Properties

Label 162.4.c.d.109.1
Level $162$
Weight $4$
Character 162.109
Analytic conductor $9.558$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,4,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55830942093\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 162.109
Dual form 162.4.c.d.55.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(-2.00000 + 3.46410i) q^{4} +(10.5000 - 18.1865i) q^{5} +(-4.00000 - 6.92820i) q^{7} +8.00000 q^{8} -42.0000 q^{10} +(18.0000 + 31.1769i) q^{11} +(24.5000 - 42.4352i) q^{13} +(-8.00000 + 13.8564i) q^{14} +(-8.00000 - 13.8564i) q^{16} -21.0000 q^{17} -112.000 q^{19} +(42.0000 + 72.7461i) q^{20} +(36.0000 - 62.3538i) q^{22} +(90.0000 - 155.885i) q^{23} +(-158.000 - 273.664i) q^{25} -98.0000 q^{26} +32.0000 q^{28} +(-67.5000 - 116.913i) q^{29} +(-154.000 + 266.736i) q^{31} +(-16.0000 + 27.7128i) q^{32} +(21.0000 + 36.3731i) q^{34} -168.000 q^{35} -1.00000 q^{37} +(112.000 + 193.990i) q^{38} +(84.0000 - 145.492i) q^{40} +(-21.0000 + 36.3731i) q^{41} +(-10.0000 - 17.3205i) q^{43} -144.000 q^{44} -360.000 q^{46} +(42.0000 + 72.7461i) q^{47} +(139.500 - 241.621i) q^{49} +(-316.000 + 547.328i) q^{50} +(98.0000 + 169.741i) q^{52} +174.000 q^{53} +756.000 q^{55} +(-32.0000 - 55.4256i) q^{56} +(-135.000 + 233.827i) q^{58} +(252.000 - 436.477i) q^{59} +(192.500 + 333.420i) q^{61} +616.000 q^{62} +64.0000 q^{64} +(-514.500 - 891.140i) q^{65} +(-136.000 + 235.559i) q^{67} +(42.0000 - 72.7461i) q^{68} +(168.000 + 290.985i) q^{70} +888.000 q^{71} +371.000 q^{73} +(1.00000 + 1.73205i) q^{74} +(224.000 - 387.979i) q^{76} +(144.000 - 249.415i) q^{77} +(326.000 + 564.649i) q^{79} -336.000 q^{80} +84.0000 q^{82} +(42.0000 + 72.7461i) q^{83} +(-220.500 + 381.917i) q^{85} +(-20.0000 + 34.6410i) q^{86} +(144.000 + 249.415i) q^{88} -21.0000 q^{89} -392.000 q^{91} +(360.000 + 623.538i) q^{92} +(84.0000 - 145.492i) q^{94} +(-1176.00 + 2036.89i) q^{95} +(623.000 + 1079.07i) q^{97} -558.000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 4 q^{4} + 21 q^{5} - 8 q^{7} + 16 q^{8} - 84 q^{10} + 36 q^{11} + 49 q^{13} - 16 q^{14} - 16 q^{16} - 42 q^{17} - 224 q^{19} + 84 q^{20} + 72 q^{22} + 180 q^{23} - 316 q^{25} - 196 q^{26}+ \cdots - 1116 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.353553 0.612372i
\(3\) 0 0
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) 10.5000 18.1865i 0.939149 1.62665i 0.172085 0.985082i \(-0.444950\pi\)
0.767064 0.641571i \(-0.221717\pi\)
\(6\) 0 0
\(7\) −4.00000 6.92820i −0.215980 0.374088i 0.737595 0.675243i \(-0.235961\pi\)
−0.953575 + 0.301155i \(0.902628\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) −42.0000 −1.32816
\(11\) 18.0000 + 31.1769i 0.493382 + 0.854563i 0.999971 0.00762479i \(-0.00242707\pi\)
−0.506589 + 0.862188i \(0.669094\pi\)
\(12\) 0 0
\(13\) 24.5000 42.4352i 0.522698 0.905340i −0.476953 0.878929i \(-0.658259\pi\)
0.999651 0.0264111i \(-0.00840789\pi\)
\(14\) −8.00000 + 13.8564i −0.152721 + 0.264520i
\(15\) 0 0
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −21.0000 −0.299603 −0.149801 0.988716i \(-0.547863\pi\)
−0.149801 + 0.988716i \(0.547863\pi\)
\(18\) 0 0
\(19\) −112.000 −1.35235 −0.676173 0.736743i \(-0.736363\pi\)
−0.676173 + 0.736743i \(0.736363\pi\)
\(20\) 42.0000 + 72.7461i 0.469574 + 0.813327i
\(21\) 0 0
\(22\) 36.0000 62.3538i 0.348874 0.604267i
\(23\) 90.0000 155.885i 0.815926 1.41323i −0.0927351 0.995691i \(-0.529561\pi\)
0.908661 0.417534i \(-0.137106\pi\)
\(24\) 0 0
\(25\) −158.000 273.664i −1.26400 2.18931i
\(26\) −98.0000 −0.739207
\(27\) 0 0
\(28\) 32.0000 0.215980
\(29\) −67.5000 116.913i −0.432222 0.748630i 0.564842 0.825199i \(-0.308937\pi\)
−0.997064 + 0.0765685i \(0.975604\pi\)
\(30\) 0 0
\(31\) −154.000 + 266.736i −0.892233 + 1.54539i −0.0550403 + 0.998484i \(0.517529\pi\)
−0.837192 + 0.546908i \(0.815805\pi\)
\(32\) −16.0000 + 27.7128i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 21.0000 + 36.3731i 0.105926 + 0.183469i
\(35\) −168.000 −0.811348
\(36\) 0 0
\(37\) −1.00000 −0.00444322 −0.00222161 0.999998i \(-0.500707\pi\)
−0.00222161 + 0.999998i \(0.500707\pi\)
\(38\) 112.000 + 193.990i 0.478126 + 0.828139i
\(39\) 0 0
\(40\) 84.0000 145.492i 0.332039 0.575109i
\(41\) −21.0000 + 36.3731i −0.0799914 + 0.138549i −0.903246 0.429123i \(-0.858823\pi\)
0.823255 + 0.567672i \(0.192156\pi\)
\(42\) 0 0
\(43\) −10.0000 17.3205i −0.0354648 0.0614268i 0.847748 0.530399i \(-0.177958\pi\)
−0.883213 + 0.468972i \(0.844624\pi\)
\(44\) −144.000 −0.493382
\(45\) 0 0
\(46\) −360.000 −1.15389
\(47\) 42.0000 + 72.7461i 0.130347 + 0.225768i 0.923811 0.382850i \(-0.125057\pi\)
−0.793463 + 0.608618i \(0.791724\pi\)
\(48\) 0 0
\(49\) 139.500 241.621i 0.406706 0.704435i
\(50\) −316.000 + 547.328i −0.893783 + 1.54808i
\(51\) 0 0
\(52\) 98.0000 + 169.741i 0.261349 + 0.452670i
\(53\) 174.000 0.450957 0.225479 0.974248i \(-0.427605\pi\)
0.225479 + 0.974248i \(0.427605\pi\)
\(54\) 0 0
\(55\) 756.000 1.85344
\(56\) −32.0000 55.4256i −0.0763604 0.132260i
\(57\) 0 0
\(58\) −135.000 + 233.827i −0.305627 + 0.529362i
\(59\) 252.000 436.477i 0.556061 0.963126i −0.441759 0.897134i \(-0.645645\pi\)
0.997820 0.0659923i \(-0.0210213\pi\)
\(60\) 0 0
\(61\) 192.500 + 333.420i 0.404051 + 0.699837i 0.994210 0.107450i \(-0.0342686\pi\)
−0.590160 + 0.807287i \(0.700935\pi\)
\(62\) 616.000 1.26181
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −514.500 891.140i −0.981783 1.70050i
\(66\) 0 0
\(67\) −136.000 + 235.559i −0.247986 + 0.429524i −0.962967 0.269620i \(-0.913102\pi\)
0.714981 + 0.699144i \(0.246435\pi\)
\(68\) 42.0000 72.7461i 0.0749007 0.129732i
\(69\) 0 0
\(70\) 168.000 + 290.985i 0.286855 + 0.496847i
\(71\) 888.000 1.48431 0.742156 0.670227i \(-0.233803\pi\)
0.742156 + 0.670227i \(0.233803\pi\)
\(72\) 0 0
\(73\) 371.000 0.594826 0.297413 0.954749i \(-0.403876\pi\)
0.297413 + 0.954749i \(0.403876\pi\)
\(74\) 1.00000 + 1.73205i 0.00157091 + 0.00272090i
\(75\) 0 0
\(76\) 224.000 387.979i 0.338086 0.585583i
\(77\) 144.000 249.415i 0.213121 0.369137i
\(78\) 0 0
\(79\) 326.000 + 564.649i 0.464277 + 0.804151i 0.999169 0.0407696i \(-0.0129810\pi\)
−0.534892 + 0.844921i \(0.679648\pi\)
\(80\) −336.000 −0.469574
\(81\) 0 0
\(82\) 84.0000 0.113125
\(83\) 42.0000 + 72.7461i 0.0555434 + 0.0962039i 0.892460 0.451126i \(-0.148978\pi\)
−0.836917 + 0.547330i \(0.815644\pi\)
\(84\) 0 0
\(85\) −220.500 + 381.917i −0.281372 + 0.487350i
\(86\) −20.0000 + 34.6410i −0.0250774 + 0.0434353i
\(87\) 0 0
\(88\) 144.000 + 249.415i 0.174437 + 0.302134i
\(89\) −21.0000 −0.0250112 −0.0125056 0.999922i \(-0.503981\pi\)
−0.0125056 + 0.999922i \(0.503981\pi\)
\(90\) 0 0
\(91\) −392.000 −0.451569
\(92\) 360.000 + 623.538i 0.407963 + 0.706613i
\(93\) 0 0
\(94\) 84.0000 145.492i 0.0921696 0.159642i
\(95\) −1176.00 + 2036.89i −1.27005 + 2.19980i
\(96\) 0 0
\(97\) 623.000 + 1079.07i 0.652124 + 1.12951i 0.982606 + 0.185700i \(0.0594554\pi\)
−0.330482 + 0.943812i \(0.607211\pi\)
\(98\) −558.000 −0.575168
\(99\) 0 0
\(100\) 1264.00 1.26400
\(101\) 273.000 + 472.850i 0.268956 + 0.465845i 0.968592 0.248654i \(-0.0799882\pi\)
−0.699637 + 0.714499i \(0.746655\pi\)
\(102\) 0 0
\(103\) 98.0000 169.741i 0.0937498 0.162379i −0.815336 0.578988i \(-0.803448\pi\)
0.909086 + 0.416608i \(0.136781\pi\)
\(104\) 196.000 339.482i 0.184802 0.320086i
\(105\) 0 0
\(106\) −174.000 301.377i −0.159437 0.276154i
\(107\) 300.000 0.271048 0.135524 0.990774i \(-0.456728\pi\)
0.135524 + 0.990774i \(0.456728\pi\)
\(108\) 0 0
\(109\) −1069.00 −0.939373 −0.469686 0.882833i \(-0.655633\pi\)
−0.469686 + 0.882833i \(0.655633\pi\)
\(110\) −756.000 1309.43i −0.655289 1.13499i
\(111\) 0 0
\(112\) −64.0000 + 110.851i −0.0539949 + 0.0935220i
\(113\) 448.500 776.825i 0.373375 0.646704i −0.616708 0.787192i \(-0.711534\pi\)
0.990082 + 0.140488i \(0.0448673\pi\)
\(114\) 0 0
\(115\) −1890.00 3273.58i −1.53255 2.65446i
\(116\) 540.000 0.432222
\(117\) 0 0
\(118\) −1008.00 −0.786389
\(119\) 84.0000 + 145.492i 0.0647081 + 0.112078i
\(120\) 0 0
\(121\) 17.5000 30.3109i 0.0131480 0.0227730i
\(122\) 385.000 666.840i 0.285707 0.494859i
\(123\) 0 0
\(124\) −616.000 1066.94i −0.446116 0.772696i
\(125\) −4011.00 −2.87004
\(126\) 0 0
\(127\) 1532.00 1.07042 0.535209 0.844720i \(-0.320233\pi\)
0.535209 + 0.844720i \(0.320233\pi\)
\(128\) −64.0000 110.851i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −1029.00 + 1782.28i −0.694225 + 1.20243i
\(131\) 420.000 727.461i 0.280119 0.485180i −0.691295 0.722573i \(-0.742959\pi\)
0.971414 + 0.237393i \(0.0762928\pi\)
\(132\) 0 0
\(133\) 448.000 + 775.959i 0.292079 + 0.505896i
\(134\) 544.000 0.350705
\(135\) 0 0
\(136\) −168.000 −0.105926
\(137\) 364.500 + 631.333i 0.227309 + 0.393711i 0.957010 0.290056i \(-0.0936739\pi\)
−0.729701 + 0.683767i \(0.760341\pi\)
\(138\) 0 0
\(139\) 1022.00 1770.16i 0.623632 1.08016i −0.365171 0.930940i \(-0.618990\pi\)
0.988804 0.149223i \(-0.0476771\pi\)
\(140\) 336.000 581.969i 0.202837 0.351324i
\(141\) 0 0
\(142\) −888.000 1538.06i −0.524784 0.908952i
\(143\) 1764.00 1.03156
\(144\) 0 0
\(145\) −2835.00 −1.62368
\(146\) −371.000 642.591i −0.210303 0.364255i
\(147\) 0 0
\(148\) 2.00000 3.46410i 0.00111080 0.00192397i
\(149\) −643.500 + 1114.57i −0.353809 + 0.612816i −0.986913 0.161251i \(-0.948447\pi\)
0.633104 + 0.774067i \(0.281780\pi\)
\(150\) 0 0
\(151\) 368.000 + 637.395i 0.198327 + 0.343513i 0.947986 0.318311i \(-0.103116\pi\)
−0.749659 + 0.661824i \(0.769782\pi\)
\(152\) −896.000 −0.478126
\(153\) 0 0
\(154\) −576.000 −0.301399
\(155\) 3234.00 + 5601.45i 1.67588 + 2.90271i
\(156\) 0 0
\(157\) 1074.50 1861.09i 0.546207 0.946058i −0.452323 0.891854i \(-0.649405\pi\)
0.998530 0.0542035i \(-0.0172620\pi\)
\(158\) 652.000 1129.30i 0.328293 0.568621i
\(159\) 0 0
\(160\) 336.000 + 581.969i 0.166020 + 0.287554i
\(161\) −1440.00 −0.704894
\(162\) 0 0
\(163\) −3088.00 −1.48387 −0.741935 0.670472i \(-0.766092\pi\)
−0.741935 + 0.670472i \(0.766092\pi\)
\(164\) −84.0000 145.492i −0.0399957 0.0692746i
\(165\) 0 0
\(166\) 84.0000 145.492i 0.0392751 0.0680264i
\(167\) 84.0000 145.492i 0.0389228 0.0674163i −0.845908 0.533329i \(-0.820941\pi\)
0.884831 + 0.465913i \(0.154274\pi\)
\(168\) 0 0
\(169\) −102.000 176.669i −0.0464269 0.0804138i
\(170\) 882.000 0.397919
\(171\) 0 0
\(172\) 80.0000 0.0354648
\(173\) −1501.50 2600.67i −0.659867 1.14292i −0.980650 0.195770i \(-0.937279\pi\)
0.320783 0.947153i \(-0.396054\pi\)
\(174\) 0 0
\(175\) −1264.00 + 2189.31i −0.545997 + 0.945694i
\(176\) 288.000 498.831i 0.123346 0.213641i
\(177\) 0 0
\(178\) 21.0000 + 36.3731i 0.00884279 + 0.0153162i
\(179\) 1164.00 0.486042 0.243021 0.970021i \(-0.421862\pi\)
0.243021 + 0.970021i \(0.421862\pi\)
\(180\) 0 0
\(181\) −1666.00 −0.684159 −0.342080 0.939671i \(-0.611131\pi\)
−0.342080 + 0.939671i \(0.611131\pi\)
\(182\) 392.000 + 678.964i 0.159654 + 0.276528i
\(183\) 0 0
\(184\) 720.000 1247.08i 0.288473 0.499651i
\(185\) −10.5000 + 18.1865i −0.00417284 + 0.00722757i
\(186\) 0 0
\(187\) −378.000 654.715i −0.147819 0.256030i
\(188\) −336.000 −0.130347
\(189\) 0 0
\(190\) 4704.00 1.79613
\(191\) −1032.00 1787.48i −0.390958 0.677158i 0.601619 0.798784i \(-0.294523\pi\)
−0.992576 + 0.121625i \(0.961189\pi\)
\(192\) 0 0
\(193\) 282.500 489.304i 0.105362 0.182492i −0.808524 0.588463i \(-0.799733\pi\)
0.913886 + 0.405971i \(0.133067\pi\)
\(194\) 1246.00 2158.14i 0.461122 0.798686i
\(195\) 0 0
\(196\) 558.000 + 966.484i 0.203353 + 0.352217i
\(197\) 4731.00 1.71101 0.855507 0.517791i \(-0.173246\pi\)
0.855507 + 0.517791i \(0.173246\pi\)
\(198\) 0 0
\(199\) 4676.00 1.66569 0.832846 0.553504i \(-0.186710\pi\)
0.832846 + 0.553504i \(0.186710\pi\)
\(200\) −1264.00 2189.31i −0.446891 0.774039i
\(201\) 0 0
\(202\) 546.000 945.700i 0.190180 0.329402i
\(203\) −540.000 + 935.307i −0.186702 + 0.323378i
\(204\) 0 0
\(205\) 441.000 + 763.834i 0.150248 + 0.260237i
\(206\) −392.000 −0.132582
\(207\) 0 0
\(208\) −784.000 −0.261349
\(209\) −2016.00 3491.81i −0.667223 1.15566i
\(210\) 0 0
\(211\) −1690.00 + 2927.17i −0.551395 + 0.955045i 0.446779 + 0.894644i \(0.352571\pi\)
−0.998174 + 0.0604002i \(0.980762\pi\)
\(212\) −348.000 + 602.754i −0.112739 + 0.195270i
\(213\) 0 0
\(214\) −300.000 519.615i −0.0958298 0.165982i
\(215\) −420.000 −0.133227
\(216\) 0 0
\(217\) 2464.00 0.770817
\(218\) 1069.00 + 1851.56i 0.332118 + 0.575246i
\(219\) 0 0
\(220\) −1512.00 + 2618.86i −0.463359 + 0.802562i
\(221\) −514.500 + 891.140i −0.156602 + 0.271242i
\(222\) 0 0
\(223\) 2618.00 + 4534.51i 0.786163 + 1.36167i 0.928302 + 0.371827i \(0.121268\pi\)
−0.142140 + 0.989847i \(0.545398\pi\)
\(224\) 256.000 0.0763604
\(225\) 0 0
\(226\) −1794.00 −0.528031
\(227\) 1932.00 + 3346.32i 0.564896 + 0.978428i 0.997059 + 0.0766330i \(0.0244170\pi\)
−0.432164 + 0.901795i \(0.642250\pi\)
\(228\) 0 0
\(229\) 1956.50 3388.76i 0.564581 0.977884i −0.432507 0.901631i \(-0.642371\pi\)
0.997088 0.0762532i \(-0.0242957\pi\)
\(230\) −3780.00 + 6547.15i −1.08368 + 1.87698i
\(231\) 0 0
\(232\) −540.000 935.307i −0.152814 0.264681i
\(233\) −6333.00 −1.78064 −0.890319 0.455337i \(-0.849519\pi\)
−0.890319 + 0.455337i \(0.849519\pi\)
\(234\) 0 0
\(235\) 1764.00 0.489662
\(236\) 1008.00 + 1745.91i 0.278031 + 0.481563i
\(237\) 0 0
\(238\) 168.000 290.985i 0.0457556 0.0792509i
\(239\) −1914.00 + 3315.15i −0.518018 + 0.897234i 0.481763 + 0.876302i \(0.339997\pi\)
−0.999781 + 0.0209322i \(0.993337\pi\)
\(240\) 0 0
\(241\) 738.500 + 1279.12i 0.197390 + 0.341889i 0.947681 0.319218i \(-0.103420\pi\)
−0.750291 + 0.661107i \(0.770087\pi\)
\(242\) −70.0000 −0.0185941
\(243\) 0 0
\(244\) −1540.00 −0.404051
\(245\) −2929.50 5074.04i −0.763914 1.32314i
\(246\) 0 0
\(247\) −2744.00 + 4752.75i −0.706869 + 1.22433i
\(248\) −1232.00 + 2133.89i −0.315452 + 0.546379i
\(249\) 0 0
\(250\) 4011.00 + 6947.26i 1.01471 + 1.75753i
\(251\) 3612.00 0.908316 0.454158 0.890921i \(-0.349940\pi\)
0.454158 + 0.890921i \(0.349940\pi\)
\(252\) 0 0
\(253\) 6480.00 1.61025
\(254\) −1532.00 2653.50i −0.378450 0.655494i
\(255\) 0 0
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −199.500 + 345.544i −0.0484221 + 0.0838695i −0.889221 0.457479i \(-0.848753\pi\)
0.840798 + 0.541348i \(0.182086\pi\)
\(258\) 0 0
\(259\) 4.00000 + 6.92820i 0.000959644 + 0.00166215i
\(260\) 4116.00 0.981783
\(261\) 0 0
\(262\) −1680.00 −0.396148
\(263\) 1614.00 + 2795.53i 0.378416 + 0.655436i 0.990832 0.135100i \(-0.0431354\pi\)
−0.612416 + 0.790536i \(0.709802\pi\)
\(264\) 0 0
\(265\) 1827.00 3164.46i 0.423516 0.733551i
\(266\) 896.000 1551.92i 0.206531 0.357722i
\(267\) 0 0
\(268\) −544.000 942.236i −0.123993 0.214762i
\(269\) 147.000 0.0333188 0.0166594 0.999861i \(-0.494697\pi\)
0.0166594 + 0.999861i \(0.494697\pi\)
\(270\) 0 0
\(271\) 3332.00 0.746880 0.373440 0.927654i \(-0.378178\pi\)
0.373440 + 0.927654i \(0.378178\pi\)
\(272\) 168.000 + 290.985i 0.0374504 + 0.0648659i
\(273\) 0 0
\(274\) 729.000 1262.67i 0.160732 0.278396i
\(275\) 5688.00 9851.90i 1.24727 2.16034i
\(276\) 0 0
\(277\) −1207.00 2090.59i −0.261811 0.453470i 0.704912 0.709294i \(-0.250986\pi\)
−0.966723 + 0.255825i \(0.917653\pi\)
\(278\) −4088.00 −0.881949
\(279\) 0 0
\(280\) −1344.00 −0.286855
\(281\) −1777.50 3078.72i −0.377355 0.653598i 0.613321 0.789833i \(-0.289833\pi\)
−0.990677 + 0.136235i \(0.956500\pi\)
\(282\) 0 0
\(283\) −2674.00 + 4631.50i −0.561671 + 0.972842i 0.435680 + 0.900102i \(0.356508\pi\)
−0.997351 + 0.0727406i \(0.976825\pi\)
\(284\) −1776.00 + 3076.12i −0.371078 + 0.642726i
\(285\) 0 0
\(286\) −1764.00 3055.34i −0.364712 0.631699i
\(287\) 336.000 0.0691061
\(288\) 0 0
\(289\) −4472.00 −0.910238
\(290\) 2835.00 + 4910.36i 0.574058 + 0.994298i
\(291\) 0 0
\(292\) −742.000 + 1285.18i −0.148706 + 0.257567i
\(293\) 3244.50 5619.64i 0.646914 1.12049i −0.336942 0.941525i \(-0.609393\pi\)
0.983856 0.178962i \(-0.0572739\pi\)
\(294\) 0 0
\(295\) −5292.00 9166.01i −1.04445 1.80904i
\(296\) −8.00000 −0.00157091
\(297\) 0 0
\(298\) 2574.00 0.500362
\(299\) −4410.00 7638.34i −0.852966 1.47738i
\(300\) 0 0
\(301\) −80.0000 + 138.564i −0.0153193 + 0.0265339i
\(302\) 736.000 1274.79i 0.140239 0.242900i
\(303\) 0 0
\(304\) 896.000 + 1551.92i 0.169043 + 0.292791i
\(305\) 8085.00 1.51785
\(306\) 0 0
\(307\) −1204.00 −0.223830 −0.111915 0.993718i \(-0.535698\pi\)
−0.111915 + 0.993718i \(0.535698\pi\)
\(308\) 576.000 + 997.661i 0.106561 + 0.184568i
\(309\) 0 0
\(310\) 6468.00 11202.9i 1.18502 2.05252i
\(311\) −1596.00 + 2764.35i −0.291000 + 0.504026i −0.974046 0.226349i \(-0.927321\pi\)
0.683047 + 0.730375i \(0.260654\pi\)
\(312\) 0 0
\(313\) 1620.50 + 2806.79i 0.292639 + 0.506866i 0.974433 0.224678i \(-0.0721332\pi\)
−0.681794 + 0.731544i \(0.738800\pi\)
\(314\) −4298.00 −0.772453
\(315\) 0 0
\(316\) −2608.00 −0.464277
\(317\) 2662.50 + 4611.59i 0.471738 + 0.817074i 0.999477 0.0323325i \(-0.0102935\pi\)
−0.527739 + 0.849406i \(0.676960\pi\)
\(318\) 0 0
\(319\) 2430.00 4208.88i 0.426501 0.738722i
\(320\) 672.000 1163.94i 0.117394 0.203332i
\(321\) 0 0
\(322\) 1440.00 + 2494.15i 0.249218 + 0.431658i
\(323\) 2352.00 0.405167
\(324\) 0 0
\(325\) −15484.0 −2.64276
\(326\) 3088.00 + 5348.57i 0.524627 + 0.908681i
\(327\) 0 0
\(328\) −168.000 + 290.985i −0.0282812 + 0.0489846i
\(329\) 336.000 581.969i 0.0563048 0.0975228i
\(330\) 0 0
\(331\) −484.000 838.313i −0.0803717 0.139208i 0.823038 0.567986i \(-0.192277\pi\)
−0.903410 + 0.428779i \(0.858944\pi\)
\(332\) −336.000 −0.0555434
\(333\) 0 0
\(334\) −336.000 −0.0550452
\(335\) 2856.00 + 4946.74i 0.465791 + 0.806773i
\(336\) 0 0
\(337\) −4945.00 + 8564.99i −0.799321 + 1.38447i 0.120737 + 0.992685i \(0.461474\pi\)
−0.920059 + 0.391781i \(0.871859\pi\)
\(338\) −204.000 + 353.338i −0.0328288 + 0.0568612i
\(339\) 0 0
\(340\) −882.000 1527.67i −0.140686 0.243675i
\(341\) −11088.0 −1.76085
\(342\) 0 0
\(343\) −4976.00 −0.783320
\(344\) −80.0000 138.564i −0.0125387 0.0217177i
\(345\) 0 0
\(346\) −3003.00 + 5201.35i −0.466596 + 0.808168i
\(347\) −780.000 + 1351.00i −0.120670 + 0.209007i −0.920032 0.391843i \(-0.871838\pi\)
0.799362 + 0.600850i \(0.205171\pi\)
\(348\) 0 0
\(349\) −1435.00 2485.49i −0.220097 0.381219i 0.734740 0.678348i \(-0.237304\pi\)
−0.954837 + 0.297130i \(0.903971\pi\)
\(350\) 5056.00 0.772156
\(351\) 0 0
\(352\) −1152.00 −0.174437
\(353\) 3591.00 + 6219.79i 0.541444 + 0.937808i 0.998821 + 0.0485356i \(0.0154554\pi\)
−0.457378 + 0.889273i \(0.651211\pi\)
\(354\) 0 0
\(355\) 9324.00 16149.6i 1.39399 2.41446i
\(356\) 42.0000 72.7461i 0.00625280 0.0108302i
\(357\) 0 0
\(358\) −1164.00 2016.11i −0.171842 0.297638i
\(359\) −8100.00 −1.19081 −0.595406 0.803425i \(-0.703009\pi\)
−0.595406 + 0.803425i \(0.703009\pi\)
\(360\) 0 0
\(361\) 5685.00 0.828838
\(362\) 1666.00 + 2885.60i 0.241887 + 0.418960i
\(363\) 0 0
\(364\) 784.000 1357.93i 0.112892 0.195535i
\(365\) 3895.50 6747.20i 0.558630 0.967575i
\(366\) 0 0
\(367\) −5572.00 9650.99i −0.792523 1.37269i −0.924400 0.381424i \(-0.875434\pi\)
0.131877 0.991266i \(-0.457900\pi\)
\(368\) −2880.00 −0.407963
\(369\) 0 0
\(370\) 42.0000 0.00590129
\(371\) −696.000 1205.51i −0.0973976 0.168698i
\(372\) 0 0
\(373\) −6919.00 + 11984.1i −0.960462 + 1.66357i −0.239119 + 0.970990i \(0.576859\pi\)
−0.721343 + 0.692578i \(0.756475\pi\)
\(374\) −756.000 + 1309.43i −0.104524 + 0.181040i
\(375\) 0 0
\(376\) 336.000 + 581.969i 0.0460848 + 0.0798212i
\(377\) −6615.00 −0.903687
\(378\) 0 0
\(379\) 1196.00 0.162096 0.0810480 0.996710i \(-0.474173\pi\)
0.0810480 + 0.996710i \(0.474173\pi\)
\(380\) −4704.00 8147.57i −0.635027 1.09990i
\(381\) 0 0
\(382\) −2064.00 + 3574.95i −0.276449 + 0.478823i
\(383\) 1932.00 3346.32i 0.257756 0.446447i −0.707884 0.706328i \(-0.750350\pi\)
0.965640 + 0.259882i \(0.0836836\pi\)
\(384\) 0 0
\(385\) −3024.00 5237.72i −0.400305 0.693348i
\(386\) −1130.00 −0.149004
\(387\) 0 0
\(388\) −4984.00 −0.652124
\(389\) −2535.00 4390.75i −0.330410 0.572287i 0.652182 0.758062i \(-0.273854\pi\)
−0.982592 + 0.185775i \(0.940520\pi\)
\(390\) 0 0
\(391\) −1890.00 + 3273.58i −0.244454 + 0.423406i
\(392\) 1116.00 1932.97i 0.143792 0.249055i
\(393\) 0 0
\(394\) −4731.00 8194.33i −0.604935 1.04778i
\(395\) 13692.0 1.74410
\(396\) 0 0
\(397\) 15239.0 1.92651 0.963254 0.268593i \(-0.0865587\pi\)
0.963254 + 0.268593i \(0.0865587\pi\)
\(398\) −4676.00 8099.07i −0.588911 1.02002i
\(399\) 0 0
\(400\) −2528.00 + 4378.62i −0.316000 + 0.547328i
\(401\) −853.500 + 1478.31i −0.106289 + 0.184097i −0.914264 0.405119i \(-0.867230\pi\)
0.807975 + 0.589216i \(0.200563\pi\)
\(402\) 0 0
\(403\) 7546.00 + 13070.1i 0.932737 + 1.61555i
\(404\) −2184.00 −0.268956
\(405\) 0 0
\(406\) 2160.00 0.264037
\(407\) −18.0000 31.1769i −0.00219220 0.00379701i
\(408\) 0 0
\(409\) 6660.50 11536.3i 0.805234 1.39471i −0.110900 0.993832i \(-0.535373\pi\)
0.916133 0.400874i \(-0.131293\pi\)
\(410\) 882.000 1527.67i 0.106241 0.184015i
\(411\) 0 0
\(412\) 392.000 + 678.964i 0.0468749 + 0.0811897i
\(413\) −4032.00 −0.480392
\(414\) 0 0
\(415\) 1764.00 0.208654
\(416\) 784.000 + 1357.93i 0.0924009 + 0.160043i
\(417\) 0 0
\(418\) −4032.00 + 6983.63i −0.471798 + 0.817178i
\(419\) −6972.00 + 12075.9i −0.812899 + 1.40798i 0.0979285 + 0.995193i \(0.468778\pi\)
−0.910827 + 0.412788i \(0.864555\pi\)
\(420\) 0 0
\(421\) 5418.50 + 9385.12i 0.627272 + 1.08647i 0.988097 + 0.153833i \(0.0491619\pi\)
−0.360825 + 0.932634i \(0.617505\pi\)
\(422\) 6760.00 0.779791
\(423\) 0 0
\(424\) 1392.00 0.159437
\(425\) 3318.00 + 5746.94i 0.378698 + 0.655924i
\(426\) 0 0
\(427\) 1540.00 2667.36i 0.174534 0.302301i
\(428\) −600.000 + 1039.23i −0.0677619 + 0.117367i
\(429\) 0 0
\(430\) 420.000 + 727.461i 0.0471028 + 0.0815844i
\(431\) −12612.0 −1.40951 −0.704755 0.709451i \(-0.748943\pi\)
−0.704755 + 0.709451i \(0.748943\pi\)
\(432\) 0 0
\(433\) −9709.00 −1.07756 −0.538781 0.842446i \(-0.681115\pi\)
−0.538781 + 0.842446i \(0.681115\pi\)
\(434\) −2464.00 4267.77i −0.272525 0.472027i
\(435\) 0 0
\(436\) 2138.00 3703.12i 0.234843 0.406760i
\(437\) −10080.0 + 17459.1i −1.10341 + 1.91117i
\(438\) 0 0
\(439\) −5194.00 8996.27i −0.564684 0.978061i −0.997079 0.0763766i \(-0.975665\pi\)
0.432395 0.901684i \(-0.357668\pi\)
\(440\) 6048.00 0.655289
\(441\) 0 0
\(442\) 2058.00 0.221469
\(443\) −1254.00 2171.99i −0.134491 0.232945i 0.790912 0.611930i \(-0.209606\pi\)
−0.925403 + 0.378985i \(0.876273\pi\)
\(444\) 0 0
\(445\) −220.500 + 381.917i −0.0234892 + 0.0406845i
\(446\) 5236.00 9069.02i 0.555901 0.962849i
\(447\) 0 0
\(448\) −256.000 443.405i −0.0269975 0.0467610i
\(449\) 13698.0 1.43975 0.719876 0.694103i \(-0.244199\pi\)
0.719876 + 0.694103i \(0.244199\pi\)
\(450\) 0 0
\(451\) −1512.00 −0.157865
\(452\) 1794.00 + 3107.30i 0.186687 + 0.323352i
\(453\) 0 0
\(454\) 3864.00 6692.64i 0.399442 0.691853i
\(455\) −4116.00 + 7129.12i −0.424090 + 0.734546i
\(456\) 0 0
\(457\) 4872.50 + 8439.42i 0.498744 + 0.863850i 0.999999 0.00144988i \(-0.000461511\pi\)
−0.501255 + 0.865300i \(0.667128\pi\)
\(458\) −7826.00 −0.798439
\(459\) 0 0
\(460\) 15120.0 1.53255
\(461\) 8757.00 + 15167.6i 0.884716 + 1.53237i 0.846039 + 0.533122i \(0.178981\pi\)
0.0386775 + 0.999252i \(0.487685\pi\)
\(462\) 0 0
\(463\) −2320.00 + 4018.36i −0.232872 + 0.403345i −0.958652 0.284581i \(-0.908146\pi\)
0.725780 + 0.687926i \(0.241479\pi\)
\(464\) −1080.00 + 1870.61i −0.108055 + 0.187158i
\(465\) 0 0
\(466\) 6333.00 + 10969.1i 0.629551 + 1.09041i
\(467\) 4368.00 0.432820 0.216410 0.976303i \(-0.430565\pi\)
0.216410 + 0.976303i \(0.430565\pi\)
\(468\) 0 0
\(469\) 2176.00 0.214240
\(470\) −1764.00 3055.34i −0.173122 0.299856i
\(471\) 0 0
\(472\) 2016.00 3491.81i 0.196597 0.340516i
\(473\) 360.000 623.538i 0.0349954 0.0606138i
\(474\) 0 0
\(475\) 17696.0 + 30650.4i 1.70936 + 2.96071i
\(476\) −672.000 −0.0647081
\(477\) 0 0
\(478\) 7656.00 0.732588
\(479\) −9408.00 16295.1i −0.897416 1.55437i −0.830785 0.556593i \(-0.812108\pi\)
−0.0666313 0.997778i \(-0.521225\pi\)
\(480\) 0 0
\(481\) −24.5000 + 42.4352i −0.00232246 + 0.00402262i
\(482\) 1477.00 2558.24i 0.139576 0.241752i
\(483\) 0 0
\(484\) 70.0000 + 121.244i 0.00657400 + 0.0113865i
\(485\) 26166.0 2.44977
\(486\) 0 0
\(487\) −13756.0 −1.27997 −0.639983 0.768389i \(-0.721059\pi\)
−0.639983 + 0.768389i \(0.721059\pi\)
\(488\) 1540.00 + 2667.36i 0.142854 + 0.247430i
\(489\) 0 0
\(490\) −5859.00 + 10148.1i −0.540169 + 0.935600i
\(491\) 3870.00 6703.04i 0.355704 0.616097i −0.631534 0.775348i \(-0.717574\pi\)
0.987238 + 0.159251i \(0.0509078\pi\)
\(492\) 0 0
\(493\) 1417.50 + 2455.18i 0.129495 + 0.224292i
\(494\) 10976.0 0.999663
\(495\) 0 0
\(496\) 4928.00 0.446116
\(497\) −3552.00 6152.24i −0.320581 0.555263i
\(498\) 0 0
\(499\) −1198.00 + 2075.00i −0.107475 + 0.186152i −0.914747 0.404028i \(-0.867610\pi\)
0.807272 + 0.590180i \(0.200943\pi\)
\(500\) 8022.00 13894.5i 0.717509 1.24276i
\(501\) 0 0
\(502\) −3612.00 6256.17i −0.321138 0.556228i
\(503\) −12096.0 −1.07223 −0.536117 0.844144i \(-0.680110\pi\)
−0.536117 + 0.844144i \(0.680110\pi\)
\(504\) 0 0
\(505\) 11466.0 1.01036
\(506\) −6480.00 11223.7i −0.569311 0.986075i
\(507\) 0 0
\(508\) −3064.00 + 5307.00i −0.267604 + 0.463504i
\(509\) 861.000 1491.30i 0.0749767 0.129864i −0.826099 0.563524i \(-0.809445\pi\)
0.901076 + 0.433661i \(0.142778\pi\)
\(510\) 0 0
\(511\) −1484.00 2570.36i −0.128470 0.222517i
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) 798.000 0.0684791
\(515\) −2058.00 3564.56i −0.176090 0.304997i
\(516\) 0 0
\(517\) −1512.00 + 2618.86i −0.128622 + 0.222780i
\(518\) 8.00000 13.8564i 0.000678571 0.00117532i
\(519\) 0 0
\(520\) −4116.00 7129.12i −0.347113 0.601217i
\(521\) −2982.00 −0.250756 −0.125378 0.992109i \(-0.540014\pi\)
−0.125378 + 0.992109i \(0.540014\pi\)
\(522\) 0 0
\(523\) 812.000 0.0678896 0.0339448 0.999424i \(-0.489193\pi\)
0.0339448 + 0.999424i \(0.489193\pi\)
\(524\) 1680.00 + 2909.85i 0.140059 + 0.242590i
\(525\) 0 0
\(526\) 3228.00 5591.06i 0.267581 0.463464i
\(527\) 3234.00 5601.45i 0.267315 0.463004i
\(528\) 0 0
\(529\) −10116.5 17522.3i −0.831470 1.44015i
\(530\) −7308.00 −0.598942
\(531\) 0 0
\(532\) −3584.00 −0.292079
\(533\) 1029.00 + 1782.28i 0.0836228 + 0.144839i
\(534\) 0 0
\(535\) 3150.00 5455.96i 0.254554 0.440900i
\(536\) −1088.00 + 1884.47i −0.0876762 + 0.151860i
\(537\) 0 0
\(538\) −147.000 254.611i −0.0117800 0.0204035i
\(539\) 10044.0 0.802645
\(540\) 0 0
\(541\) 7055.00 0.560662 0.280331 0.959903i \(-0.409556\pi\)
0.280331 + 0.959903i \(0.409556\pi\)
\(542\) −3332.00 5771.19i −0.264062 0.457369i
\(543\) 0 0
\(544\) 336.000 581.969i 0.0264814 0.0458671i
\(545\) −11224.5 + 19441.4i −0.882211 + 1.52803i
\(546\) 0 0
\(547\) 7298.00 + 12640.5i 0.570457 + 0.988060i 0.996519 + 0.0833664i \(0.0265672\pi\)
−0.426062 + 0.904694i \(0.640099\pi\)
\(548\) −2916.00 −0.227309
\(549\) 0 0
\(550\) −22752.0 −1.76391
\(551\) 7560.00 + 13094.3i 0.584513 + 1.01241i
\(552\) 0 0
\(553\) 2608.00 4517.19i 0.200549 0.347361i
\(554\) −2414.00 + 4181.17i −0.185128 + 0.320651i
\(555\) 0 0
\(556\) 4088.00 + 7080.62i 0.311816 + 0.540082i
\(557\) 7755.00 0.589928 0.294964 0.955508i \(-0.404692\pi\)
0.294964 + 0.955508i \(0.404692\pi\)
\(558\) 0 0
\(559\) −980.000 −0.0741495
\(560\) 1344.00 + 2327.88i 0.101419 + 0.175662i
\(561\) 0 0
\(562\) −3555.00 + 6157.44i −0.266830 + 0.462164i
\(563\) 8022.00 13894.5i 0.600510 1.04011i −0.392234 0.919865i \(-0.628298\pi\)
0.992744 0.120248i \(-0.0383690\pi\)
\(564\) 0 0
\(565\) −9418.50 16313.3i −0.701308 1.21470i
\(566\) 10696.0 0.794322
\(567\) 0 0
\(568\) 7104.00 0.524784
\(569\) 8512.50 + 14744.1i 0.627175 + 1.08630i 0.988116 + 0.153710i \(0.0491222\pi\)
−0.360941 + 0.932589i \(0.617544\pi\)
\(570\) 0 0
\(571\) −1660.00 + 2875.20i −0.121662 + 0.210724i −0.920423 0.390924i \(-0.872156\pi\)
0.798761 + 0.601648i \(0.205489\pi\)
\(572\) −3528.00 + 6110.68i −0.257890 + 0.446679i
\(573\) 0 0
\(574\) −336.000 581.969i −0.0244327 0.0423187i
\(575\) −56880.0 −4.12532
\(576\) 0 0
\(577\) 1127.00 0.0813130 0.0406565 0.999173i \(-0.487055\pi\)
0.0406565 + 0.999173i \(0.487055\pi\)
\(578\) 4472.00 + 7745.73i 0.321818 + 0.557405i
\(579\) 0 0
\(580\) 5670.00 9820.73i 0.405921 0.703075i
\(581\) 336.000 581.969i 0.0239925 0.0415562i
\(582\) 0 0
\(583\) 3132.00 + 5424.78i 0.222494 + 0.385371i
\(584\) 2968.00 0.210303
\(585\) 0 0
\(586\) −12978.0 −0.914874
\(587\) −42.0000 72.7461i −0.00295320 0.00511508i 0.864545 0.502555i \(-0.167607\pi\)
−0.867498 + 0.497440i \(0.834273\pi\)
\(588\) 0 0
\(589\) 17248.0 29874.4i 1.20661 2.08990i
\(590\) −10584.0 + 18332.0i −0.738536 + 1.27918i
\(591\) 0 0
\(592\) 8.00000 + 13.8564i 0.000555402 + 0.000961984i
\(593\) 1743.00 0.120702 0.0603511 0.998177i \(-0.480778\pi\)
0.0603511 + 0.998177i \(0.480778\pi\)
\(594\) 0 0
\(595\) 3528.00 0.243082
\(596\) −2574.00 4458.30i −0.176905 0.306408i
\(597\) 0 0
\(598\) −8820.00 + 15276.7i −0.603138 + 1.04467i
\(599\) −8046.00 + 13936.1i −0.548832 + 0.950606i 0.449522 + 0.893269i \(0.351594\pi\)
−0.998355 + 0.0573367i \(0.981739\pi\)
\(600\) 0 0
\(601\) −10517.5 18216.8i −0.713840 1.23641i −0.963405 0.268049i \(-0.913621\pi\)
0.249565 0.968358i \(-0.419712\pi\)
\(602\) 320.000 0.0216648
\(603\) 0 0
\(604\) −2944.00 −0.198327
\(605\) −367.500 636.529i −0.0246959 0.0427745i
\(606\) 0 0
\(607\) −3388.00 + 5868.19i −0.226548 + 0.392393i −0.956783 0.290804i \(-0.906077\pi\)
0.730235 + 0.683196i \(0.239411\pi\)
\(608\) 1792.00 3103.84i 0.119532 0.207035i
\(609\) 0 0
\(610\) −8085.00 14003.6i −0.536643 0.929493i
\(611\) 4116.00 0.272530
\(612\) 0 0
\(613\) −23794.0 −1.56775 −0.783875 0.620919i \(-0.786760\pi\)
−0.783875 + 0.620919i \(0.786760\pi\)
\(614\) 1204.00 + 2085.39i 0.0791360 + 0.137068i
\(615\) 0 0
\(616\) 1152.00 1995.32i 0.0753497 0.130509i
\(617\) 10810.5 18724.3i 0.705372 1.22174i −0.261186 0.965289i \(-0.584113\pi\)
0.966557 0.256451i \(-0.0825532\pi\)
\(618\) 0 0
\(619\) −11116.0 19253.5i −0.721793 1.25018i −0.960281 0.279036i \(-0.909985\pi\)
0.238488 0.971146i \(-0.423348\pi\)
\(620\) −25872.0 −1.67588
\(621\) 0 0
\(622\) 6384.00 0.411535
\(623\) 84.0000 + 145.492i 0.00540191 + 0.00935638i
\(624\) 0 0
\(625\) −22365.5 + 38738.2i −1.43139 + 2.47924i
\(626\) 3241.00 5613.58i 0.206927 0.358408i
\(627\) 0 0
\(628\) 4298.00 + 7444.35i 0.273103 + 0.473029i
\(629\) 21.0000 0.00133120
\(630\) 0 0
\(631\) −9280.00 −0.585469 −0.292735 0.956194i \(-0.594565\pi\)
−0.292735 + 0.956194i \(0.594565\pi\)
\(632\) 2608.00 + 4517.19i 0.164147 + 0.284310i
\(633\) 0 0
\(634\) 5325.00 9223.17i 0.333569 0.577759i
\(635\) 16086.0 27861.8i 1.00528 1.74120i
\(636\) 0 0
\(637\) −6835.50 11839.4i −0.425169 0.736414i
\(638\) −9720.00 −0.603164
\(639\) 0 0
\(640\) −2688.00 −0.166020
\(641\) −9589.50 16609.5i −0.590893 1.02346i −0.994112 0.108354i \(-0.965442\pi\)
0.403219 0.915103i \(-0.367891\pi\)
\(642\) 0 0
\(643\) 1610.00 2788.60i 0.0987437 0.171029i −0.812421 0.583071i \(-0.801851\pi\)
0.911165 + 0.412042i \(0.135184\pi\)
\(644\) 2880.00 4988.31i 0.176223 0.305228i
\(645\) 0 0
\(646\) −2352.00 4073.78i −0.143248 0.248113i
\(647\) −14112.0 −0.857496 −0.428748 0.903424i \(-0.641045\pi\)
−0.428748 + 0.903424i \(0.641045\pi\)
\(648\) 0 0
\(649\) 18144.0 1.09740
\(650\) 15484.0 + 26819.1i 0.934358 + 1.61835i
\(651\) 0 0
\(652\) 6176.00 10697.1i 0.370968 0.642535i
\(653\) 11421.0 19781.8i 0.684438 1.18548i −0.289175 0.957276i \(-0.593381\pi\)
0.973613 0.228206i \(-0.0732859\pi\)
\(654\) 0 0
\(655\) −8820.00 15276.7i −0.526146 0.911312i
\(656\) 672.000 0.0399957
\(657\) 0 0
\(658\) −1344.00 −0.0796270
\(659\) −10860.0 18810.1i −0.641951 1.11189i −0.984997 0.172573i \(-0.944792\pi\)
0.343046 0.939319i \(-0.388541\pi\)
\(660\) 0 0
\(661\) −13163.5 + 22799.9i −0.774585 + 1.34162i 0.160442 + 0.987045i \(0.448708\pi\)
−0.935027 + 0.354576i \(0.884625\pi\)
\(662\) −968.000 + 1676.63i −0.0568314 + 0.0984349i
\(663\) 0 0
\(664\) 336.000 + 581.969i 0.0196375 + 0.0340132i
\(665\) 18816.0 1.09722
\(666\) 0 0
\(667\) −24300.0 −1.41064
\(668\) 336.000 + 581.969i 0.0194614 + 0.0337082i
\(669\) 0 0
\(670\) 5712.00 9893.47i 0.329364 0.570475i
\(671\) −6930.00 + 12003.1i −0.398703 + 0.690574i
\(672\) 0 0
\(673\) 9870.50 + 17096.2i 0.565349 + 0.979213i 0.997017 + 0.0771806i \(0.0245918\pi\)
−0.431668 + 0.902032i \(0.642075\pi\)
\(674\) 19780.0 1.13041
\(675\) 0 0
\(676\) 816.000 0.0464269
\(677\) 6321.00 + 10948.3i 0.358842 + 0.621532i 0.987768 0.155933i \(-0.0498385\pi\)
−0.628926 + 0.777465i \(0.716505\pi\)
\(678\) 0 0
\(679\) 4984.00 8632.54i 0.281691 0.487904i
\(680\) −1764.00 + 3055.34i −0.0994799 + 0.172304i
\(681\) 0 0
\(682\) 11088.0 + 19205.0i 0.622553 + 1.07829i
\(683\) 26172.0 1.46624 0.733121 0.680098i \(-0.238063\pi\)
0.733121 + 0.680098i \(0.238063\pi\)
\(684\) 0 0
\(685\) 15309.0 0.853908
\(686\) 4976.00 + 8618.68i 0.276945 + 0.479684i
\(687\) 0 0
\(688\) −160.000 + 277.128i −0.00886620 + 0.0153567i
\(689\) 4263.00 7383.73i 0.235715 0.408270i
\(690\) 0 0
\(691\) 4760.00 + 8244.56i 0.262053 + 0.453890i 0.966787 0.255582i \(-0.0822670\pi\)
−0.704734 + 0.709472i \(0.748934\pi\)
\(692\) 12012.0 0.659867
\(693\) 0 0
\(694\) 3120.00 0.170654
\(695\) −21462.0 37173.3i −1.17137 2.02887i
\(696\) 0 0
\(697\) 441.000 763.834i 0.0239657 0.0415097i
\(698\) −2870.00 + 4970.99i −0.155632 + 0.269562i
\(699\) 0 0
\(700\) −5056.00 8757.25i −0.272998 0.472847i
\(701\) −16773.0 −0.903720 −0.451860 0.892089i \(-0.649239\pi\)
−0.451860 + 0.892089i \(0.649239\pi\)
\(702\) 0 0
\(703\) 112.000 0.00600876
\(704\) 1152.00 + 1995.32i 0.0616728 + 0.106820i
\(705\) 0 0
\(706\) 7182.00 12439.6i 0.382859 0.663130i
\(707\) 2184.00 3782.80i 0.116178 0.201226i
\(708\) 0 0
\(709\) −6383.50 11056.5i −0.338135 0.585666i 0.645947 0.763382i \(-0.276463\pi\)
−0.984082 + 0.177716i \(0.943129\pi\)
\(710\) −37296.0 −1.97140
\(711\) 0 0
\(712\) −168.000 −0.00884279
\(713\) 27720.0 + 48012.4i 1.45599 + 2.52185i
\(714\) 0 0
\(715\) 18522.0 32081.0i 0.968788 1.67799i
\(716\) −2328.00 + 4032.21i −0.121510 + 0.210462i
\(717\) 0 0
\(718\) 8100.00 + 14029.6i 0.421016 + 0.729221i
\(719\) 24948.0 1.29402 0.647012 0.762480i \(-0.276018\pi\)
0.647012 + 0.762480i \(0.276018\pi\)
\(720\) 0 0
\(721\) −1568.00 −0.0809922
\(722\) −5685.00 9846.71i −0.293038 0.507558i
\(723\) 0 0
\(724\) 3332.00 5771.19i 0.171040 0.296250i
\(725\) −21330.0 + 36944.6i −1.09266 + 1.89254i
\(726\) 0 0
\(727\) −28.0000 48.4974i −0.00142842 0.00247410i 0.865310 0.501237i \(-0.167121\pi\)
−0.866739 + 0.498762i \(0.833788\pi\)
\(728\) −3136.00 −0.159654
\(729\) 0 0
\(730\) −15582.0 −0.790021
\(731\) 210.000 + 363.731i 0.0106253 + 0.0184036i
\(732\) 0 0
\(733\) −595.000 + 1030.57i −0.0299820 + 0.0519304i −0.880627 0.473810i \(-0.842878\pi\)
0.850645 + 0.525740i \(0.176212\pi\)
\(734\) −11144.0 + 19302.0i −0.560399 + 0.970639i
\(735\) 0 0
\(736\) 2880.00 + 4988.31i 0.144237 + 0.249825i
\(737\) −9792.00 −0.489407
\(738\) 0 0
\(739\) −26692.0 −1.32866 −0.664331 0.747439i \(-0.731283\pi\)
−0.664331 + 0.747439i \(0.731283\pi\)
\(740\) −42.0000 72.7461i −0.00208642 0.00361379i
\(741\) 0 0
\(742\) −1392.00 + 2411.01i −0.0688705 + 0.119287i
\(743\) 9426.00 16326.3i 0.465419 0.806130i −0.533801 0.845610i \(-0.679237\pi\)
0.999220 + 0.0394804i \(0.0125703\pi\)
\(744\) 0 0
\(745\) 13513.5 + 23406.1i 0.664559 + 1.15105i
\(746\) 27676.0 1.35830
\(747\) 0 0
\(748\) 3024.00 0.147819
\(749\) −1200.00 2078.46i −0.0585408 0.101396i
\(750\) 0 0
\(751\) −11308.0 + 19586.0i −0.549447 + 0.951670i 0.448865 + 0.893599i \(0.351828\pi\)
−0.998312 + 0.0580709i \(0.981505\pi\)
\(752\) 672.000 1163.94i 0.0325869 0.0564421i
\(753\) 0 0
\(754\) 6615.00 + 11457.5i 0.319501 + 0.553393i
\(755\) 15456.0 0.745035
\(756\) 0 0
\(757\) 9326.00 0.447766 0.223883 0.974616i \(-0.428127\pi\)
0.223883 + 0.974616i \(0.428127\pi\)
\(758\) −1196.00 2071.53i −0.0573096 0.0992631i
\(759\) 0 0
\(760\) −9408.00 + 16295.1i −0.449032 + 0.777746i
\(761\) 10384.5 17986.5i 0.494662 0.856780i −0.505319 0.862933i \(-0.668625\pi\)
0.999981 + 0.00615279i \(0.00195851\pi\)
\(762\) 0 0
\(763\) 4276.00 + 7406.25i 0.202885 + 0.351408i
\(764\) 8256.00 0.390958
\(765\) 0 0
\(766\) −7728.00 −0.364522
\(767\) −12348.0 21387.4i −0.581304 1.00685i
\(768\) 0 0
\(769\) 150.500 260.674i 0.00705744 0.0122238i −0.862475 0.506099i \(-0.831087\pi\)
0.869533 + 0.493876i \(0.164420\pi\)
\(770\) −6048.00 + 10475.4i −0.283058 + 0.490271i
\(771\) 0 0
\(772\) 1130.00 + 1957.22i 0.0526808 + 0.0912458i
\(773\) 17955.0 0.835442 0.417721 0.908575i \(-0.362829\pi\)
0.417721 + 0.908575i \(0.362829\pi\)
\(774\) 0 0
\(775\) 97328.0 4.51113
\(776\) 4984.00 + 8632.54i 0.230561 + 0.399343i
\(777\) 0 0
\(778\) −5070.00 + 8781.50i −0.233635 + 0.404668i
\(779\) 2352.00 4073.78i 0.108176 0.187366i
\(780\) 0 0
\(781\) 15984.0 + 27685.1i 0.732334 + 1.26844i