Properties

Label 162.4.c.d.55.1
Level $162$
Weight $4$
Character 162.55
Analytic conductor $9.558$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,4,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55830942093\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.4.c.d.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{2} +(-2.00000 - 3.46410i) q^{4} +(10.5000 + 18.1865i) q^{5} +(-4.00000 + 6.92820i) q^{7} +8.00000 q^{8} -42.0000 q^{10} +(18.0000 - 31.1769i) q^{11} +(24.5000 + 42.4352i) q^{13} +(-8.00000 - 13.8564i) q^{14} +(-8.00000 + 13.8564i) q^{16} -21.0000 q^{17} -112.000 q^{19} +(42.0000 - 72.7461i) q^{20} +(36.0000 + 62.3538i) q^{22} +(90.0000 + 155.885i) q^{23} +(-158.000 + 273.664i) q^{25} -98.0000 q^{26} +32.0000 q^{28} +(-67.5000 + 116.913i) q^{29} +(-154.000 - 266.736i) q^{31} +(-16.0000 - 27.7128i) q^{32} +(21.0000 - 36.3731i) q^{34} -168.000 q^{35} -1.00000 q^{37} +(112.000 - 193.990i) q^{38} +(84.0000 + 145.492i) q^{40} +(-21.0000 - 36.3731i) q^{41} +(-10.0000 + 17.3205i) q^{43} -144.000 q^{44} -360.000 q^{46} +(42.0000 - 72.7461i) q^{47} +(139.500 + 241.621i) q^{49} +(-316.000 - 547.328i) q^{50} +(98.0000 - 169.741i) q^{52} +174.000 q^{53} +756.000 q^{55} +(-32.0000 + 55.4256i) q^{56} +(-135.000 - 233.827i) q^{58} +(252.000 + 436.477i) q^{59} +(192.500 - 333.420i) q^{61} +616.000 q^{62} +64.0000 q^{64} +(-514.500 + 891.140i) q^{65} +(-136.000 - 235.559i) q^{67} +(42.0000 + 72.7461i) q^{68} +(168.000 - 290.985i) q^{70} +888.000 q^{71} +371.000 q^{73} +(1.00000 - 1.73205i) q^{74} +(224.000 + 387.979i) q^{76} +(144.000 + 249.415i) q^{77} +(326.000 - 564.649i) q^{79} -336.000 q^{80} +84.0000 q^{82} +(42.0000 - 72.7461i) q^{83} +(-220.500 - 381.917i) q^{85} +(-20.0000 - 34.6410i) q^{86} +(144.000 - 249.415i) q^{88} -21.0000 q^{89} -392.000 q^{91} +(360.000 - 623.538i) q^{92} +(84.0000 + 145.492i) q^{94} +(-1176.00 - 2036.89i) q^{95} +(623.000 - 1079.07i) q^{97} -558.000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 4 q^{4} + 21 q^{5} - 8 q^{7} + 16 q^{8} - 84 q^{10} + 36 q^{11} + 49 q^{13} - 16 q^{14} - 16 q^{16} - 42 q^{17} - 224 q^{19} + 84 q^{20} + 72 q^{22} + 180 q^{23} - 316 q^{25} - 196 q^{26}+ \cdots - 1116 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.73205i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) 10.5000 + 18.1865i 0.939149 + 1.62665i 0.767064 + 0.641571i \(0.221717\pi\)
0.172085 + 0.985082i \(0.444950\pi\)
\(6\) 0 0
\(7\) −4.00000 + 6.92820i −0.215980 + 0.374088i −0.953575 0.301155i \(-0.902628\pi\)
0.737595 + 0.675243i \(0.235961\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) −42.0000 −1.32816
\(11\) 18.0000 31.1769i 0.493382 0.854563i −0.506589 0.862188i \(-0.669094\pi\)
0.999971 + 0.00762479i \(0.00242707\pi\)
\(12\) 0 0
\(13\) 24.5000 + 42.4352i 0.522698 + 0.905340i 0.999651 + 0.0264111i \(0.00840789\pi\)
−0.476953 + 0.878929i \(0.658259\pi\)
\(14\) −8.00000 13.8564i −0.152721 0.264520i
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −21.0000 −0.299603 −0.149801 0.988716i \(-0.547863\pi\)
−0.149801 + 0.988716i \(0.547863\pi\)
\(18\) 0 0
\(19\) −112.000 −1.35235 −0.676173 0.736743i \(-0.736363\pi\)
−0.676173 + 0.736743i \(0.736363\pi\)
\(20\) 42.0000 72.7461i 0.469574 0.813327i
\(21\) 0 0
\(22\) 36.0000 + 62.3538i 0.348874 + 0.604267i
\(23\) 90.0000 + 155.885i 0.815926 + 1.41323i 0.908661 + 0.417534i \(0.137106\pi\)
−0.0927351 + 0.995691i \(0.529561\pi\)
\(24\) 0 0
\(25\) −158.000 + 273.664i −1.26400 + 2.18931i
\(26\) −98.0000 −0.739207
\(27\) 0 0
\(28\) 32.0000 0.215980
\(29\) −67.5000 + 116.913i −0.432222 + 0.748630i −0.997064 0.0765685i \(-0.975604\pi\)
0.564842 + 0.825199i \(0.308937\pi\)
\(30\) 0 0
\(31\) −154.000 266.736i −0.892233 1.54539i −0.837192 0.546908i \(-0.815805\pi\)
−0.0550403 0.998484i \(-0.517529\pi\)
\(32\) −16.0000 27.7128i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 21.0000 36.3731i 0.105926 0.183469i
\(35\) −168.000 −0.811348
\(36\) 0 0
\(37\) −1.00000 −0.00444322 −0.00222161 0.999998i \(-0.500707\pi\)
−0.00222161 + 0.999998i \(0.500707\pi\)
\(38\) 112.000 193.990i 0.478126 0.828139i
\(39\) 0 0
\(40\) 84.0000 + 145.492i 0.332039 + 0.575109i
\(41\) −21.0000 36.3731i −0.0799914 0.138549i 0.823255 0.567672i \(-0.192156\pi\)
−0.903246 + 0.429123i \(0.858823\pi\)
\(42\) 0 0
\(43\) −10.0000 + 17.3205i −0.0354648 + 0.0614268i −0.883213 0.468972i \(-0.844624\pi\)
0.847748 + 0.530399i \(0.177958\pi\)
\(44\) −144.000 −0.493382
\(45\) 0 0
\(46\) −360.000 −1.15389
\(47\) 42.0000 72.7461i 0.130347 0.225768i −0.793463 0.608618i \(-0.791724\pi\)
0.923811 + 0.382850i \(0.125057\pi\)
\(48\) 0 0
\(49\) 139.500 + 241.621i 0.406706 + 0.704435i
\(50\) −316.000 547.328i −0.893783 1.54808i
\(51\) 0 0
\(52\) 98.0000 169.741i 0.261349 0.452670i
\(53\) 174.000 0.450957 0.225479 0.974248i \(-0.427605\pi\)
0.225479 + 0.974248i \(0.427605\pi\)
\(54\) 0 0
\(55\) 756.000 1.85344
\(56\) −32.0000 + 55.4256i −0.0763604 + 0.132260i
\(57\) 0 0
\(58\) −135.000 233.827i −0.305627 0.529362i
\(59\) 252.000 + 436.477i 0.556061 + 0.963126i 0.997820 + 0.0659923i \(0.0210213\pi\)
−0.441759 + 0.897134i \(0.645645\pi\)
\(60\) 0 0
\(61\) 192.500 333.420i 0.404051 0.699837i −0.590160 0.807287i \(-0.700935\pi\)
0.994210 + 0.107450i \(0.0342686\pi\)
\(62\) 616.000 1.26181
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −514.500 + 891.140i −0.981783 + 1.70050i
\(66\) 0 0
\(67\) −136.000 235.559i −0.247986 0.429524i 0.714981 0.699144i \(-0.246435\pi\)
−0.962967 + 0.269620i \(0.913102\pi\)
\(68\) 42.0000 + 72.7461i 0.0749007 + 0.129732i
\(69\) 0 0
\(70\) 168.000 290.985i 0.286855 0.496847i
\(71\) 888.000 1.48431 0.742156 0.670227i \(-0.233803\pi\)
0.742156 + 0.670227i \(0.233803\pi\)
\(72\) 0 0
\(73\) 371.000 0.594826 0.297413 0.954749i \(-0.403876\pi\)
0.297413 + 0.954749i \(0.403876\pi\)
\(74\) 1.00000 1.73205i 0.00157091 0.00272090i
\(75\) 0 0
\(76\) 224.000 + 387.979i 0.338086 + 0.585583i
\(77\) 144.000 + 249.415i 0.213121 + 0.369137i
\(78\) 0 0
\(79\) 326.000 564.649i 0.464277 0.804151i −0.534892 0.844921i \(-0.679648\pi\)
0.999169 + 0.0407696i \(0.0129810\pi\)
\(80\) −336.000 −0.469574
\(81\) 0 0
\(82\) 84.0000 0.113125
\(83\) 42.0000 72.7461i 0.0555434 0.0962039i −0.836917 0.547330i \(-0.815644\pi\)
0.892460 + 0.451126i \(0.148978\pi\)
\(84\) 0 0
\(85\) −220.500 381.917i −0.281372 0.487350i
\(86\) −20.0000 34.6410i −0.0250774 0.0434353i
\(87\) 0 0
\(88\) 144.000 249.415i 0.174437 0.302134i
\(89\) −21.0000 −0.0250112 −0.0125056 0.999922i \(-0.503981\pi\)
−0.0125056 + 0.999922i \(0.503981\pi\)
\(90\) 0 0
\(91\) −392.000 −0.451569
\(92\) 360.000 623.538i 0.407963 0.706613i
\(93\) 0 0
\(94\) 84.0000 + 145.492i 0.0921696 + 0.159642i
\(95\) −1176.00 2036.89i −1.27005 2.19980i
\(96\) 0 0
\(97\) 623.000 1079.07i 0.652124 1.12951i −0.330482 0.943812i \(-0.607211\pi\)
0.982606 0.185700i \(-0.0594554\pi\)
\(98\) −558.000 −0.575168
\(99\) 0 0
\(100\) 1264.00 1.26400
\(101\) 273.000 472.850i 0.268956 0.465845i −0.699637 0.714499i \(-0.746655\pi\)
0.968592 + 0.248654i \(0.0799882\pi\)
\(102\) 0 0
\(103\) 98.0000 + 169.741i 0.0937498 + 0.162379i 0.909086 0.416608i \(-0.136781\pi\)
−0.815336 + 0.578988i \(0.803448\pi\)
\(104\) 196.000 + 339.482i 0.184802 + 0.320086i
\(105\) 0 0
\(106\) −174.000 + 301.377i −0.159437 + 0.276154i
\(107\) 300.000 0.271048 0.135524 0.990774i \(-0.456728\pi\)
0.135524 + 0.990774i \(0.456728\pi\)
\(108\) 0 0
\(109\) −1069.00 −0.939373 −0.469686 0.882833i \(-0.655633\pi\)
−0.469686 + 0.882833i \(0.655633\pi\)
\(110\) −756.000 + 1309.43i −0.655289 + 1.13499i
\(111\) 0 0
\(112\) −64.0000 110.851i −0.0539949 0.0935220i
\(113\) 448.500 + 776.825i 0.373375 + 0.646704i 0.990082 0.140488i \(-0.0448673\pi\)
−0.616708 + 0.787192i \(0.711534\pi\)
\(114\) 0 0
\(115\) −1890.00 + 3273.58i −1.53255 + 2.65446i
\(116\) 540.000 0.432222
\(117\) 0 0
\(118\) −1008.00 −0.786389
\(119\) 84.0000 145.492i 0.0647081 0.112078i
\(120\) 0 0
\(121\) 17.5000 + 30.3109i 0.0131480 + 0.0227730i
\(122\) 385.000 + 666.840i 0.285707 + 0.494859i
\(123\) 0 0
\(124\) −616.000 + 1066.94i −0.446116 + 0.772696i
\(125\) −4011.00 −2.87004
\(126\) 0 0
\(127\) 1532.00 1.07042 0.535209 0.844720i \(-0.320233\pi\)
0.535209 + 0.844720i \(0.320233\pi\)
\(128\) −64.0000 + 110.851i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −1029.00 1782.28i −0.694225 1.20243i
\(131\) 420.000 + 727.461i 0.280119 + 0.485180i 0.971414 0.237393i \(-0.0762928\pi\)
−0.691295 + 0.722573i \(0.742959\pi\)
\(132\) 0 0
\(133\) 448.000 775.959i 0.292079 0.505896i
\(134\) 544.000 0.350705
\(135\) 0 0
\(136\) −168.000 −0.105926
\(137\) 364.500 631.333i 0.227309 0.393711i −0.729701 0.683767i \(-0.760341\pi\)
0.957010 + 0.290056i \(0.0936739\pi\)
\(138\) 0 0
\(139\) 1022.00 + 1770.16i 0.623632 + 1.08016i 0.988804 + 0.149223i \(0.0476771\pi\)
−0.365171 + 0.930940i \(0.618990\pi\)
\(140\) 336.000 + 581.969i 0.202837 + 0.351324i
\(141\) 0 0
\(142\) −888.000 + 1538.06i −0.524784 + 0.908952i
\(143\) 1764.00 1.03156
\(144\) 0 0
\(145\) −2835.00 −1.62368
\(146\) −371.000 + 642.591i −0.210303 + 0.364255i
\(147\) 0 0
\(148\) 2.00000 + 3.46410i 0.00111080 + 0.00192397i
\(149\) −643.500 1114.57i −0.353809 0.612816i 0.633104 0.774067i \(-0.281780\pi\)
−0.986913 + 0.161251i \(0.948447\pi\)
\(150\) 0 0
\(151\) 368.000 637.395i 0.198327 0.343513i −0.749659 0.661824i \(-0.769782\pi\)
0.947986 + 0.318311i \(0.103116\pi\)
\(152\) −896.000 −0.478126
\(153\) 0 0
\(154\) −576.000 −0.301399
\(155\) 3234.00 5601.45i 1.67588 2.90271i
\(156\) 0 0
\(157\) 1074.50 + 1861.09i 0.546207 + 0.946058i 0.998530 + 0.0542035i \(0.0172620\pi\)
−0.452323 + 0.891854i \(0.649405\pi\)
\(158\) 652.000 + 1129.30i 0.328293 + 0.568621i
\(159\) 0 0
\(160\) 336.000 581.969i 0.166020 0.287554i
\(161\) −1440.00 −0.704894
\(162\) 0 0
\(163\) −3088.00 −1.48387 −0.741935 0.670472i \(-0.766092\pi\)
−0.741935 + 0.670472i \(0.766092\pi\)
\(164\) −84.0000 + 145.492i −0.0399957 + 0.0692746i
\(165\) 0 0
\(166\) 84.0000 + 145.492i 0.0392751 + 0.0680264i
\(167\) 84.0000 + 145.492i 0.0389228 + 0.0674163i 0.884831 0.465913i \(-0.154274\pi\)
−0.845908 + 0.533329i \(0.820941\pi\)
\(168\) 0 0
\(169\) −102.000 + 176.669i −0.0464269 + 0.0804138i
\(170\) 882.000 0.397919
\(171\) 0 0
\(172\) 80.0000 0.0354648
\(173\) −1501.50 + 2600.67i −0.659867 + 1.14292i 0.320783 + 0.947153i \(0.396054\pi\)
−0.980650 + 0.195770i \(0.937279\pi\)
\(174\) 0 0
\(175\) −1264.00 2189.31i −0.545997 0.945694i
\(176\) 288.000 + 498.831i 0.123346 + 0.213641i
\(177\) 0 0
\(178\) 21.0000 36.3731i 0.00884279 0.0153162i
\(179\) 1164.00 0.486042 0.243021 0.970021i \(-0.421862\pi\)
0.243021 + 0.970021i \(0.421862\pi\)
\(180\) 0 0
\(181\) −1666.00 −0.684159 −0.342080 0.939671i \(-0.611131\pi\)
−0.342080 + 0.939671i \(0.611131\pi\)
\(182\) 392.000 678.964i 0.159654 0.276528i
\(183\) 0 0
\(184\) 720.000 + 1247.08i 0.288473 + 0.499651i
\(185\) −10.5000 18.1865i −0.00417284 0.00722757i
\(186\) 0 0
\(187\) −378.000 + 654.715i −0.147819 + 0.256030i
\(188\) −336.000 −0.130347
\(189\) 0 0
\(190\) 4704.00 1.79613
\(191\) −1032.00 + 1787.48i −0.390958 + 0.677158i −0.992576 0.121625i \(-0.961189\pi\)
0.601619 + 0.798784i \(0.294523\pi\)
\(192\) 0 0
\(193\) 282.500 + 489.304i 0.105362 + 0.182492i 0.913886 0.405971i \(-0.133067\pi\)
−0.808524 + 0.588463i \(0.799733\pi\)
\(194\) 1246.00 + 2158.14i 0.461122 + 0.798686i
\(195\) 0 0
\(196\) 558.000 966.484i 0.203353 0.352217i
\(197\) 4731.00 1.71101 0.855507 0.517791i \(-0.173246\pi\)
0.855507 + 0.517791i \(0.173246\pi\)
\(198\) 0 0
\(199\) 4676.00 1.66569 0.832846 0.553504i \(-0.186710\pi\)
0.832846 + 0.553504i \(0.186710\pi\)
\(200\) −1264.00 + 2189.31i −0.446891 + 0.774039i
\(201\) 0 0
\(202\) 546.000 + 945.700i 0.190180 + 0.329402i
\(203\) −540.000 935.307i −0.186702 0.323378i
\(204\) 0 0
\(205\) 441.000 763.834i 0.150248 0.260237i
\(206\) −392.000 −0.132582
\(207\) 0 0
\(208\) −784.000 −0.261349
\(209\) −2016.00 + 3491.81i −0.667223 + 1.15566i
\(210\) 0 0
\(211\) −1690.00 2927.17i −0.551395 0.955045i −0.998174 0.0604002i \(-0.980762\pi\)
0.446779 0.894644i \(-0.352571\pi\)
\(212\) −348.000 602.754i −0.112739 0.195270i
\(213\) 0 0
\(214\) −300.000 + 519.615i −0.0958298 + 0.165982i
\(215\) −420.000 −0.133227
\(216\) 0 0
\(217\) 2464.00 0.770817
\(218\) 1069.00 1851.56i 0.332118 0.575246i
\(219\) 0 0
\(220\) −1512.00 2618.86i −0.463359 0.802562i
\(221\) −514.500 891.140i −0.156602 0.271242i
\(222\) 0 0
\(223\) 2618.00 4534.51i 0.786163 1.36167i −0.142140 0.989847i \(-0.545398\pi\)
0.928302 0.371827i \(-0.121268\pi\)
\(224\) 256.000 0.0763604
\(225\) 0 0
\(226\) −1794.00 −0.528031
\(227\) 1932.00 3346.32i 0.564896 0.978428i −0.432164 0.901795i \(-0.642250\pi\)
0.997059 0.0766330i \(-0.0244170\pi\)
\(228\) 0 0
\(229\) 1956.50 + 3388.76i 0.564581 + 0.977884i 0.997088 + 0.0762532i \(0.0242957\pi\)
−0.432507 + 0.901631i \(0.642371\pi\)
\(230\) −3780.00 6547.15i −1.08368 1.87698i
\(231\) 0 0
\(232\) −540.000 + 935.307i −0.152814 + 0.264681i
\(233\) −6333.00 −1.78064 −0.890319 0.455337i \(-0.849519\pi\)
−0.890319 + 0.455337i \(0.849519\pi\)
\(234\) 0 0
\(235\) 1764.00 0.489662
\(236\) 1008.00 1745.91i 0.278031 0.481563i
\(237\) 0 0
\(238\) 168.000 + 290.985i 0.0457556 + 0.0792509i
\(239\) −1914.00 3315.15i −0.518018 0.897234i −0.999781 0.0209322i \(-0.993337\pi\)
0.481763 0.876302i \(-0.339997\pi\)
\(240\) 0 0
\(241\) 738.500 1279.12i 0.197390 0.341889i −0.750291 0.661107i \(-0.770087\pi\)
0.947681 + 0.319218i \(0.103420\pi\)
\(242\) −70.0000 −0.0185941
\(243\) 0 0
\(244\) −1540.00 −0.404051
\(245\) −2929.50 + 5074.04i −0.763914 + 1.32314i
\(246\) 0 0
\(247\) −2744.00 4752.75i −0.706869 1.22433i
\(248\) −1232.00 2133.89i −0.315452 0.546379i
\(249\) 0 0
\(250\) 4011.00 6947.26i 1.01471 1.75753i
\(251\) 3612.00 0.908316 0.454158 0.890921i \(-0.349940\pi\)
0.454158 + 0.890921i \(0.349940\pi\)
\(252\) 0 0
\(253\) 6480.00 1.61025
\(254\) −1532.00 + 2653.50i −0.378450 + 0.655494i
\(255\) 0 0
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) −199.500 345.544i −0.0484221 0.0838695i 0.840798 0.541348i \(-0.182086\pi\)
−0.889221 + 0.457479i \(0.848753\pi\)
\(258\) 0 0
\(259\) 4.00000 6.92820i 0.000959644 0.00166215i
\(260\) 4116.00 0.981783
\(261\) 0 0
\(262\) −1680.00 −0.396148
\(263\) 1614.00 2795.53i 0.378416 0.655436i −0.612416 0.790536i \(-0.709802\pi\)
0.990832 + 0.135100i \(0.0431354\pi\)
\(264\) 0 0
\(265\) 1827.00 + 3164.46i 0.423516 + 0.733551i
\(266\) 896.000 + 1551.92i 0.206531 + 0.357722i
\(267\) 0 0
\(268\) −544.000 + 942.236i −0.123993 + 0.214762i
\(269\) 147.000 0.0333188 0.0166594 0.999861i \(-0.494697\pi\)
0.0166594 + 0.999861i \(0.494697\pi\)
\(270\) 0 0
\(271\) 3332.00 0.746880 0.373440 0.927654i \(-0.378178\pi\)
0.373440 + 0.927654i \(0.378178\pi\)
\(272\) 168.000 290.985i 0.0374504 0.0648659i
\(273\) 0 0
\(274\) 729.000 + 1262.67i 0.160732 + 0.278396i
\(275\) 5688.00 + 9851.90i 1.24727 + 2.16034i
\(276\) 0 0
\(277\) −1207.00 + 2090.59i −0.261811 + 0.453470i −0.966723 0.255825i \(-0.917653\pi\)
0.704912 + 0.709294i \(0.250986\pi\)
\(278\) −4088.00 −0.881949
\(279\) 0 0
\(280\) −1344.00 −0.286855
\(281\) −1777.50 + 3078.72i −0.377355 + 0.653598i −0.990677 0.136235i \(-0.956500\pi\)
0.613321 + 0.789833i \(0.289833\pi\)
\(282\) 0 0
\(283\) −2674.00 4631.50i −0.561671 0.972842i −0.997351 0.0727406i \(-0.976825\pi\)
0.435680 0.900102i \(-0.356508\pi\)
\(284\) −1776.00 3076.12i −0.371078 0.642726i
\(285\) 0 0
\(286\) −1764.00 + 3055.34i −0.364712 + 0.631699i
\(287\) 336.000 0.0691061
\(288\) 0 0
\(289\) −4472.00 −0.910238
\(290\) 2835.00 4910.36i 0.574058 0.994298i
\(291\) 0 0
\(292\) −742.000 1285.18i −0.148706 0.257567i
\(293\) 3244.50 + 5619.64i 0.646914 + 1.12049i 0.983856 + 0.178962i \(0.0572739\pi\)
−0.336942 + 0.941525i \(0.609393\pi\)
\(294\) 0 0
\(295\) −5292.00 + 9166.01i −1.04445 + 1.80904i
\(296\) −8.00000 −0.00157091
\(297\) 0 0
\(298\) 2574.00 0.500362
\(299\) −4410.00 + 7638.34i −0.852966 + 1.47738i
\(300\) 0 0
\(301\) −80.0000 138.564i −0.0153193 0.0265339i
\(302\) 736.000 + 1274.79i 0.140239 + 0.242900i
\(303\) 0 0
\(304\) 896.000 1551.92i 0.169043 0.292791i
\(305\) 8085.00 1.51785
\(306\) 0 0
\(307\) −1204.00 −0.223830 −0.111915 0.993718i \(-0.535698\pi\)
−0.111915 + 0.993718i \(0.535698\pi\)
\(308\) 576.000 997.661i 0.106561 0.184568i
\(309\) 0 0
\(310\) 6468.00 + 11202.9i 1.18502 + 2.05252i
\(311\) −1596.00 2764.35i −0.291000 0.504026i 0.683047 0.730375i \(-0.260654\pi\)
−0.974046 + 0.226349i \(0.927321\pi\)
\(312\) 0 0
\(313\) 1620.50 2806.79i 0.292639 0.506866i −0.681794 0.731544i \(-0.738800\pi\)
0.974433 + 0.224678i \(0.0721332\pi\)
\(314\) −4298.00 −0.772453
\(315\) 0 0
\(316\) −2608.00 −0.464277
\(317\) 2662.50 4611.59i 0.471738 0.817074i −0.527739 0.849406i \(-0.676960\pi\)
0.999477 + 0.0323325i \(0.0102935\pi\)
\(318\) 0 0
\(319\) 2430.00 + 4208.88i 0.426501 + 0.738722i
\(320\) 672.000 + 1163.94i 0.117394 + 0.203332i
\(321\) 0 0
\(322\) 1440.00 2494.15i 0.249218 0.431658i
\(323\) 2352.00 0.405167
\(324\) 0 0
\(325\) −15484.0 −2.64276
\(326\) 3088.00 5348.57i 0.524627 0.908681i
\(327\) 0 0
\(328\) −168.000 290.985i −0.0282812 0.0489846i
\(329\) 336.000 + 581.969i 0.0563048 + 0.0975228i
\(330\) 0 0
\(331\) −484.000 + 838.313i −0.0803717 + 0.139208i −0.903410 0.428779i \(-0.858944\pi\)
0.823038 + 0.567986i \(0.192277\pi\)
\(332\) −336.000 −0.0555434
\(333\) 0 0
\(334\) −336.000 −0.0550452
\(335\) 2856.00 4946.74i 0.465791 0.806773i
\(336\) 0 0
\(337\) −4945.00 8564.99i −0.799321 1.38447i −0.920059 0.391781i \(-0.871859\pi\)
0.120737 0.992685i \(-0.461474\pi\)
\(338\) −204.000 353.338i −0.0328288 0.0568612i
\(339\) 0 0
\(340\) −882.000 + 1527.67i −0.140686 + 0.243675i
\(341\) −11088.0 −1.76085
\(342\) 0 0
\(343\) −4976.00 −0.783320
\(344\) −80.0000 + 138.564i −0.0125387 + 0.0217177i
\(345\) 0 0
\(346\) −3003.00 5201.35i −0.466596 0.808168i
\(347\) −780.000 1351.00i −0.120670 0.209007i 0.799362 0.600850i \(-0.205171\pi\)
−0.920032 + 0.391843i \(0.871838\pi\)
\(348\) 0 0
\(349\) −1435.00 + 2485.49i −0.220097 + 0.381219i −0.954837 0.297130i \(-0.903971\pi\)
0.734740 + 0.678348i \(0.237304\pi\)
\(350\) 5056.00 0.772156
\(351\) 0 0
\(352\) −1152.00 −0.174437
\(353\) 3591.00 6219.79i 0.541444 0.937808i −0.457378 0.889273i \(-0.651211\pi\)
0.998821 0.0485356i \(-0.0154554\pi\)
\(354\) 0 0
\(355\) 9324.00 + 16149.6i 1.39399 + 2.41446i
\(356\) 42.0000 + 72.7461i 0.00625280 + 0.0108302i
\(357\) 0 0
\(358\) −1164.00 + 2016.11i −0.171842 + 0.297638i
\(359\) −8100.00 −1.19081 −0.595406 0.803425i \(-0.703009\pi\)
−0.595406 + 0.803425i \(0.703009\pi\)
\(360\) 0 0
\(361\) 5685.00 0.828838
\(362\) 1666.00 2885.60i 0.241887 0.418960i
\(363\) 0 0
\(364\) 784.000 + 1357.93i 0.112892 + 0.195535i
\(365\) 3895.50 + 6747.20i 0.558630 + 0.967575i
\(366\) 0 0
\(367\) −5572.00 + 9650.99i −0.792523 + 1.37269i 0.131877 + 0.991266i \(0.457900\pi\)
−0.924400 + 0.381424i \(0.875434\pi\)
\(368\) −2880.00 −0.407963
\(369\) 0 0
\(370\) 42.0000 0.00590129
\(371\) −696.000 + 1205.51i −0.0973976 + 0.168698i
\(372\) 0 0
\(373\) −6919.00 11984.1i −0.960462 1.66357i −0.721343 0.692578i \(-0.756475\pi\)
−0.239119 0.970990i \(-0.576859\pi\)
\(374\) −756.000 1309.43i −0.104524 0.181040i
\(375\) 0 0
\(376\) 336.000 581.969i 0.0460848 0.0798212i
\(377\) −6615.00 −0.903687
\(378\) 0 0
\(379\) 1196.00 0.162096 0.0810480 0.996710i \(-0.474173\pi\)
0.0810480 + 0.996710i \(0.474173\pi\)
\(380\) −4704.00 + 8147.57i −0.635027 + 1.09990i
\(381\) 0 0
\(382\) −2064.00 3574.95i −0.276449 0.478823i
\(383\) 1932.00 + 3346.32i 0.257756 + 0.446447i 0.965640 0.259882i \(-0.0836836\pi\)
−0.707884 + 0.706328i \(0.750350\pi\)
\(384\) 0 0
\(385\) −3024.00 + 5237.72i −0.400305 + 0.693348i
\(386\) −1130.00 −0.149004
\(387\) 0 0
\(388\) −4984.00 −0.652124
\(389\) −2535.00 + 4390.75i −0.330410 + 0.572287i −0.982592 0.185775i \(-0.940520\pi\)
0.652182 + 0.758062i \(0.273854\pi\)
\(390\) 0 0
\(391\) −1890.00 3273.58i −0.244454 0.423406i
\(392\) 1116.00 + 1932.97i 0.143792 + 0.249055i
\(393\) 0 0
\(394\) −4731.00 + 8194.33i −0.604935 + 1.04778i
\(395\) 13692.0 1.74410
\(396\) 0 0
\(397\) 15239.0 1.92651 0.963254 0.268593i \(-0.0865587\pi\)
0.963254 + 0.268593i \(0.0865587\pi\)
\(398\) −4676.00 + 8099.07i −0.588911 + 1.02002i
\(399\) 0 0
\(400\) −2528.00 4378.62i −0.316000 0.547328i
\(401\) −853.500 1478.31i −0.106289 0.184097i 0.807975 0.589216i \(-0.200563\pi\)
−0.914264 + 0.405119i \(0.867230\pi\)
\(402\) 0 0
\(403\) 7546.00 13070.1i 0.932737 1.61555i
\(404\) −2184.00 −0.268956
\(405\) 0 0
\(406\) 2160.00 0.264037
\(407\) −18.0000 + 31.1769i −0.00219220 + 0.00379701i
\(408\) 0 0
\(409\) 6660.50 + 11536.3i 0.805234 + 1.39471i 0.916133 + 0.400874i \(0.131293\pi\)
−0.110900 + 0.993832i \(0.535373\pi\)
\(410\) 882.000 + 1527.67i 0.106241 + 0.184015i
\(411\) 0 0
\(412\) 392.000 678.964i 0.0468749 0.0811897i
\(413\) −4032.00 −0.480392
\(414\) 0 0
\(415\) 1764.00 0.208654
\(416\) 784.000 1357.93i 0.0924009 0.160043i
\(417\) 0 0
\(418\) −4032.00 6983.63i −0.471798 0.817178i
\(419\) −6972.00 12075.9i −0.812899 1.40798i −0.910827 0.412788i \(-0.864555\pi\)
0.0979285 0.995193i \(-0.468778\pi\)
\(420\) 0 0
\(421\) 5418.50 9385.12i 0.627272 1.08647i −0.360825 0.932634i \(-0.617505\pi\)
0.988097 0.153833i \(-0.0491619\pi\)
\(422\) 6760.00 0.779791
\(423\) 0 0
\(424\) 1392.00 0.159437
\(425\) 3318.00 5746.94i 0.378698 0.655924i
\(426\) 0 0
\(427\) 1540.00 + 2667.36i 0.174534 + 0.302301i
\(428\) −600.000 1039.23i −0.0677619 0.117367i
\(429\) 0 0
\(430\) 420.000 727.461i 0.0471028 0.0815844i
\(431\) −12612.0 −1.40951 −0.704755 0.709451i \(-0.748943\pi\)
−0.704755 + 0.709451i \(0.748943\pi\)
\(432\) 0 0
\(433\) −9709.00 −1.07756 −0.538781 0.842446i \(-0.681115\pi\)
−0.538781 + 0.842446i \(0.681115\pi\)
\(434\) −2464.00 + 4267.77i −0.272525 + 0.472027i
\(435\) 0 0
\(436\) 2138.00 + 3703.12i 0.234843 + 0.406760i
\(437\) −10080.0 17459.1i −1.10341 1.91117i
\(438\) 0 0
\(439\) −5194.00 + 8996.27i −0.564684 + 0.978061i 0.432395 + 0.901684i \(0.357668\pi\)
−0.997079 + 0.0763766i \(0.975665\pi\)
\(440\) 6048.00 0.655289
\(441\) 0 0
\(442\) 2058.00 0.221469
\(443\) −1254.00 + 2171.99i −0.134491 + 0.232945i −0.925403 0.378985i \(-0.876273\pi\)
0.790912 + 0.611930i \(0.209606\pi\)
\(444\) 0 0
\(445\) −220.500 381.917i −0.0234892 0.0406845i
\(446\) 5236.00 + 9069.02i 0.555901 + 0.962849i
\(447\) 0 0
\(448\) −256.000 + 443.405i −0.0269975 + 0.0467610i
\(449\) 13698.0 1.43975 0.719876 0.694103i \(-0.244199\pi\)
0.719876 + 0.694103i \(0.244199\pi\)
\(450\) 0 0
\(451\) −1512.00 −0.157865
\(452\) 1794.00 3107.30i 0.186687 0.323352i
\(453\) 0 0
\(454\) 3864.00 + 6692.64i 0.399442 + 0.691853i
\(455\) −4116.00 7129.12i −0.424090 0.734546i
\(456\) 0 0
\(457\) 4872.50 8439.42i 0.498744 0.863850i −0.501255 0.865300i \(-0.667128\pi\)
0.999999 + 0.00144988i \(0.000461511\pi\)
\(458\) −7826.00 −0.798439
\(459\) 0 0
\(460\) 15120.0 1.53255
\(461\) 8757.00 15167.6i 0.884716 1.53237i 0.0386775 0.999252i \(-0.487685\pi\)
0.846039 0.533122i \(-0.178981\pi\)
\(462\) 0 0
\(463\) −2320.00 4018.36i −0.232872 0.403345i 0.725780 0.687926i \(-0.241479\pi\)
−0.958652 + 0.284581i \(0.908146\pi\)
\(464\) −1080.00 1870.61i −0.108055 0.187158i
\(465\) 0 0
\(466\) 6333.00 10969.1i 0.629551 1.09041i
\(467\) 4368.00 0.432820 0.216410 0.976303i \(-0.430565\pi\)
0.216410 + 0.976303i \(0.430565\pi\)
\(468\) 0 0
\(469\) 2176.00 0.214240
\(470\) −1764.00 + 3055.34i −0.173122 + 0.299856i
\(471\) 0 0
\(472\) 2016.00 + 3491.81i 0.196597 + 0.340516i
\(473\) 360.000 + 623.538i 0.0349954 + 0.0606138i
\(474\) 0 0
\(475\) 17696.0 30650.4i 1.70936 2.96071i
\(476\) −672.000 −0.0647081
\(477\) 0 0
\(478\) 7656.00 0.732588
\(479\) −9408.00 + 16295.1i −0.897416 + 1.55437i −0.0666313 + 0.997778i \(0.521225\pi\)
−0.830785 + 0.556593i \(0.812108\pi\)
\(480\) 0 0
\(481\) −24.5000 42.4352i −0.00232246 0.00402262i
\(482\) 1477.00 + 2558.24i 0.139576 + 0.241752i
\(483\) 0 0
\(484\) 70.0000 121.244i 0.00657400 0.0113865i
\(485\) 26166.0 2.44977
\(486\) 0 0
\(487\) −13756.0 −1.27997 −0.639983 0.768389i \(-0.721059\pi\)
−0.639983 + 0.768389i \(0.721059\pi\)
\(488\) 1540.00 2667.36i 0.142854 0.247430i
\(489\) 0 0
\(490\) −5859.00 10148.1i −0.540169 0.935600i
\(491\) 3870.00 + 6703.04i 0.355704 + 0.616097i 0.987238 0.159251i \(-0.0509078\pi\)
−0.631534 + 0.775348i \(0.717574\pi\)
\(492\) 0 0
\(493\) 1417.50 2455.18i 0.129495 0.224292i
\(494\) 10976.0 0.999663
\(495\) 0 0
\(496\) 4928.00 0.446116
\(497\) −3552.00 + 6152.24i −0.320581 + 0.555263i
\(498\) 0 0
\(499\) −1198.00 2075.00i −0.107475 0.186152i 0.807272 0.590180i \(-0.200943\pi\)
−0.914747 + 0.404028i \(0.867610\pi\)
\(500\) 8022.00 + 13894.5i 0.717509 + 1.24276i
\(501\) 0 0
\(502\) −3612.00 + 6256.17i −0.321138 + 0.556228i
\(503\) −12096.0 −1.07223 −0.536117 0.844144i \(-0.680110\pi\)
−0.536117 + 0.844144i \(0.680110\pi\)
\(504\) 0 0
\(505\) 11466.0 1.01036
\(506\) −6480.00 + 11223.7i −0.569311 + 0.986075i
\(507\) 0 0
\(508\) −3064.00 5307.00i −0.267604 0.463504i
\(509\) 861.000 + 1491.30i 0.0749767 + 0.129864i 0.901076 0.433661i \(-0.142778\pi\)
−0.826099 + 0.563524i \(0.809445\pi\)
\(510\) 0 0
\(511\) −1484.00 + 2570.36i −0.128470 + 0.222517i
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) 798.000 0.0684791
\(515\) −2058.00 + 3564.56i −0.176090 + 0.304997i
\(516\) 0 0
\(517\) −1512.00 2618.86i −0.128622 0.222780i
\(518\) 8.00000 + 13.8564i 0.000678571 + 0.00117532i
\(519\) 0 0
\(520\) −4116.00 + 7129.12i −0.347113 + 0.601217i
\(521\) −2982.00 −0.250756 −0.125378 0.992109i \(-0.540014\pi\)
−0.125378 + 0.992109i \(0.540014\pi\)
\(522\) 0 0
\(523\) 812.000 0.0678896 0.0339448 0.999424i \(-0.489193\pi\)
0.0339448 + 0.999424i \(0.489193\pi\)
\(524\) 1680.00 2909.85i 0.140059 0.242590i
\(525\) 0 0
\(526\) 3228.00 + 5591.06i 0.267581 + 0.463464i
\(527\) 3234.00 + 5601.45i 0.267315 + 0.463004i
\(528\) 0 0
\(529\) −10116.5 + 17522.3i −0.831470 + 1.44015i
\(530\) −7308.00 −0.598942
\(531\) 0 0
\(532\) −3584.00 −0.292079
\(533\) 1029.00 1782.28i 0.0836228 0.144839i
\(534\) 0 0
\(535\) 3150.00 + 5455.96i 0.254554 + 0.440900i
\(536\) −1088.00 1884.47i −0.0876762 0.151860i
\(537\) 0 0
\(538\) −147.000 + 254.611i −0.0117800 + 0.0204035i
\(539\) 10044.0 0.802645
\(540\) 0 0
\(541\) 7055.00 0.560662 0.280331 0.959903i \(-0.409556\pi\)
0.280331 + 0.959903i \(0.409556\pi\)
\(542\) −3332.00 + 5771.19i −0.264062 + 0.457369i
\(543\) 0 0
\(544\) 336.000 + 581.969i 0.0264814 + 0.0458671i
\(545\) −11224.5 19441.4i −0.882211 1.52803i
\(546\) 0 0
\(547\) 7298.00 12640.5i 0.570457 0.988060i −0.426062 0.904694i \(-0.640099\pi\)
0.996519 0.0833664i \(-0.0265672\pi\)
\(548\) −2916.00 −0.227309
\(549\) 0 0
\(550\) −22752.0 −1.76391
\(551\) 7560.00 13094.3i 0.584513 1.01241i
\(552\) 0 0
\(553\) 2608.00 + 4517.19i 0.200549 + 0.347361i
\(554\) −2414.00 4181.17i −0.185128 0.320651i
\(555\) 0 0
\(556\) 4088.00 7080.62i 0.311816 0.540082i
\(557\) 7755.00 0.589928 0.294964 0.955508i \(-0.404692\pi\)
0.294964 + 0.955508i \(0.404692\pi\)
\(558\) 0 0
\(559\) −980.000 −0.0741495
\(560\) 1344.00 2327.88i 0.101419 0.175662i
\(561\) 0 0
\(562\) −3555.00 6157.44i −0.266830 0.462164i
\(563\) 8022.00 + 13894.5i 0.600510 + 1.04011i 0.992744 + 0.120248i \(0.0383690\pi\)
−0.392234 + 0.919865i \(0.628298\pi\)
\(564\) 0 0
\(565\) −9418.50 + 16313.3i −0.701308 + 1.21470i
\(566\) 10696.0 0.794322
\(567\) 0 0
\(568\) 7104.00 0.524784
\(569\) 8512.50 14744.1i 0.627175 1.08630i −0.360941 0.932589i \(-0.617544\pi\)
0.988116 0.153710i \(-0.0491222\pi\)
\(570\) 0 0
\(571\) −1660.00 2875.20i −0.121662 0.210724i 0.798761 0.601648i \(-0.205489\pi\)
−0.920423 + 0.390924i \(0.872156\pi\)
\(572\) −3528.00 6110.68i −0.257890 0.446679i
\(573\) 0 0
\(574\) −336.000 + 581.969i −0.0244327 + 0.0423187i
\(575\) −56880.0 −4.12532
\(576\) 0 0
\(577\) 1127.00 0.0813130 0.0406565 0.999173i \(-0.487055\pi\)
0.0406565 + 0.999173i \(0.487055\pi\)
\(578\) 4472.00 7745.73i 0.321818 0.557405i
\(579\) 0 0
\(580\) 5670.00 + 9820.73i 0.405921 + 0.703075i
\(581\) 336.000 + 581.969i 0.0239925 + 0.0415562i
\(582\) 0 0
\(583\) 3132.00 5424.78i 0.222494 0.385371i
\(584\) 2968.00 0.210303
\(585\) 0 0
\(586\) −12978.0 −0.914874
\(587\) −42.0000 + 72.7461i −0.00295320 + 0.00511508i −0.867498 0.497440i \(-0.834273\pi\)
0.864545 + 0.502555i \(0.167607\pi\)
\(588\) 0 0
\(589\) 17248.0 + 29874.4i 1.20661 + 2.08990i
\(590\) −10584.0 18332.0i −0.738536 1.27918i
\(591\) 0 0
\(592\) 8.00000 13.8564i 0.000555402 0.000961984i
\(593\) 1743.00 0.120702 0.0603511 0.998177i \(-0.480778\pi\)
0.0603511 + 0.998177i \(0.480778\pi\)
\(594\) 0 0
\(595\) 3528.00 0.243082
\(596\) −2574.00 + 4458.30i −0.176905 + 0.306408i
\(597\) 0 0
\(598\) −8820.00 15276.7i −0.603138 1.04467i
\(599\) −8046.00 13936.1i −0.548832 0.950606i −0.998355 0.0573367i \(-0.981739\pi\)
0.449522 0.893269i \(-0.351594\pi\)
\(600\) 0 0
\(601\) −10517.5 + 18216.8i −0.713840 + 1.23641i 0.249565 + 0.968358i \(0.419712\pi\)
−0.963405 + 0.268049i \(0.913621\pi\)
\(602\) 320.000 0.0216648
\(603\) 0 0
\(604\) −2944.00 −0.198327
\(605\) −367.500 + 636.529i −0.0246959 + 0.0427745i
\(606\) 0 0
\(607\) −3388.00 5868.19i −0.226548 0.392393i 0.730235 0.683196i \(-0.239411\pi\)
−0.956783 + 0.290804i \(0.906077\pi\)
\(608\) 1792.00 + 3103.84i 0.119532 + 0.207035i
\(609\) 0 0
\(610\) −8085.00 + 14003.6i −0.536643 + 0.929493i
\(611\) 4116.00 0.272530
\(612\) 0 0
\(613\) −23794.0 −1.56775 −0.783875 0.620919i \(-0.786760\pi\)
−0.783875 + 0.620919i \(0.786760\pi\)
\(614\) 1204.00 2085.39i 0.0791360 0.137068i
\(615\) 0 0
\(616\) 1152.00 + 1995.32i 0.0753497 + 0.130509i
\(617\) 10810.5 + 18724.3i 0.705372 + 1.22174i 0.966557 + 0.256451i \(0.0825532\pi\)
−0.261186 + 0.965289i \(0.584113\pi\)
\(618\) 0 0
\(619\) −11116.0 + 19253.5i −0.721793 + 1.25018i 0.238488 + 0.971146i \(0.423348\pi\)
−0.960281 + 0.279036i \(0.909985\pi\)
\(620\) −25872.0 −1.67588
\(621\) 0 0
\(622\) 6384.00 0.411535
\(623\) 84.0000 145.492i 0.00540191 0.00935638i
\(624\) 0 0
\(625\) −22365.5 38738.2i −1.43139 2.47924i
\(626\) 3241.00 + 5613.58i 0.206927 + 0.358408i
\(627\) 0 0
\(628\) 4298.00 7444.35i 0.273103 0.473029i
\(629\) 21.0000 0.00133120
\(630\) 0 0
\(631\) −9280.00 −0.585469 −0.292735 0.956194i \(-0.594565\pi\)
−0.292735 + 0.956194i \(0.594565\pi\)
\(632\) 2608.00 4517.19i 0.164147 0.284310i
\(633\) 0 0
\(634\) 5325.00 + 9223.17i 0.333569 + 0.577759i
\(635\) 16086.0 + 27861.8i 1.00528 + 1.74120i
\(636\) 0 0
\(637\) −6835.50 + 11839.4i −0.425169 + 0.736414i
\(638\) −9720.00 −0.603164
\(639\) 0 0
\(640\) −2688.00 −0.166020
\(641\) −9589.50 + 16609.5i −0.590893 + 1.02346i 0.403219 + 0.915103i \(0.367891\pi\)
−0.994112 + 0.108354i \(0.965442\pi\)
\(642\) 0 0
\(643\) 1610.00 + 2788.60i 0.0987437 + 0.171029i 0.911165 0.412042i \(-0.135184\pi\)
−0.812421 + 0.583071i \(0.801851\pi\)
\(644\) 2880.00 + 4988.31i 0.176223 + 0.305228i
\(645\) 0 0
\(646\) −2352.00 + 4073.78i −0.143248 + 0.248113i
\(647\) −14112.0 −0.857496 −0.428748 0.903424i \(-0.641045\pi\)
−0.428748 + 0.903424i \(0.641045\pi\)
\(648\) 0 0
\(649\) 18144.0 1.09740
\(650\) 15484.0 26819.1i 0.934358 1.61835i
\(651\) 0 0
\(652\) 6176.00 + 10697.1i 0.370968 + 0.642535i
\(653\) 11421.0 + 19781.8i 0.684438 + 1.18548i 0.973613 + 0.228206i \(0.0732859\pi\)
−0.289175 + 0.957276i \(0.593381\pi\)
\(654\) 0 0
\(655\) −8820.00 + 15276.7i −0.526146 + 0.911312i
\(656\) 672.000 0.0399957
\(657\) 0 0
\(658\) −1344.00 −0.0796270
\(659\) −10860.0 + 18810.1i −0.641951 + 1.11189i 0.343046 + 0.939319i \(0.388541\pi\)
−0.984997 + 0.172573i \(0.944792\pi\)
\(660\) 0 0
\(661\) −13163.5 22799.9i −0.774585 1.34162i −0.935027 0.354576i \(-0.884625\pi\)
0.160442 0.987045i \(-0.448708\pi\)
\(662\) −968.000 1676.63i −0.0568314 0.0984349i
\(663\) 0 0
\(664\) 336.000 581.969i 0.0196375 0.0340132i
\(665\) 18816.0 1.09722
\(666\) 0 0
\(667\) −24300.0 −1.41064
\(668\) 336.000 581.969i 0.0194614 0.0337082i
\(669\) 0 0
\(670\) 5712.00 + 9893.47i 0.329364 + 0.570475i
\(671\) −6930.00 12003.1i −0.398703 0.690574i
\(672\) 0 0
\(673\) 9870.50 17096.2i 0.565349 0.979213i −0.431668 0.902032i \(-0.642075\pi\)
0.997017 0.0771806i \(-0.0245918\pi\)
\(674\) 19780.0 1.13041
\(675\) 0 0
\(676\) 816.000 0.0464269
\(677\) 6321.00 10948.3i 0.358842 0.621532i −0.628926 0.777465i \(-0.716505\pi\)
0.987768 + 0.155933i \(0.0498385\pi\)
\(678\) 0 0
\(679\) 4984.00 + 8632.54i 0.281691 + 0.487904i
\(680\) −1764.00 3055.34i −0.0994799 0.172304i
\(681\) 0 0
\(682\) 11088.0 19205.0i 0.622553 1.07829i
\(683\) 26172.0 1.46624 0.733121 0.680098i \(-0.238063\pi\)
0.733121 + 0.680098i \(0.238063\pi\)
\(684\) 0 0
\(685\) 15309.0 0.853908
\(686\) 4976.00 8618.68i 0.276945 0.479684i
\(687\) 0 0
\(688\) −160.000 277.128i −0.00886620 0.0153567i
\(689\) 4263.00 + 7383.73i 0.235715 + 0.408270i
\(690\) 0 0
\(691\) 4760.00 8244.56i 0.262053 0.453890i −0.704734 0.709472i \(-0.748934\pi\)
0.966787 + 0.255582i \(0.0822670\pi\)
\(692\) 12012.0 0.659867
\(693\) 0 0
\(694\) 3120.00 0.170654
\(695\) −21462.0 + 37173.3i −1.17137 + 2.02887i
\(696\) 0 0
\(697\) 441.000 + 763.834i 0.0239657 + 0.0415097i
\(698\) −2870.00 4970.99i −0.155632 0.269562i
\(699\) 0 0
\(700\) −5056.00 + 8757.25i −0.272998 + 0.472847i
\(701\) −16773.0 −0.903720 −0.451860 0.892089i \(-0.649239\pi\)
−0.451860 + 0.892089i \(0.649239\pi\)
\(702\) 0 0
\(703\) 112.000 0.00600876
\(704\) 1152.00 1995.32i 0.0616728 0.106820i
\(705\) 0 0
\(706\) 7182.00 + 12439.6i 0.382859 + 0.663130i
\(707\) 2184.00 + 3782.80i 0.116178 + 0.201226i
\(708\) 0 0
\(709\) −6383.50 + 11056.5i −0.338135 + 0.585666i −0.984082 0.177716i \(-0.943129\pi\)
0.645947 + 0.763382i \(0.276463\pi\)
\(710\) −37296.0 −1.97140
\(711\) 0 0
\(712\) −168.000 −0.00884279
\(713\) 27720.0 48012.4i 1.45599 2.52185i
\(714\) 0 0
\(715\) 18522.0 + 32081.0i 0.968788 + 1.67799i
\(716\) −2328.00 4032.21i −0.121510 0.210462i
\(717\) 0 0
\(718\) 8100.00 14029.6i 0.421016 0.729221i
\(719\) 24948.0 1.29402 0.647012 0.762480i \(-0.276018\pi\)
0.647012 + 0.762480i \(0.276018\pi\)
\(720\) 0 0
\(721\) −1568.00 −0.0809922
\(722\) −5685.00 + 9846.71i −0.293038 + 0.507558i
\(723\) 0 0
\(724\) 3332.00 + 5771.19i 0.171040 + 0.296250i
\(725\) −21330.0 36944.6i −1.09266 1.89254i
\(726\) 0 0
\(727\) −28.0000 + 48.4974i −0.00142842 + 0.00247410i −0.866739 0.498762i \(-0.833788\pi\)
0.865310 + 0.501237i \(0.167121\pi\)
\(728\) −3136.00 −0.159654
\(729\) 0 0
\(730\) −15582.0 −0.790021
\(731\) 210.000 363.731i 0.0106253 0.0184036i
\(732\) 0 0
\(733\) −595.000 1030.57i −0.0299820 0.0519304i 0.850645 0.525740i \(-0.176212\pi\)
−0.880627 + 0.473810i \(0.842878\pi\)
\(734\) −11144.0 19302.0i −0.560399 0.970639i
\(735\) 0 0
\(736\) 2880.00 4988.31i 0.144237 0.249825i
\(737\) −9792.00 −0.489407
\(738\) 0 0
\(739\) −26692.0 −1.32866 −0.664331 0.747439i \(-0.731283\pi\)
−0.664331 + 0.747439i \(0.731283\pi\)
\(740\) −42.0000 + 72.7461i −0.00208642 + 0.00361379i
\(741\) 0 0
\(742\) −1392.00 2411.01i −0.0688705 0.119287i
\(743\) 9426.00 + 16326.3i 0.465419 + 0.806130i 0.999220 0.0394804i \(-0.0125703\pi\)
−0.533801 + 0.845610i \(0.679237\pi\)
\(744\) 0 0
\(745\) 13513.5 23406.1i 0.664559 1.15105i
\(746\) 27676.0 1.35830
\(747\) 0 0
\(748\) 3024.00 0.147819
\(749\) −1200.00 + 2078.46i −0.0585408 + 0.101396i
\(750\) 0 0
\(751\) −11308.0 19586.0i −0.549447 0.951670i −0.998312 0.0580709i \(-0.981505\pi\)
0.448865 0.893599i \(-0.351828\pi\)
\(752\) 672.000 + 1163.94i 0.0325869 + 0.0564421i
\(753\) 0 0
\(754\) 6615.00 11457.5i 0.319501 0.553393i
\(755\) 15456.0 0.745035
\(756\) 0 0
\(757\) 9326.00 0.447766 0.223883 0.974616i \(-0.428127\pi\)
0.223883 + 0.974616i \(0.428127\pi\)
\(758\) −1196.00 + 2071.53i −0.0573096 + 0.0992631i
\(759\) 0 0
\(760\) −9408.00 16295.1i −0.449032 0.777746i
\(761\) 10384.5 + 17986.5i 0.494662 + 0.856780i 0.999981 0.00615279i \(-0.00195851\pi\)
−0.505319 + 0.862933i \(0.668625\pi\)
\(762\) 0 0
\(763\) 4276.00 7406.25i 0.202885 0.351408i
\(764\) 8256.00 0.390958
\(765\) 0 0
\(766\) −7728.00 −0.364522
\(767\) −12348.0 + 21387.4i −0.581304 + 1.00685i
\(768\) 0 0
\(769\) 150.500 + 260.674i 0.00705744 + 0.0122238i 0.869533 0.493876i \(-0.164420\pi\)
−0.862475 + 0.506099i \(0.831087\pi\)
\(770\) −6048.00 10475.4i −0.283058 0.490271i
\(771\) 0 0
\(772\) 1130.00 1957.22i 0.0526808 0.0912458i
\(773\) 17955.0 0.835442 0.417721 0.908575i \(-0.362829\pi\)
0.417721 + 0.908575i \(0.362829\pi\)
\(774\) 0 0
\(775\) 97328.0 4.51113
\(776\) 4984.00 8632.54i 0.230561 0.399343i
\(777\) 0 0
\(778\) −5070.00 8781.50i −0.233635 0.404668i
\(779\) 2352.00 + 4073.78i 0.108176 + 0.187366i
\(780\) 0 0
\(781\) 15984.0 27685.1i 0.732334 1.26844i