 0.368319i
\(395\) 98.2904 + 170.244i 0.0125203 + 0.0216858i
\(396\) 0 0
\(397\) 1459.68 2528.24i 0.184532 0.319619i −0.758887 0.651223i \(-0.774256\pi\)
0.943419 + 0.331604i \(0.107590\pi\)
\(398\) 1026.71 373.691i 0.129307 0.0470639i
\(399\) 0 0
\(400\) −1523.07 + 1278.00i −0.190383 + 0.159751i
\(401\) 5558.14 + 2023.00i 0.692170 + 0.251929i 0.664064 0.747676i \(-0.268830\pi\)
0.0281059 + 0.999605i \(0.491052\pi\)
\(402\) 0 0
\(403\) −1278.29 + 7249.52i −0.158005 + 0.896090i
\(404\) −6501.29 −0.800622
\(405\) 0 0
\(406\) −5457.29 −0.667096
\(407\) 1419.64 8051.20i 0.172897 0.980549i
\(408\) 0 0
\(409\) 2898.68 + 1055.03i 0.350441 + 0.127550i 0.511242 0.859437i \(-0.329186\pi\)
−0.160801 + 0.986987i \(0.551408\pi\)
\(410\) −28.1232 + 23.5982i −0.00338757 + 0.00284251i
\(411\) 0 0
\(412\) 29.2518 10.6468i 0.00349789 0.00127313i
\(413\) 5925.06 10262.5i 0.705940 1.22272i
\(414\) 0 0
\(415\) 72.9821 + 126.409i 0.00863265 + 0.0149522i
\(416\) 1349.70 + 1132.53i 0.159073 + 0.133478i
\(417\) 0 0
\(418\) 1856.02 + 10526.0i 0.217179 + 1.23168i
\(419\) 2367.66 + 13427.7i 0.276056 + 1.56559i 0.735586 + 0.677431i \(0.236907\pi\)
−0.459529 + 0.888163i \(0.651982\pi\)
\(420\) 0 0
\(421\) −4008.80 3363.78i −0.464078 0.389408i 0.380551 0.924760i \(-0.375734\pi\)
−0.844629 + 0.535352i \(0.820179\pi\)
\(422\) −3007.57 5209.27i −0.346934 0.600908i
\(423\) 0 0
\(424\) 1854.74 3212.51i 0.212439 0.367955i
\(425\) 9249.12 3366.41i 1.05564 0.384223i
\(426\) 0 0
\(427\) 11550.3 9691.82i 1.30903 1.09841i
\(428\) −6939.01 2525.59i −0.783668 0.285232i
\(429\) 0 0
\(430\) 50.1130 284.205i 0.00562014 0.0318734i
\(431\) −1533.38 −0.171370 −0.0856851 0.996322i \(-0.527308\pi\)
−0.0856851 + 0.996322i \(0.527308\pi\)
\(432\) 0 0
\(433\) 11955.1 1.32684 0.663422 0.748245i \(-0.269103\pi\)
0.663422 + 0.748245i \(0.269103\pi\)
\(434\) −1014.38 + 5752.86i −0.112194 + 0.636281i
\(435\) 0 0
\(436\) 6154.93 + 2240.21i 0.676073 + 0.246070i
\(437\) −3812.29 + 3198.89i −0.417315 + 0.350169i
\(438\) 0 0
\(439\) −13930.3 + 5070.23i −1.51449 + 0.551228i −0.959764 0.280809i \(-0.909397\pi\)
−0.554721 + 0.832036i \(0.687175\pi\)
\(440\) 166.690 288.715i 0.0180605 0.0312817i
\(441\) 0 0
\(442\) −4361.17 7553.77i −0.469321 0.812887i
\(443\) −7445.43 6247.46i −0.798517 0.670035i 0.149321 0.988789i \(-0.452291\pi\)
−0.947838 + 0.318754i \(0.896736\pi\)
\(444\) 0 0
\(445\) −113.136 641.624i −0.0120520 0.0683503i
\(446\) −170.595 967.492i −0.0181119 0.102718i
\(447\) 0 0
\(448\) 1071.05 + 898.722i 0.112952 + 0.0947781i
\(449\) −6100.99 10567.2i −0.641255 1.11069i −0.985153 0.171679i \(-0.945081\pi\)
0.343898 0.939007i \(-0.388253\pi\)
\(450\) 0 0
\(451\) −519.559 + 899.902i −0.0542463 + 0.0939573i
\(452\) 1476.27 537.320i 0.153624 0.0559146i
\(453\) 0 0
\(454\) −5170.54 + 4338.60i −0.534506 + 0.448504i
\(455\) 969.793 + 352.976i 0.0999222 + 0.0363687i
\(456\) 0 0
\(457\) 1221.09 6925.13i 0.124989 0.708849i −0.856325 0.516437i \(-0.827258\pi\)
0.981314 0.192412i \(-0.0616310\pi\)
\(458\) 1032.53 0.105342
\(459\) 0 0
\(460\) 155.224 0.0157334
\(461\) −1578.69 + 8953.18i −0.159494 + 0.904536i 0.795067 + 0.606522i \(0.207436\pi\)
−0.954561 + 0.298015i \(0.903676\pi\)
\(462\) 0 0
\(463\) 931.412 + 339.006i 0.0934911 + 0.0340280i 0.388342 0.921515i \(-0.373048\pi\)
−0.294851 + 0.955543i \(0.595270\pi\)
\(464\) −1530.89 + 1284.57i −0.153167 + 0.128523i
\(465\) 0 0
\(466\) −2480.48 + 902.820i −0.246579 + 0.0897475i
\(467\) 3257.02 5641.32i 0.322734 0.558992i −0.658317 0.752741i \(-0.728731\pi\)
0.981051 + 0.193749i \(0.0620646\pi\)
\(468\) 0 0
\(469\) −7024.12 12166.1i −0.691564 1.19782i
\(470\) 418.143 + 350.864i 0.0410373 + 0.0344344i
\(471\) 0 0
\(472\) −753.538 4273.53i −0.0734839 0.416748i
\(473\) −1418.42 8044.25i −0.137884 0.781976i
\(474\) 0 0
\(475\) −10474.1 8788.78i −1.01175 0.848961i
\(476\) −3460.81 5994.30i −0.333248 0.577202i
\(477\) 0 0
\(478\) −732.750 + 1269.16i −0.0701155 + 0.121444i
\(479\) −17270.9 + 6286.09i −1.64745 + 0.599622i −0.988318 0.152407i \(-0.951298\pi\)
−0.659130 + 0.752029i \(0.729075\pi\)
\(480\) 0 0
\(481\) 7099.54 5957.22i 0.672996 0.564711i
\(482\) −7341.28 2672.01i −0.693747 0.252503i
\(483\) 0 0
\(484\) 714.059 4049.63i 0.0670604 0.380318i
\(485\) −1380.07 −0.129208
\(486\) 0 0
\(487\) −13583.7 −1.26394 −0.631968 0.774994i \(-0.717753\pi\)
−0.631968 + 0.774994i \(0.717753\pi\)
\(488\) 958.783 5437.53i 0.0889387 0.504396i
\(489\) 0 0
\(490\) 216.494 + 78.7974i 0.0199596 + 0.00726470i
\(491\) −6381.87 + 5355.02i −0.586578 + 0.492197i −0.887100 0.461578i \(-0.847284\pi\)
0.300522 + 0.953775i \(0.402839\pi\)
\(492\) 0 0
\(493\) 9296.62 3383.69i 0.849288 0.309115i
\(494\) −6058.28 + 10493.2i −0.551771 + 0.955695i
\(495\) 0 0
\(496\) 1069.58 + 1852.57i 0.0968260 + 0.167708i
\(497\) 17564.4 + 14738.3i 1.58525 + 1.33018i
\(498\) 0 0
\(499\) −2896.15 16424.9i −0.259818 1.47350i −0.783395 0.621524i \(-0.786514\pi\)
0.523577 0.851978i \(-0.324597\pi\)
\(500\) 148.550 + 842.467i 0.0132867 + 0.0753526i
\(501\) 0 0
\(502\) 4238.12 + 3556.21i 0.376806 + 0.316178i
\(503\) −5539.21 9594.19i −0.491016 0.850464i 0.508931 0.860808i \(-0.330041\pi\)
−0.999947 + 0.0103431i \(0.996708\pi\)
\(504\) 0 0
\(505\) −697.255 + 1207.68i −0.0614405 + 0.106418i
\(506\) 4128.55 1502.67i 0.362721 0.132019i
\(507\) 0 0
\(508\) −1933.95 + 1622.78i −0.168908 + 0.141731i
\(509\) 8874.08 + 3229.90i 0.772764 + 0.281263i 0.698152 0.715950i \(-0.254006\pi\)
0.0746117 + 0.997213i \(0.476228\pi\)
\(510\) 0 0
\(511\) −3643.02 + 20660.6i −0.315377 + 1.78859i
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −9340.74 −0.801561
\(515\) 1.15947 6.57567i 9.92083e−5 0.000562638i
\(516\) 0 0
\(517\) 14518.1 + 5284.17i 1.23502 + 0.449512i
\(518\) 5633.84 4727.35i 0.477870 0.400981i
\(519\) 0 0
\(520\) 355.133 129.258i 0.0299493 0.0109006i
\(521\) −4490.89 + 7778.45i −0.377638 + 0.654088i −0.990718 0.135932i \(-0.956597\pi\)
0.613080 + 0.790021i \(0.289930\pi\)
\(522\) 0 0
\(523\) 5147.16 + 8915.14i 0.430343 + 0.745376i 0.996903 0.0786445i \(-0.0250592\pi\)
−0.566560 + 0.824021i \(0.691726\pi\)
\(524\) −5528.54 4639.00i −0.460907 0.386747i
\(525\) 0 0
\(526\) −1092.42 6195.40i −0.0905545 0.513560i
\(527\) −1838.93 10429.1i −0.152002 0.862045i
\(528\) 0 0
\(529\) −7753.40 6505.88i −0.637249 0.534715i
\(530\) −397.837 689.075i −0.0326056 0.0564745i
\(531\) 0 0
\(532\) −4807.55 + 8326.92i −0.391793 + 0.678605i
\(533\) −1106.92 + 402.887i −0.0899553 + 0.0327410i
\(534\) 0 0
\(535\) −1213.36 + 1018.13i −0.0980523 + 0.0822756i
\(536\) −4834.15 1759.49i −0.389559 0.141788i
\(537\) 0 0
\(538\) −2241.46 + 12711.9i −0.179621 + 1.01868i
\(539\) 6521.00 0.521112
\(540\) 0 0
\(541\) 11967.5 0.951059 0.475530 0.879700i \(-0.342256\pi\)
0.475530 + 0.879700i \(0.342256\pi\)
\(542\) 185.884 1054.20i 0.0147314 0.0835458i
\(543\) 0 0
\(544\) −2381.80 866.905i −0.187719 0.0683240i
\(545\) 1076.25 903.082i 0.0845900 0.0709794i
\(546\) 0 0
\(547\) 15758.3 5735.55i 1.23177 0.448326i 0.357564 0.933889i \(-0.383607\pi\)
0.874202 + 0.485562i \(0.161385\pi\)
\(548\) −453.445 + 785.390i −0.0353471 + 0.0612230i
\(549\) 0 0
\(550\) 6035.47 + 10453.7i 0.467915 + 0.810453i
\(551\) −10527.8 8833.91i −0.813977 0.683008i
\(552\) 0 0
\(553\) 869.174 + 4929.33i 0.0668373 + 0.379053i
\(554\) 464.853 + 2636.31i 0.0356493 + 0.202177i
\(555\) 0 0
\(556\) −4132.23 3467.35i −0.315190 0.264476i
\(557\) −3779.27 6545.88i −0.287491 0.497950i 0.685719 0.727866i \(-0.259488\pi\)
−0.973210 + 0.229917i \(0.926155\pi\)
\(558\) 0 0
\(559\) 4629.89 8019.21i 0.350310 0.606755i
\(560\) 281.816 102.573i 0.0212659 0.00774016i
\(561\) 0 0
\(562\) −2621.97 + 2200.10i −0.196799 + 0.165134i
\(563\) 8043.34 + 2927.54i 0.602107 + 0.219149i 0.625046 0.780588i \(-0.285080\pi\)
−0.0229391 + 0.999737i \(0.507302\pi\)
\(564\) 0 0
\(565\) 58.5159 331.860i 0.00435714 0.0247106i
\(566\) 1028.84 0.0764050
\(567\) 0 0
\(568\) 8396.36 0.620252
\(569\) −1667.17 + 9454.99i −0.122832 + 0.696615i 0.859740 + 0.510732i \(0.170626\pi\)
−0.982572 + 0.185883i \(0.940486\pi\)
\(570\) 0 0
\(571\) 1512.51 + 550.508i 0.110852 + 0.0403468i 0.396851 0.917883i \(-0.370103\pi\)
−0.285999 + 0.958230i \(0.592325\pi\)
\(572\) 8194.33 6875.86i 0.598990 0.502612i
\(573\) 0 0
\(574\) −878.399 + 319.711i −0.0638740 + 0.0232482i
\(575\) −2810.16 + 4867.33i −0.203812 + 0.353012i
\(576\) 0 0
\(577\) 6690.66 + 11588.6i 0.482731 + 0.836115i 0.999803 0.0198268i \(-0.00631146\pi\)
−0.517072 + 0.855942i \(0.672978\pi\)
\(578\) 2085.07 + 1749.58i 0.150047 + 0.125905i
\(579\) 0 0
\(580\) 74.4358 + 422.147i 0.00532893 + 0.0302219i
\(581\) 645.375 + 3660.10i 0.0460837 + 0.261354i
\(582\) 0 0
\(583\) −17252.2 14476.3i −1.22558 1.02838i
\(584\) 3841.25 + 6653.25i 0.272178 + 0.471427i
\(585\) 0 0
\(586\) 6528.27 11307.3i 0.460205 0.797099i
\(587\) 1415.97 515.370i 0.0995626 0.0362378i −0.291759 0.956492i \(-0.594240\pi\)
0.391321 + 0.920254i \(0.372018\pi\)
\(588\) 0 0
\(589\) −11269.2 + 9456.01i −0.788354 + 0.661508i
\(590\) −874.668 318.353i −0.0610331 0.0222142i
\(591\) 0 0
\(592\) 467.663 2652.25i 0.0324676 0.184133i
\(593\) 14995.5 1.03844 0.519218 0.854642i \(-0.326223\pi\)
0.519218 + 0.854642i \(0.326223\pi\)
\(594\) 0 0
\(595\) −1484.67 −0.102295
\(596\) −1203.58 + 6825.83i −0.0827189 + 0.469122i
\(597\) 0 0
\(598\) 4680.20 + 1703.45i 0.320046 + 0.116487i
\(599\) −2085.81 + 1750.20i −0.142277 + 0.119384i −0.711148 0.703042i \(-0.751825\pi\)
0.568872 + 0.822426i \(0.307380\pi\)
\(600\) 0 0
\(601\) 13275.2 4831.78i 0.901009 0.327941i 0.150352 0.988632i \(-0.451959\pi\)
0.750657 + 0.660692i \(0.229737\pi\)
\(602\) 3674.05 6363.64i 0.248743 0.430835i
\(603\) 0 0
\(604\) −6393.53 11073.9i −0.430710 0.746012i
\(605\) −675.678 566.962i −0.0454053 0.0380996i
\(606\) 0 0
\(607\) 1504.53 + 8532.61i 0.100605 + 0.570557i 0.992885 + 0.119076i \(0.0379931\pi\)
−0.892281 + 0.451481i \(0.850896\pi\)
\(608\) 611.415 + 3467.51i 0.0407832 + 0.231293i
\(609\) 0 0
\(610\) −907.249 761.272i −0.0602187 0.0505295i
\(611\) 8757.14 + 15167.8i 0.579830 + 1.00429i
\(612\) 0 0
\(613\) −7949.88 + 13769.6i −0.523805 + 0.907258i 0.475811 + 0.879548i \(0.342155\pi\)
−0.999616 + 0.0277098i \(0.991179\pi\)
\(614\) 8032.55 2923.61i 0.527960 0.192162i
\(615\) 0 0
\(616\) 6502.61 5456.34i 0.425321 0.356887i
\(617\) 25497.4 + 9280.31i 1.66368 + 0.605528i 0.990934 0.134349i \(-0.0428943\pi\)
0.672742 + 0.739877i \(0.265117\pi\)
\(618\) 0 0
\(619\) −1712.87 + 9714.14i −0.111221 + 0.630766i 0.877331 + 0.479886i \(0.159322\pi\)
−0.988552 + 0.150880i \(0.951789\pi\)
\(620\) 458.846 0.0297221
\(621\) 0 0
\(622\) −1019.33 −0.0657099
\(623\) 2880.68 16337.1i 0.185252 1.05061i
\(624\) 0 0
\(625\) −14423.8 5249.83i −0.923123 0.335989i
\(626\) 4587.93 3849.73i 0.292924 0.245793i
\(627\) 0 0
\(628\) 13237.0 4817.86i 0.841102 0.306136i
\(629\) −6666.27 + 11546.3i −0.422578 + 0.731927i
\(630\) 0 0
\(631\) 8889.21 + 15396.6i 0.560814 + 0.971359i 0.997426 + 0.0717088i \(0.0228452\pi\)
−0.436611 + 0.899650i \(0.643821\pi\)
\(632\) 1404.12 + 1178.19i 0.0883746 + 0.0741551i
\(633\) 0 0
\(634\) 1912.08 + 10843.9i 0.119777 + 0.679287i
\(635\) 94.0340 + 533.293i 0.00587657 + 0.0333277i
\(636\) 0 0
\(637\) 5662.85 + 4751.70i 0.352230 + 0.295556i
\(638\) 6066.47 + 10507.4i 0.376448 + 0.652027i
\(639\) 0 0
\(640\) 54.9114 95.1093i 0.00339150 0.00587426i
\(641\) −7457.28 + 2714.23i −0.459508 + 0.167247i −0.561394 0.827549i \(-0.689735\pi\)
0.101885 + 0.994796i \(0.467512\pi\)
\(642\) 0 0
\(643\) −13696.9 + 11493.0i −0.840050 + 0.704886i −0.957575 0.288184i \(-0.906948\pi\)
0.117525 + 0.993070i \(0.462504\pi\)
\(644\) 3713.98 + 1351.78i 0.227253 + 0.0827135i
\(645\) 0 0
\(646\) 3026.82 17165.9i 0.184348 1.04549i
\(647\) −2356.45 −0.143186 −0.0715931 0.997434i \(-0.522808\pi\)
−0.0715931 + 0.997434i \(0.522808\pi\)
\(648\) 0 0
\(649\) −26345.8 −1.59347
\(650\) −2376.17 + 13476.0i −0.143386 + 0.813185i
\(651\) 0 0
\(652\) −11687.4 4253.86i −0.702014 0.255512i
\(653\) 20131.3 16892.2i 1.20643 1.01232i 0.207008 0.978339i \(-0.433627\pi\)
0.999423 0.0339767i \(-0.0108172\pi\)
\(654\) 0 0
\(655\) −1454.67 + 529.457i −0.0867766 + 0.0315841i
\(656\) −171.155 + 296.448i −0.0101867 + 0.0176438i
\(657\) 0 0
\(658\) 6949.23 + 12036.4i 0.411716 + 0.713113i
\(659\) −4826.44 4049.86i −0.285298 0.239393i 0.488896 0.872342i \(-0.337400\pi\)
−0.774194 + 0.632949i \(0.781844\pi\)
\(660\) 0 0
\(661\) −1279.64 7257.19i −0.0752983 0.427038i −0.999031 0.0440013i \(-0.985989\pi\)
0.923733 0.383037i \(-0.125122\pi\)
\(662\) 3743.13 + 21228.3i 0.219760 + 1.24632i
\(663\) 0 0
\(664\) 1042.58 + 874.825i 0.0609334 + 0.0511292i
\(665\) 1031.21 + 1786.10i 0.0601331 + 0.104154i
\(666\) 0 0
\(667\) −2824.59 + 4892.33i −0.163971 + 0.284006i
\(668\) −1737.69 + 632.467i −0.100648 + 0.0366330i
\(669\) 0 0
\(670\) −845.299 + 709.290i −0.0487414 + 0.0408989i
\(671\) −31500.1 11465.1i −1.81229 0.659621i
\(672\) 0 0
\(673\) −3374.45 + 19137.4i −0.193277 + 1.09613i 0.721574 + 0.692337i \(0.243419\pi\)
−0.914851 + 0.403791i \(0.867692\pi\)
\(674\) 9616.68 0.549586
\(675\) 0 0
\(676\) 3338.24 0.189932
\(677\) 3076.42 17447.3i 0.174648 0.990477i −0.763902 0.645333i \(-0.776719\pi\)
0.938550 0.345144i \(-0.112170\pi\)
\(678\) 0 0
\(679\) −33020.4 12018.4i −1.86628 0.679271i
\(680\) −416.482 + 349.470i −0.0234873 + 0.0197082i
\(681\) 0 0
\(682\) 12204.1 4441.94i 0.685220 0.249400i
\(683\) −3496.02 + 6055.29i −0.195859 + 0.339238i −0.947182 0.320697i \(-0.896083\pi\)
0.751323 + 0.659935i \(0.229416\pi\)
\(684\) 0 0
\(685\) 97.2629 + 168.464i 0.00542514 + 0.00939662i
\(686\) −6986.61 5862.46i −0.388848 0.326283i
\(687\) 0 0
\(688\) −467.259 2649.96i −0.0258926 0.146844i
\(689\) −4433.30 25142.5i −0.245131 1.39021i
\(690\) 0 0
\(691\) 12868.3 + 10797.8i 0.708441 + 0.594453i 0.924161 0.382003i \(-0.124765\pi\)
−0.215720 + 0.976455i \(0.569210\pi\)
\(692\) −1890.08 3273.71i −0.103829 0.179838i
\(693\) 0 0
\(694\) 343.166 594.381i 0.0187700 0.0325107i
\(695\) −1087.27 + 395.735i −0.0593419 + 0.0215987i
\(696\) 0 0
\(697\) 1298.14 1089.27i 0.0705461 0.0591952i
\(698\) 3704.60 + 1348.36i 0.200890 + 0.0731179i
\(699\) 0 0
\(700\) −1885.61 + 10693.8i −0.101814 + 0.577413i
\(701\) 18157.5 0.978315 0.489158 0.872195i \(-0.337304\pi\)
0.489158 + 0.872195i \(0.337304\pi\)
\(702\) 0 0
\(703\) 18520.8 0.993633
\(704\) 539.780 3061.24i 0.0288973 0.163885i
\(705\) 0 0
\(706\) 1437.24 + 523.113i 0.0766165 + 0.0278861i
\(707\) −27200.1 + 22823.6i −1.44691 + 1.21410i
\(708\) 0 0
\(709\) 23930.9 8710.13i 1.26762 0.461376i 0.381302 0.924451i \(-0.375476\pi\)
0.886320 + 0.463074i \(0.153254\pi\)
\(710\) 900.499 1559.71i 0.0475988 0.0824435i
\(711\) 0 0
\(712\) −3037.43 5260.99i −0.159877 0.276915i
\(713\) 4632.27 + 3886.94i 0.243310 + 0.204161i
\(714\) 0 0
\(715\) −398.430 2259.61i −0.0208398 0.118188i
\(716\) −2934.24 16640.9i −0.153153 0.868575i
\(717\) 0 0
\(718\) −12491.6 10481.7i −0.649279 0.544809i
\(719\) 15455.2 + 26769.1i 0.801642 + 1.38848i 0.918535 + 0.395340i \(0.129373\pi\)
−0.116893 + 0.993145i \(0.537293\pi\)
\(720\) 0 0
\(721\) 85.0069 147.236i 0.00439088 0.00760522i
\(722\) −9862.78 + 3589.76i −0.508386 + 0.185037i
\(723\) 0 0
\(724\) 9687.16 8128.49i 0.497266 0.417256i
\(725\) −14584.8 5308.43i −0.747125 0.271931i
\(726\) 0 0
\(727\) −2502.44 + 14192.0i −0.127662 + 0.724007i 0.852029 + 0.523494i \(0.175372\pi\)
−0.979691 + 0.200513i \(0.935739\pi\)
\(728\) 9622.79 0.489896
\(729\) 0 0
\(730\) 1647.88 0.0835490
\(731\) −2313.17 + 13118.6i −0.117039 + 0.663763i
\(732\) 0 0
\(733\) 9569.46 + 3483.00i 0.482205 + 0.175508i 0.571673 0.820482i \(-0.306295\pi\)
−0.0894684 + 0.995990i \(0.528517\pi\)
\(734\) 4503.98 3779.29i 0.226492 0.190049i
\(735\) 0 0
\(736\) 1360.04 495.014i 0.0681138 0.0247914i
\(737\) −15616.4 + 27048.4i −0.780511 + 1.35189i
\(738\) 0 0
\(739\) −4804.30 8321.29i −0.239146 0.414213i 0.721323 0.692598i \(-0.243534\pi\)
−0.960469 + 0.278385i \(0.910201\pi\)
\(740\) −442.527 371.324i −0.0219832 0.0184461i
\(741\) 0 0
\(742\) −3518.04 19951.8i −0.174059 0.987135i
\(743\) −4955.96 28106.6i −0.244706 1.38780i −0.821175 0.570677i \(-0.806681\pi\)
0.576469 0.817119i \(-0.304430\pi\)
\(744\) 0 0
\(745\) 1138.89 + 955.639i 0.0560074 + 0.0469958i
\(746\) −2305.63 3993.47i −0.113157 0.195994i
\(747\) 0 0
\(748\) −7694.25 + 13326.8i −0.376109 + 0.651440i
\(749\) −37897.9 + 13793.7i −1.84881 + 0.672913i
\(750\) 0 0
\(751\) −2949.90 + 2475.26i −0.143333 + 0.120271i −0.711635 0.702549i \(-0.752045\pi\)
0.568302 + 0.822820i \(0.307601\pi\)
\(752\) 4782.61 + 1740.73i 0.231920 + 0.0844119i
\(753\) 0 0
\(754\) −2388.38 + 13545.2i −0.115357 + 0.654225i
\(755\) −2742.79 −0.132212
\(756\) 0 0
\(757\) −22515.6 −1.08104 −0.540518 0.841332i \(-0.681772\pi\)
−0.540518 + 0.841332i \(0.681772\pi\)
\(758\) 3540.15 20077.2i 0.169636 0.962054i
\(759\) 0 0
\(760\) 709.699 + 258.309i 0.0338730 + 0.0123288i
\(761\) 15419.0 12938.1i 0.734479 0.616301i −0.196869 0.980430i \(-0.563078\pi\)
0.931349 + 0.364128i \(0.118633\pi\)
\(762\) 0 0
\(763\) 33615.6 12235.1i 1.59498 0.580524i
\(764\) −1174.17 + 2033.73i −0.0556023 + 0.0963059i
\(765\) 0 0
\(766\) 5885.48 + 10194.0i 0.277612 + 0.480839i
\(767\) −22878.7 19197.6i −1.07706 0.903759i
\(768\) 0 0
\(769\) 5018.25 + 28459.9i 0.235322 + 1.33458i 0.841935 + 0.539579i \(0.181417\pi\)
−0.606613 + 0.794997i \(0.707472\pi\)
\(770\) −316.174 1793.11i −0.0147976 0.0839212i
\(771\) 0 0
\(772\) 4065.72 + 3411.54i 0.189545 + 0.159047i
\(773\) −20093.2 34802.5i −0.934932 1.61935i −0.774755 0.632261i \(-0.782127\pi\)
−0.160177 0.987088i \(-0.551206\pi\)
\(774\) 0 0
\(775\) −8306.91 + 14388.0i −0.385023 + 0.666879i
\(776\) −12091.9 + 4401.09i −0.559373 + 0.203595i
\(777\) 0 0
\(778\) 4582.64 3845.29i 0.211177 0.177198i
\(779\) −2212.08 805.130i −0.101741 0.0370305i
\(780\) 0 0
\(781\) 8851.92 50201.7i 0.405565 2.30008i
\(782\) −7164.99 −0.327647
\(783\) 0 0
\(784\) 2148.17 0.0978574
\(785\) 524.680 2975.61i 0.0238556 0.135292i
\(786\) 0 0
\(787\) −12441.4 4528.31i −0.563518 0.205104i 0.0445242 0.999008i \(-0.485823\pi\)
−0.608043 + 0.793904i \(0.708045\pi\)
\(788\) −6865.70 + 5761.01i −0.310381 + 0.260441i
\(789\) 0 0
\(790\) 369.451 134.469i 0.0166386 0.00605595i
\(791\) 4290.12 7430.70i 0.192843 0.334014i
\(792\) 0 0
\(793\) −19000.4 32909.7i −0.850851 1.47372i
\(794\) −4472.72 3753.06i −0.199913 0.167747i
\(795\) 0 0
\(796\) −379.456 2152.00i −0.0168963 0.0958236i
\(797\) 4406.01 + 24987.7i 0.195820 + 1.11055i 0.911245 + 0.411864i \(0.135122\pi\)
−0.715425 + 0.698690i \(0.753767\pi\)
\(798\) 0 0
\(799\) −19301.1 16195.6i −0.854600 0.717094i
\(800\) 1988.22 + 3443.70i 0.0878678 + 0.152192i
\(801\) 0 0
\(802\) 5914.85 10244.8i 0.260425 0.451069i
\(803\) 43829.4 15952.6i 1.92616 0.701064i
\(804\) 0 0
\(805\) 649.426 544.933i 0.0284339 0.0238589i
\(806\) 13834.8 + 5035.46i 0.604604 + 0.220058i
\(807\) 0 0
\(808\) −2257.87 + 12805.0i −0.0983066 + 0.557524i
\(809\) −13345.4 −0.579976 −0.289988 0.957030i \(-0.593651\pi\)
−0.289988 + 0.957030i \(0.593651\pi\)
\(810\) 0 0
\(811\) 33175.7 1.43644 0.718222 0.695815i \(-0.244956\pi\)
0.718222 + 0.695815i \(0.244956\pi\)
\(812\) −1895.30 + 10748.8i −0.0819112 + 0.464542i
\(813\) 0 0
\(814\) −15364.7 5592.31i −0.661589 0.240799i
\(815\) −2043.66 + 1714.83i −0.0878358 + 0.0737030i
\(816\) 0 0
\(817\) 17388.8 6329.00i 0.744623 0.271021i
\(818\) 3084.71 5342.87i 0.131851 0.228373i
\(819\) 0 0
\(820\) 36.7122 + 63.5874i 0.00156347 + 0.00270801i
\(821\) 13847.4 + 11619.4i 0.588646 + 0.493933i 0.887774 0.460280i \(-0.152251\pi\)
−0.299127 + 0.954213i \(0.596696\pi\)
\(822\) 0 0
\(823\) −4271.08 24222.5i −0.180900 1.02593i −0.931111 0.364735i \(-0.881159\pi\)
0.750212 0.661198i \(-0.229952\pi\)
\(824\) −10.8110 61.3123i −0.000457063 0.00259213i
\(825\) 0 0
\(826\) −18155.4 15234.2i −0.764780 0.641727i
\(827\) −3860.28 6686.21i −0.162316 0.281139i 0.773383 0.633939i \(-0.218563\pi\)
−0.935699 + 0.352800i \(0.885230\pi\)
\(828\) 0 0
\(829\) 6380.71 11051.7i 0.267323 0.463018i −0.700846 0.713312i \(-0.747194\pi\)
0.968170 + 0.250295i \(0.0805275\pi\)
\(830\) 274.323 99.8454i 0.0114722 0.00417552i
\(831\) 0 0
\(832\) 2699.40 2265.06i 0.112482 0.0943834i
\(833\) −9993.18 3637.22i −0.415658 0.151287i
\(834\) 0 0
\(835\) −68.8777 + 390.625i −0.00285462 + 0.0161894i
\(836\) 21376.8 0.884368
\(837\) 0 0
\(838\) 27269.6 1.12412
\(839\) −310.479 + 1760.81i −0.0127758 + 0.0724553i −0.990529 0.137303i \(-0.956157\pi\)
0.977753 + 0.209758i \(0.0672677\pi\)
\(840\) 0 0
\(841\) 8258.48 + 3005.84i 0.338615 + 0.123246i
\(842\) −8017.60 + 6727.56i −0.328153 + 0.275353i
\(843\) 0 0
\(844\) −11304.8 + 4114.60i −0.461050 + 0.167809i
\(845\) 358.023 620.113i 0.0145756 0.0252456i
\(846\) 0 0
\(847\) −11229.3 19449.7i −0.455540 0.789018i
\(848\) −5683.26 4768.82i −0.230146 0.193115i
\(849\) 0 0
\(850\) −3418.34 19386.4i −0.137939 0.782290i
\(851\) −1321.99 7497.39i −0.0532518 0.302006i
\(852\) 0 0
\(853\) −17839.3 14968.9i −0.716067 0.600852i 0.210227 0.977653i \(-0.432580\pi\)
−0.926294 + 0.376801i \(0.877024\pi\)
\(854\) −15077.8 26115.5i −0.604159 1.04643i
\(855\) 0 0
\(856\) −7384.34 + 12790.1i −0.294850 + 0.510695i
\(857\) 9309.08 3388.23i 0.371053 0.135052i −0.149762 0.988722i \(-0.547851\pi\)
0.520814 + 0.853670i \(0.325628\pi\)
\(858\) 0 0
\(859\) 5179.55 4346.16i 0.205732 0.172630i −0.534100 0.845421i \(-0.679349\pi\)
0.739832 + 0.672791i \(0.234905\pi\)
\(860\) −542.370 197.407i −0.0215054 0.00782733i
\(861\) 0 0
\(862\) −532.539 + 3020.18i −0.0210422 + 0.119336i
\(863\) −6733.15 −0.265584 −0.132792 0.991144i \(-0.542394\pi\)
−0.132792 + 0.991144i \(0.542394\pi\)
\(864\) 0 0
\(865\) −810.834 −0.0318719
\(866\) 4151.95 23546.9i 0.162920 0.923967i
\(867\) 0 0
\(868\) 10978.6 + 3995.89i 0.429307 + 0.156255i
\(869\) 8524.70 7153.07i 0.332774 0.279231i
\(870\) 0 0
\(871\) −33270.8 + 12109.6i −1.29430 + 0.471088i
\(872\) 6549.94 11344.8i 0.254368 0.440578i
\(873\) 0 0
\(874\) 4976.59 + 8619.71i 0.192604 + 0.333599i
\(875\) 3579.10 + 3003.22i 0.138281 + 0.116031i
\(876\) 0 0
\(877\) 3348.73 + 18991.6i 0.128938 + 0.731244i 0.978891 + 0.204385i \(0.0655193\pi\)
−0.849953 + 0.526859i \(0.823370\pi\)
\(878\) 5148.45 + 29198.3i 0.197895 + 1.12232i
\(879\) 0 0
\(880\) −510.767 428.584i −0.0195658 0.0164177i
\(881\) 19079.7 + 33047.0i 0.729638 + 1.26377i 0.957036 + 0.289969i \(0.0936448\pi\)
−0.227398 + 0.973802i \(0.573022\pi\)
\(882\) 0 0
\(883\) 7602.93 13168.7i 0.289761 0.501881i −0.683992 0.729490i \(-0.739758\pi\)
0.973753 + 0.227609i \(0.0730909\pi\)
\(884\) −16392.6 + 5966.43i −0.623692 + 0.227005i
\(885\) 0 0
\(886\) −14890.9 + 12494.9i −0.564637 + 0.473786i
\(887\) 31508.2 + 11468.1i 1.19272 + 0.434115i 0.860678 0.509149i \(-0.170040\pi\)
0.332043 + 0.943264i \(0.392262\pi\)
\(888\) 0 0
\(889\) −2394.31 + 13578.8i −0.0903290 + 0.512281i
\(890\) −1303.04 −0.0490765
\(891\) 0 0
\(892\) −1964.83 −0.0737528
\(893\) −6077.78 + 34468.8i −0.227755 + 1.29166i
\(894\) 0 0
\(895\) −3405.91 1239.65i −0.127204 0.0462983i
\(896\) 2142.11 1797.44i 0.0798693 0.0670183i
\(897\) 0 0
\(898\) −22932.2 + 8346.64i −0.852180 + 0.310168i
\(899\) −8349.57 + 14461.9i −0.309759 + 0.536519i
\(900\) 0 0
\(901\) 18363.8 + 31807.1i 0.679010 + 1.17608i
\(902\) 1592.02 + 1335.86i 0.0587677 + 0.0493120i
\(903\) 0 0
\(904\) −545.609 3094.30i −0.0200738 0.113844i
\(905\) −471.015 2671.26i −0.0173006 0.0981168i
\(906\) 0 0
\(907\) 35183.3 + 29522.3i 1.28803 + 1.08078i 0.992084 + 0.125578i \(0.0400785\pi\)
0.295944 + 0.955205i \(0.404366\pi\)
\(908\) 6749.67 + 11690.8i 0.246691 + 0.427281i
\(909\) 0 0
\(910\) 1032.03 1787.53i 0.0375951 0.0651166i
\(911\) 42041.8 15302.0i 1.52899 0.556506i 0.565615 0.824670i \(-0.308639\pi\)
0.963373 + 0.268163i \(0.0864167\pi\)
\(912\) 0 0
\(913\) 6329.72 5311.26i 0.229445 0.192527i
\(914\) −13215.8 4810.15i −0.478270 0.174076i
\(915\) 0 0
\(916\) 358.592 2033.68i 0.0129347 0.0733566i
\(917\) −39416.2 −1.41945
\(918\) 0 0
\(919\) −24618.1 −0.883651 −0.441826 0.897101i \(-0.645669\pi\)
−0.441826 + 0.897101i \(0.645669\pi\)
\(920\) 53.9086 305.731i 0.00193186 0.0109561i
\(921\) 0 0
\(922\) 17086.1 + 6218.82i 0.610303 + 0.222132i
\(923\) 44267.8 37145.1i 1.57865 1.32464i
\(924\) 0 0
\(925\) 19655.0 7153.84i 0.698652 0.254289i
\(926\) 991.188 1716.79i 0.0351754 0.0609257i
\(927\) 0 0
\(928\) 1998.43 + 3461.39i 0.0706915 + 0.122441i
\(929\) 13710.8 + 11504.7i 0.484214 + 0.406304i 0.851947 0.523627i \(-0.175422\pi\)
−0.367733 + 0.929931i \(0.619866\pi\)
\(930\) 0 0
\(931\) 2565.28 + 14548.4i 0.0903046 + 0.512143i
\(932\) 916.748 + 5199.13i 0.0322200 + 0.182729i
\(933\) 0 0
\(934\) −9980.09 8374.29i −0.349634 0.293378i
\(935\) 1650.40 + 2858.57i 0.0577260 + 0.0999843i
\(936\) 0 0
\(937\) 5441.89 9425.63i 0.189732 0.328625i −0.755429 0.655231i \(-0.772571\pi\)
0.945161 + 0.326605i \(0.105905\pi\)
\(938\) −26402.0 + 9609.56i −0.919038 + 0.334502i
\(939\) 0 0
\(940\) 836.287 701.728i 0.0290177 0.0243488i
\(941\) −13465.7 4901.12i −0.466493 0.169789i 0.0980702 0.995179i \(-0.468733\pi\)
−0.564563 + 0.825390i \(0.690955\pi\)
\(942\) 0 0
\(943\) −168.029 + 952.940i −0.00580252 + 0.0329077i
\(944\) −8678.91 −0.299231
\(945\) 0 0
\(946\) −16336.7 −0.561471
\(947\) −5576.29 + 31624.7i −0.191346 + 1.08518i 0.726180 + 0.687505i \(0.241294\pi\)
−0.917526 + 0.397675i \(0.869817\pi\)
\(948\) 0 0
\(949\) 49685.8 + 18084.1i 1.69955 + 0.618584i
\(950\) −20948.1 + 17577.6i −0.715417 + 0.600306i
\(951\) 0 0
\(952\) −13008.4 + 4734.67i −0.442862 + 0.161188i
\(953\) 23715.8 41077.0i 0.806118 1.39624i −0.109417 0.993996i \(-0.534898\pi\)
0.915534 0.402241i \(-0.131768\pi\)
\(954\) 0 0
\(955\) 251.857 + 436.230i 0.00853394 + 0.0147812i
\(956\) 2245.28 + 1884.01i 0.0759596 + 0.0637377i
\(957\) 0 0
\(958\) 6383.07 + 36200.2i 0.215269 + 1.22085i
\(959\) 860.088 + 4877.80i 0.0289611 + 0.164246i
\(960\) 0 0
\(961\) −9128.10 7659.38i −0.306404 0.257104i
\(962\) −9267.79 16052.3i −0.310609 0.537990i
\(963\) 0 0
\(964\) −7812.42 + 13531.5i −0.261018 + 0.452096i
\(965\) 1069.77 389.366i 0.0356862 0.0129887i
\(966\) 0 0
\(967\) −616.492 + 517.298i −0.0205016 + 0.0172029i −0.652981 0.757374i \(-0.726482\pi\)
0.632479 + 0.774577i \(0.282037\pi\)
\(968\) −7728.22 2812.84i −0.256606 0.0933969i
\(969\) 0 0
\(970\) −479.293 + 2718.20i −0.0158651 + 0.0899755i
\(971\) −5884.04 −0.194467 −0.0972337 0.995262i \(-0.530999\pi\)
−0.0972337 + 0.995262i \(0.530999\pi\)
\(972\) 0 0
\(973\) −29461.0 −0.970686
\(974\) −4717.58 + 26754.7i −0.155196 + 0.880160i
\(975\) 0 0
\(976\) −10376.9 3776.87i −0.340323 0.123867i
\(977\) −27422.2 + 23009.9i −0.897966 + 0.753483i −0.969792 0.243934i \(-0.921562\pi\)
0.0718255 + 0.997417i \(0.477118\pi\)
\(978\) 0 0
\(979\) −34657.6 + 12614.3i −1.13142 + 0.411804i
\(980\) 230.388 399.044i 0.00750968 0.0130071i
\(981\) 0 0
\(982\) 8330.94 + 14429.6i 0.270724 + 0.468908i
\(983\) 3166.54 + 2657.04i 0.102744 + 0.0862121i 0.692712 0.721214i \(-0.256416\pi\)
−0.589969 + 0.807426i \(0.700860\pi\)
\(984\) 0 0
\(985\) 333.829 + 1893.24i 0.0107986 + 0.0612422i
\(986\) −3435.89 19485.9i −0.110975 0.629369i
\(987\) 0 0
\(988\) 18563.6 + 15576.7i 0.597761 + 0.501581i
\(989\) −3803.24 6587.40i −0.122281 0.211797i
\(990\) 0 0
\(991\) −4653.74 + 8060.52i −0.149174 + 0.258376i −0.930922 0.365217i \(-0.880995\pi\)
0.781749 + 0.623594i \(0.214328\pi\)
\(992\) 4020.32 1463.28i 0.128675 0.0468337i
\(993\) 0 0
\(994\) 35128.7 29476.5i 1.12094 0.940582i
\(995\) −440.452 160.312i −0.0140334 0.00510776i
\(996\) 0 0
\(997\) −4637.89 + 26302.8i −0.147325 + 0.835524i 0.818145 + 0.575012i \(0.195003\pi\)
−0.965471 + 0.260512i \(0.916109\pi\)
\(998\) −33356.5 −1.05800
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.4.e.b.73.3 30
3.2 odd 2 54.4.e.b.25.2 yes 30
27.11 odd 18 1458.4.a.i.1.9 15
27.13 even 9 inner 162.4.e.b.91.3 30
27.14 odd 18 54.4.e.b.13.2 30
27.16 even 9 1458.4.a.j.1.7 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.4.e.b.13.2 30 27.14 odd 18
54.4.e.b.25.2 yes 30 3.2 odd 2
162.4.e.b.73.3 30 1.1 even 1 trivial
162.4.e.b.91.3 30 27.13 even 9 inner
1458.4.a.i.1.9 15 27.11 odd 18
1458.4.a.j.1.7 15 27.16 even 9