Properties

Label 162.2.g.b.103.2
Level $162$
Weight $2$
Character 162.103
Analytic conductor $1.294$
Analytic rank $0$
Dimension $90$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,2,Mod(7,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 162.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(5\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 103.2
Character \(\chi\) \(=\) 162.103
Dual form 162.2.g.b.151.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.686242 - 0.727374i) q^{2} +(0.224505 - 1.71744i) q^{3} +(-0.0581448 + 0.998308i) q^{4} +(2.24355 - 0.262233i) q^{5} +(-1.40328 + 1.01528i) q^{6} +(3.76235 + 1.88952i) q^{7} +(0.766044 - 0.642788i) q^{8} +(-2.89919 - 0.771149i) q^{9} +O(q^{10})\) \(q+(-0.686242 - 0.727374i) q^{2} +(0.224505 - 1.71744i) q^{3} +(-0.0581448 + 0.998308i) q^{4} +(2.24355 - 0.262233i) q^{5} +(-1.40328 + 1.01528i) q^{6} +(3.76235 + 1.88952i) q^{7} +(0.766044 - 0.642788i) q^{8} +(-2.89919 - 0.771149i) q^{9} +(-1.73036 - 1.45194i) q^{10} +(-1.42253 - 3.29779i) q^{11} +(1.70148 + 0.323986i) q^{12} +(-4.26836 - 1.01162i) q^{13} +(-1.20749 - 4.03330i) q^{14} +(0.0533189 - 3.91203i) q^{15} +(-0.993238 - 0.116093i) q^{16} +(-0.241347 + 1.36875i) q^{17} +(1.42864 + 2.63799i) q^{18} +(0.883044 + 5.00799i) q^{19} +(0.131339 + 2.25500i) q^{20} +(4.08981 - 6.03740i) q^{21} +(-1.42253 + 3.29779i) q^{22} +(-0.261895 + 0.131529i) q^{23} +(-0.931968 - 1.45994i) q^{24} +(0.0995059 - 0.0235833i) q^{25} +(2.19330 + 3.79891i) q^{26} +(-1.97529 + 4.80606i) q^{27} +(-2.10509 + 3.64612i) q^{28} +(2.13741 - 7.13946i) q^{29} +(-2.88209 + 2.64581i) q^{30} +(6.75905 + 4.44550i) q^{31} +(0.597159 + 0.802123i) q^{32} +(-5.98313 + 1.70274i) q^{33} +(1.16121 - 0.763743i) q^{34} +(8.93649 + 3.25262i) q^{35} +(0.938417 - 2.84945i) q^{36} +(-2.90034 + 1.05564i) q^{37} +(3.03670 - 4.07900i) q^{38} +(-2.69567 + 7.10354i) q^{39} +(1.55010 - 1.64301i) q^{40} +(-5.07095 + 5.37489i) q^{41} +(-7.19804 + 1.16830i) q^{42} +(1.66067 - 2.23066i) q^{43} +(3.37493 - 1.22837i) q^{44} +(-6.70670 - 0.969843i) q^{45} +(0.275394 + 0.100235i) q^{46} +(-0.834413 + 0.548802i) q^{47} +(-0.422370 + 1.67976i) q^{48} +(6.40486 + 8.60322i) q^{49} +(-0.0854390 - 0.0561941i) q^{50} +(2.29656 + 0.721791i) q^{51} +(1.25809 - 4.20232i) q^{52} +(-5.96257 + 10.3275i) q^{53} +(4.85133 - 1.86135i) q^{54} +(-4.05630 - 7.02572i) q^{55} +(4.09669 - 0.970933i) q^{56} +(8.79917 - 0.392254i) q^{57} +(-6.65983 + 3.34469i) q^{58} +(-3.66592 + 8.49856i) q^{59} +(3.90231 + 0.280693i) q^{60} +(-0.863013 - 14.8174i) q^{61} +(-1.40481 - 7.96705i) q^{62} +(-9.45068 - 8.37942i) q^{63} +(0.173648 - 0.984808i) q^{64} +(-9.84155 - 1.15031i) q^{65} +(5.34440 + 3.18348i) q^{66} +(-1.60063 - 5.34648i) q^{67} +(-1.35240 - 0.320525i) q^{68} +(0.167096 + 0.479318i) q^{69} +(-3.76673 - 8.73225i) q^{70} +(4.88985 + 4.10307i) q^{71} +(-2.71660 + 1.27283i) q^{72} +(4.66440 - 3.91389i) q^{73} +(2.75818 + 1.38521i) q^{74} +(-0.0181633 - 0.176190i) q^{75} +(-5.05086 + 0.590361i) q^{76} +(0.879204 - 15.0954i) q^{77} +(7.01681 - 2.91399i) q^{78} +(8.31655 + 8.81503i) q^{79} -2.25882 q^{80} +(7.81066 + 4.47142i) q^{81} +7.38945 q^{82} +(2.12671 + 2.25418i) q^{83} +(5.78938 + 4.43393i) q^{84} +(-0.182543 + 3.13414i) q^{85} +(-2.76214 + 0.322848i) q^{86} +(-11.7817 - 5.27372i) q^{87} +(-3.20950 - 1.61187i) q^{88} +(-0.706078 + 0.592470i) q^{89} +(3.89698 + 5.54382i) q^{90} +(-14.1476 - 11.8712i) q^{91} +(-0.116078 - 0.269100i) q^{92} +(9.15232 - 10.6102i) q^{93} +(0.971793 + 0.230319i) q^{94} +(3.29441 + 11.0041i) q^{95} +(1.51166 - 0.845503i) q^{96} +(1.85410 + 0.216713i) q^{97} +(1.86247 - 10.5626i) q^{98} +(1.58110 + 10.6579i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 9 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 90 q - 9 q^{6} - 18 q^{13} - 9 q^{18} - 9 q^{20} - 54 q^{21} + 27 q^{23} - 18 q^{25} - 27 q^{26} - 27 q^{27} - 18 q^{28} - 27 q^{29} + 9 q^{30} + 54 q^{31} - 63 q^{33} - 27 q^{35} - 9 q^{36} - 18 q^{38} - 9 q^{41} - 9 q^{42} - 36 q^{43} + 63 q^{45} + 18 q^{46} - 27 q^{47} - 9 q^{48} - 36 q^{51} + 36 q^{52} - 27 q^{53} - 54 q^{55} - 81 q^{57} - 9 q^{58} - 45 q^{59} - 63 q^{63} + 9 q^{65} + 36 q^{66} + 81 q^{67} + 36 q^{68} + 18 q^{69} - 72 q^{70} + 72 q^{71} + 18 q^{72} - 36 q^{73} + 45 q^{74} + 216 q^{75} - 18 q^{76} + 144 q^{77} + 54 q^{78} - 99 q^{79} + 18 q^{80} + 144 q^{81} + 72 q^{82} + 45 q^{83} + 18 q^{84} - 117 q^{85} + 72 q^{86} + 81 q^{87} - 18 q^{88} + 45 q^{89} + 162 q^{90} - 63 q^{91} + 36 q^{92} + 45 q^{93} - 72 q^{94} + 45 q^{95} + 18 q^{96} + 117 q^{97} + 36 q^{98} - 81 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.686242 0.727374i −0.485246 0.514331i
\(3\) 0.224505 1.71744i 0.129618 0.991564i
\(4\) −0.0581448 + 0.998308i −0.0290724 + 0.499154i
\(5\) 2.24355 0.262233i 1.00334 0.117274i 0.401476 0.915870i \(-0.368497\pi\)
0.601868 + 0.798595i \(0.294423\pi\)
\(6\) −1.40328 + 1.01528i −0.572889 + 0.414486i
\(7\) 3.76235 + 1.88952i 1.42203 + 0.714172i 0.982881 0.184240i \(-0.0589824\pi\)
0.439153 + 0.898412i \(0.355279\pi\)
\(8\) 0.766044 0.642788i 0.270838 0.227260i
\(9\) −2.89919 0.771149i −0.966398 0.257050i
\(10\) −1.73036 1.45194i −0.547186 0.459144i
\(11\) −1.42253 3.29779i −0.428909 0.994323i −0.986433 0.164162i \(-0.947508\pi\)
0.557524 0.830160i \(-0.311751\pi\)
\(12\) 1.70148 + 0.323986i 0.491175 + 0.0935266i
\(13\) −4.26836 1.01162i −1.18383 0.280573i −0.408876 0.912590i \(-0.634079\pi\)
−0.774955 + 0.632017i \(0.782227\pi\)
\(14\) −1.20749 4.03330i −0.322716 1.07795i
\(15\) 0.0533189 3.91203i 0.0137669 1.01008i
\(16\) −0.993238 0.116093i −0.248310 0.0290232i
\(17\) −0.241347 + 1.36875i −0.0585354 + 0.331970i −0.999987 0.00517869i \(-0.998352\pi\)
0.941451 + 0.337149i \(0.109463\pi\)
\(18\) 1.42864 + 2.63799i 0.336733 + 0.621781i
\(19\) 0.883044 + 5.00799i 0.202584 + 1.14891i 0.901196 + 0.433411i \(0.142690\pi\)
−0.698612 + 0.715501i \(0.746199\pi\)
\(20\) 0.131339 + 2.25500i 0.0293682 + 0.504233i
\(21\) 4.08981 6.03740i 0.892469 1.31747i
\(22\) −1.42253 + 3.29779i −0.303284 + 0.703092i
\(23\) −0.261895 + 0.131529i −0.0546090 + 0.0274257i −0.475894 0.879503i \(-0.657875\pi\)
0.421285 + 0.906928i \(0.361579\pi\)
\(24\) −0.931968 1.45994i −0.190237 0.298010i
\(25\) 0.0995059 0.0235833i 0.0199012 0.00471667i
\(26\) 2.19330 + 3.79891i 0.430142 + 0.745028i
\(27\) −1.97529 + 4.80606i −0.380144 + 0.924927i
\(28\) −2.10509 + 3.64612i −0.397824 + 0.689051i
\(29\) 2.13741 7.13946i 0.396908 1.32576i −0.493161 0.869938i \(-0.664159\pi\)
0.890069 0.455826i \(-0.150656\pi\)
\(30\) −2.88209 + 2.64581i −0.526196 + 0.483057i
\(31\) 6.75905 + 4.44550i 1.21396 + 0.798435i 0.984586 0.174902i \(-0.0559610\pi\)
0.229376 + 0.973338i \(0.426331\pi\)
\(32\) 0.597159 + 0.802123i 0.105564 + 0.141797i
\(33\) −5.98313 + 1.70274i −1.04153 + 0.296408i
\(34\) 1.16121 0.763743i 0.199147 0.130981i
\(35\) 8.93649 + 3.25262i 1.51054 + 0.549793i
\(36\) 0.938417 2.84945i 0.156403 0.474909i
\(37\) −2.90034 + 1.05564i −0.476813 + 0.173546i −0.569236 0.822174i \(-0.692761\pi\)
0.0924230 + 0.995720i \(0.470539\pi\)
\(38\) 3.03670 4.07900i 0.492618 0.661700i
\(39\) −2.69567 + 7.10354i −0.431652 + 1.13748i
\(40\) 1.55010 1.64301i 0.245092 0.259782i
\(41\) −5.07095 + 5.37489i −0.791949 + 0.839417i −0.990043 0.140766i \(-0.955043\pi\)
0.198094 + 0.980183i \(0.436525\pi\)
\(42\) −7.19804 + 1.16830i −1.11068 + 0.180272i
\(43\) 1.66067 2.23066i 0.253249 0.340173i −0.657258 0.753666i \(-0.728284\pi\)
0.910507 + 0.413493i \(0.135691\pi\)
\(44\) 3.37493 1.22837i 0.508790 0.185184i
\(45\) −6.70670 0.969843i −0.999775 0.144576i
\(46\) 0.275394 + 0.100235i 0.0406046 + 0.0147789i
\(47\) −0.834413 + 0.548802i −0.121712 + 0.0800510i −0.608905 0.793243i \(-0.708391\pi\)
0.487194 + 0.873294i \(0.338021\pi\)
\(48\) −0.422370 + 1.67976i −0.0609638 + 0.242453i
\(49\) 6.40486 + 8.60322i 0.914980 + 1.22903i
\(50\) −0.0854390 0.0561941i −0.0120829 0.00794705i
\(51\) 2.29656 + 0.721791i 0.321583 + 0.101071i
\(52\) 1.25809 4.20232i 0.174466 0.582757i
\(53\) −5.96257 + 10.3275i −0.819022 + 1.41859i 0.0873808 + 0.996175i \(0.472150\pi\)
−0.906403 + 0.422413i \(0.861183\pi\)
\(54\) 4.85133 1.86135i 0.660182 0.253298i
\(55\) −4.05630 7.02572i −0.546951 0.947348i
\(56\) 4.09669 0.970933i 0.547443 0.129746i
\(57\) 8.79917 0.392254i 1.16548 0.0519553i
\(58\) −6.65983 + 3.34469i −0.874479 + 0.439180i
\(59\) −3.66592 + 8.49856i −0.477262 + 1.10642i 0.494226 + 0.869333i \(0.335451\pi\)
−0.971489 + 0.237085i \(0.923808\pi\)
\(60\) 3.90231 + 0.280693i 0.503786 + 0.0362373i
\(61\) −0.863013 14.8174i −0.110498 1.89717i −0.366386 0.930463i \(-0.619405\pi\)
0.255888 0.966706i \(-0.417632\pi\)
\(62\) −1.40481 7.96705i −0.178410 1.01182i
\(63\) −9.45068 8.37942i −1.19067 1.05571i
\(64\) 0.173648 0.984808i 0.0217060 0.123101i
\(65\) −9.84155 1.15031i −1.22069 0.142679i
\(66\) 5.34440 + 3.18348i 0.657850 + 0.391859i
\(67\) −1.60063 5.34648i −0.195548 0.653177i −0.998376 0.0569657i \(-0.981857\pi\)
0.802828 0.596211i \(-0.203328\pi\)
\(68\) −1.35240 0.320525i −0.164003 0.0388693i
\(69\) 0.167096 + 0.479318i 0.0201160 + 0.0577031i
\(70\) −3.76673 8.73225i −0.450210 1.04370i
\(71\) 4.88985 + 4.10307i 0.580319 + 0.486945i 0.885052 0.465493i \(-0.154123\pi\)
−0.304733 + 0.952438i \(0.598567\pi\)
\(72\) −2.71660 + 1.27283i −0.320154 + 0.150005i
\(73\) 4.66440 3.91389i 0.545926 0.458087i −0.327632 0.944805i \(-0.606251\pi\)
0.873559 + 0.486719i \(0.161806\pi\)
\(74\) 2.75818 + 1.38521i 0.320632 + 0.161027i
\(75\) −0.0181633 0.176190i −0.00209732 0.0203447i
\(76\) −5.05086 + 0.590361i −0.579374 + 0.0677191i
\(77\) 0.879204 15.0954i 0.100195 1.72028i
\(78\) 7.01681 2.91399i 0.794497 0.329944i
\(79\) 8.31655 + 8.81503i 0.935685 + 0.991768i 0.999981 0.00616298i \(-0.00196175\pi\)
−0.0642963 + 0.997931i \(0.520480\pi\)
\(80\) −2.25882 −0.252544
\(81\) 7.81066 + 4.47142i 0.867851 + 0.496824i
\(82\) 7.38945 0.816028
\(83\) 2.12671 + 2.25418i 0.233436 + 0.247428i 0.833494 0.552529i \(-0.186337\pi\)
−0.600057 + 0.799957i \(0.704856\pi\)
\(84\) 5.78938 + 4.43393i 0.631673 + 0.483781i
\(85\) −0.182543 + 3.13414i −0.0197996 + 0.339945i
\(86\) −2.76214 + 0.322848i −0.297850 + 0.0348136i
\(87\) −11.7817 5.27372i −1.26313 0.565402i
\(88\) −3.20950 1.61187i −0.342134 0.171826i
\(89\) −0.706078 + 0.592470i −0.0748441 + 0.0628017i −0.679442 0.733729i \(-0.737778\pi\)
0.604598 + 0.796531i \(0.293334\pi\)
\(90\) 3.89698 + 5.54382i 0.410777 + 0.584370i
\(91\) −14.1476 11.8712i −1.48307 1.24444i
\(92\) −0.116078 0.269100i −0.0121020 0.0280556i
\(93\) 9.15232 10.6102i 0.949051 1.10023i
\(94\) 0.971793 + 0.230319i 0.100233 + 0.0237556i
\(95\) 3.29441 + 11.0041i 0.337999 + 1.12900i
\(96\) 1.51166 0.845503i 0.154283 0.0862938i
\(97\) 1.85410 + 0.216713i 0.188256 + 0.0220039i 0.209698 0.977766i \(-0.432752\pi\)
−0.0214426 + 0.999770i \(0.506826\pi\)
\(98\) 1.86247 10.5626i 0.188138 1.06698i
\(99\) 1.58110 + 10.6579i 0.158907 + 1.07116i
\(100\) 0.0177577 + 0.100709i 0.00177577 + 0.0100709i
\(101\) −0.417028 7.16010i −0.0414959 0.712457i −0.953336 0.301911i \(-0.902375\pi\)
0.911840 0.410545i \(-0.134662\pi\)
\(102\) −1.05098 2.16578i −0.104063 0.214444i
\(103\) 2.16352 5.01560i 0.213178 0.494202i −0.777754 0.628569i \(-0.783641\pi\)
0.990932 + 0.134367i \(0.0429002\pi\)
\(104\) −3.92001 + 1.96870i −0.384389 + 0.193047i
\(105\) 7.59246 14.6177i 0.740949 1.42654i
\(106\) 11.6037 2.75013i 1.12705 0.267116i
\(107\) −6.91374 11.9750i −0.668377 1.15766i −0.978358 0.206920i \(-0.933656\pi\)
0.309981 0.950743i \(-0.399677\pi\)
\(108\) −4.68308 2.25139i −0.450630 0.216640i
\(109\) −8.52071 + 14.7583i −0.816136 + 1.41359i 0.0923739 + 0.995724i \(0.470554\pi\)
−0.908510 + 0.417864i \(0.862779\pi\)
\(110\) −2.32672 + 7.77179i −0.221844 + 0.741011i
\(111\) 1.16185 + 5.21816i 0.110278 + 0.495285i
\(112\) −3.51755 2.31353i −0.332377 0.218608i
\(113\) −5.25309 7.05612i −0.494169 0.663784i 0.483155 0.875535i \(-0.339491\pi\)
−0.977324 + 0.211751i \(0.932084\pi\)
\(114\) −6.32367 6.13110i −0.592266 0.574230i
\(115\) −0.553083 + 0.363768i −0.0515753 + 0.0339216i
\(116\) 7.00310 + 2.54892i 0.650221 + 0.236661i
\(117\) 11.5947 + 6.22443i 1.07193 + 0.575448i
\(118\) 8.69734 3.16557i 0.800655 0.291415i
\(119\) −3.49432 + 4.69368i −0.320323 + 0.430269i
\(120\) −2.47376 3.03106i −0.225822 0.276696i
\(121\) −1.30320 + 1.38131i −0.118473 + 0.125574i
\(122\) −10.1855 + 10.7960i −0.922154 + 0.977426i
\(123\) 8.09259 + 9.91573i 0.729684 + 0.894071i
\(124\) −4.83098 + 6.48914i −0.433835 + 0.582742i
\(125\) −10.3959 + 3.78380i −0.929839 + 0.338434i
\(126\) 0.390478 + 12.6245i 0.0347865 + 1.12468i
\(127\) −19.3394 7.03896i −1.71609 0.624607i −0.718603 0.695420i \(-0.755218\pi\)
−0.997490 + 0.0708135i \(0.977440\pi\)
\(128\) −0.835488 + 0.549509i −0.0738474 + 0.0485702i
\(129\) −3.45820 3.35289i −0.304477 0.295206i
\(130\) 5.91697 + 7.94787i 0.518953 + 0.697075i
\(131\) 4.90387 + 3.22533i 0.428453 + 0.281798i 0.745365 0.666657i \(-0.232275\pi\)
−0.316912 + 0.948455i \(0.602646\pi\)
\(132\) −1.35197 6.07201i −0.117674 0.528501i
\(133\) −6.14039 + 20.5103i −0.532440 + 1.77847i
\(134\) −2.79047 + 4.83323i −0.241060 + 0.417528i
\(135\) −3.17133 + 11.3006i −0.272945 + 0.972601i
\(136\) 0.694932 + 1.20366i 0.0595900 + 0.103213i
\(137\) −2.87536 + 0.681474i −0.245659 + 0.0582222i −0.351601 0.936150i \(-0.614362\pi\)
0.105942 + 0.994372i \(0.466214\pi\)
\(138\) 0.233975 0.450469i 0.0199173 0.0383465i
\(139\) 13.7117 6.88629i 1.16301 0.584088i 0.240727 0.970593i \(-0.422614\pi\)
0.922287 + 0.386505i \(0.126318\pi\)
\(140\) −3.76673 + 8.73225i −0.318346 + 0.738010i
\(141\) 0.755204 + 1.55626i 0.0635996 + 0.131061i
\(142\) −0.371153 6.37245i −0.0311465 0.534764i
\(143\) 2.73576 + 15.5152i 0.228775 + 1.29745i
\(144\) 2.79007 + 1.10251i 0.232506 + 0.0918759i
\(145\) 2.92318 16.5782i 0.242757 1.37674i
\(146\) −6.04777 0.706882i −0.500517 0.0585020i
\(147\) 16.2134 9.06849i 1.33726 0.747956i
\(148\) −0.885212 2.95681i −0.0727640 0.243049i
\(149\) 13.2332 + 3.13632i 1.08410 + 0.256937i 0.733570 0.679614i \(-0.237853\pi\)
0.350532 + 0.936551i \(0.386001\pi\)
\(150\) −0.115691 + 0.134120i −0.00944617 + 0.0109509i
\(151\) −1.72891 4.00806i −0.140697 0.326172i 0.833269 0.552868i \(-0.186467\pi\)
−0.973965 + 0.226697i \(0.927207\pi\)
\(152\) 3.89553 + 3.26873i 0.315969 + 0.265129i
\(153\) 1.75522 3.78216i 0.141901 0.305769i
\(154\) −11.5833 + 9.71955i −0.933410 + 0.783224i
\(155\) 16.3300 + 8.20124i 1.31166 + 0.658739i
\(156\) −6.93478 3.10414i −0.555227 0.248530i
\(157\) 1.90125 0.222225i 0.151736 0.0177355i −0.0398855 0.999204i \(-0.512699\pi\)
0.191622 + 0.981469i \(0.438625\pi\)
\(158\) 0.704656 12.0985i 0.0560594 0.962503i
\(159\) 16.3982 + 12.5589i 1.30046 + 0.995988i
\(160\) 1.55010 + 1.64301i 0.122546 + 0.129891i
\(161\) −1.23387 −0.0972424
\(162\) −2.10761 8.74974i −0.165589 0.687445i
\(163\) 10.0794 0.789479 0.394739 0.918793i \(-0.370835\pi\)
0.394739 + 0.918793i \(0.370835\pi\)
\(164\) −5.07095 5.37489i −0.395974 0.419708i
\(165\) −12.9769 + 5.38914i −1.01025 + 0.419544i
\(166\) 0.180195 3.09382i 0.0139858 0.240127i
\(167\) −16.2485 + 1.89918i −1.25735 + 0.146963i −0.718552 0.695474i \(-0.755195\pi\)
−0.538796 + 0.842436i \(0.681121\pi\)
\(168\) −0.747790 7.25379i −0.0576932 0.559642i
\(169\) 5.57832 + 2.80154i 0.429101 + 0.215503i
\(170\) 2.40496 2.01800i 0.184452 0.154774i
\(171\) 1.30179 15.2001i 0.0995503 1.16238i
\(172\) 2.13033 + 1.78756i 0.162436 + 0.136300i
\(173\) −8.48647 19.6739i −0.645214 1.49578i −0.855322 0.518097i \(-0.826641\pi\)
0.210107 0.977678i \(-0.432619\pi\)
\(174\) 4.24914 + 12.1888i 0.322127 + 0.924028i
\(175\) 0.418937 + 0.0992899i 0.0316687 + 0.00750561i
\(176\) 1.03006 + 3.44064i 0.0776437 + 0.259348i
\(177\) 13.7727 + 8.20397i 1.03522 + 0.616648i
\(178\) 0.915487 + 0.107005i 0.0686187 + 0.00802037i
\(179\) 1.49127 8.45738i 0.111462 0.632135i −0.876979 0.480529i \(-0.840445\pi\)
0.988441 0.151605i \(-0.0484443\pi\)
\(180\) 1.35816 6.63896i 0.101231 0.494839i
\(181\) −0.0323020 0.183193i −0.00240099 0.0136167i 0.983584 0.180452i \(-0.0577562\pi\)
−0.985985 + 0.166836i \(0.946645\pi\)
\(182\) 1.07384 + 18.4371i 0.0795983 + 1.36665i
\(183\) −25.6417 1.84440i −1.89549 0.136342i
\(184\) −0.116078 + 0.269100i −0.00855741 + 0.0198383i
\(185\) −6.23022 + 3.12894i −0.458055 + 0.230044i
\(186\) −13.9983 + 0.624023i −1.02641 + 0.0457556i
\(187\) 4.85718 1.15117i 0.355192 0.0841821i
\(188\) −0.499357 0.864911i −0.0364193 0.0630801i
\(189\) −16.5129 + 14.3497i −1.20113 + 1.04379i
\(190\) 5.74333 9.94773i 0.416665 0.721685i
\(191\) 2.10629 7.03551i 0.152406 0.509072i −0.847353 0.531030i \(-0.821805\pi\)
0.999759 + 0.0219585i \(0.00699017\pi\)
\(192\) −1.65236 0.519325i −0.119249 0.0374790i
\(193\) −0.408383 0.268598i −0.0293961 0.0193341i 0.534726 0.845026i \(-0.320415\pi\)
−0.564122 + 0.825691i \(0.690785\pi\)
\(194\) −1.11473 1.49734i −0.0800330 0.107503i
\(195\) −4.18507 + 16.6440i −0.299699 + 1.19190i
\(196\) −8.96107 + 5.89379i −0.640076 + 0.420985i
\(197\) 7.84299 + 2.85462i 0.558790 + 0.203383i 0.605948 0.795505i \(-0.292794\pi\)
−0.0471576 + 0.998887i \(0.515016\pi\)
\(198\) 6.66728 8.46397i 0.473823 0.601508i
\(199\) −6.56743 + 2.39035i −0.465553 + 0.169447i −0.564137 0.825681i \(-0.690791\pi\)
0.0985841 + 0.995129i \(0.468569\pi\)
\(200\) 0.0610669 0.0820270i 0.00431808 0.00580019i
\(201\) −9.54161 + 1.54867i −0.673013 + 0.109235i
\(202\) −4.92189 + 5.21690i −0.346303 + 0.367060i
\(203\) 21.5318 22.8224i 1.51124 1.60182i
\(204\) −0.854103 + 2.25071i −0.0597992 + 0.157581i
\(205\) −9.96743 + 13.3886i −0.696155 + 0.935099i
\(206\) −5.13291 + 1.86823i −0.357627 + 0.130166i
\(207\) 0.860714 0.179367i 0.0598238 0.0124669i
\(208\) 4.12206 + 1.50031i 0.285813 + 0.104028i
\(209\) 15.2592 10.0361i 1.05550 0.694213i
\(210\) −15.8428 + 4.50869i −1.09325 + 0.311129i
\(211\) −3.48773 4.68484i −0.240105 0.322518i 0.665694 0.746225i \(-0.268136\pi\)
−0.905799 + 0.423708i \(0.860728\pi\)
\(212\) −9.96331 6.55298i −0.684283 0.450060i
\(213\) 8.14458 7.47686i 0.558057 0.512306i
\(214\) −3.96577 + 13.2466i −0.271094 + 0.905518i
\(215\) 3.14083 5.44008i 0.214203 0.371010i
\(216\) 1.57612 + 4.95135i 0.107242 + 0.336897i
\(217\) 17.0300 + 29.4969i 1.15607 + 2.00238i
\(218\) 16.5821 3.93002i 1.12308 0.266175i
\(219\) −5.67469 8.88951i −0.383460 0.600697i
\(220\) 7.24969 3.64093i 0.488774 0.245471i
\(221\) 2.41481 5.59817i 0.162438 0.376573i
\(222\) 2.99824 4.42602i 0.201229 0.297055i
\(223\) −0.622088 10.6808i −0.0416581 0.715242i −0.952884 0.303335i \(-0.901900\pi\)
0.911226 0.411907i \(-0.135137\pi\)
\(224\) 0.731089 + 4.14621i 0.0488479 + 0.277030i
\(225\) −0.306673 0.00836116i −0.0204449 0.000557410i
\(226\) −1.52755 + 8.66317i −0.101611 + 0.576265i
\(227\) −3.82548 0.447134i −0.253906 0.0296773i −0.0118122 0.999930i \(-0.503760\pi\)
−0.242094 + 0.970253i \(0.577834\pi\)
\(228\) −0.120036 + 8.80709i −0.00794959 + 0.583264i
\(229\) −4.10527 13.7126i −0.271284 0.906151i −0.979719 0.200375i \(-0.935784\pi\)
0.708435 0.705776i \(-0.249401\pi\)
\(230\) 0.644144 + 0.152665i 0.0424736 + 0.0100664i
\(231\) −25.7280 4.89897i −1.69278 0.322328i
\(232\) −2.95180 6.84304i −0.193795 0.449268i
\(233\) −13.0394 10.9414i −0.854241 0.716793i 0.106478 0.994315i \(-0.466043\pi\)
−0.960719 + 0.277522i \(0.910487\pi\)
\(234\) −3.42929 12.7051i −0.224179 0.830561i
\(235\) −1.72813 + 1.45007i −0.112731 + 0.0945923i
\(236\) −8.27103 4.15387i −0.538398 0.270394i
\(237\) 17.0064 12.3041i 1.10468 0.799240i
\(238\) 5.81200 0.679326i 0.376736 0.0440342i
\(239\) 0.489375 8.40225i 0.0316551 0.543496i −0.944783 0.327697i \(-0.893727\pi\)
0.976438 0.215799i \(-0.0692356\pi\)
\(240\) −0.507117 + 3.87938i −0.0327343 + 0.250413i
\(241\) −9.97509 10.5730i −0.642552 0.681065i 0.321460 0.946923i \(-0.395826\pi\)
−0.964012 + 0.265858i \(0.914345\pi\)
\(242\) 1.89904 0.122075
\(243\) 9.43293 12.4105i 0.605122 0.796132i
\(244\) 14.8425 0.950192
\(245\) 16.6256 + 17.6221i 1.06217 + 1.12584i
\(246\) 1.65897 12.6909i 0.105772 0.809144i
\(247\) 1.29703 22.2692i 0.0825284 1.41696i
\(248\) 8.03525 0.939186i 0.510239 0.0596384i
\(249\) 4.34887 3.14641i 0.275598 0.199396i
\(250\) 9.88635 + 4.96511i 0.625268 + 0.314021i
\(251\) 22.1883 18.6182i 1.40052 1.17517i 0.439647 0.898171i \(-0.355104\pi\)
0.960869 0.277002i \(-0.0893408\pi\)
\(252\) 8.91475 8.94747i 0.561577 0.563637i
\(253\) 0.806309 + 0.676574i 0.0506922 + 0.0425358i
\(254\) 8.15154 + 18.8974i 0.511473 + 1.18573i
\(255\) 5.34171 + 1.01714i 0.334511 + 0.0636956i
\(256\) 0.973045 + 0.230616i 0.0608153 + 0.0144135i
\(257\) 4.68564 + 15.6511i 0.292282 + 0.976290i 0.970434 + 0.241368i \(0.0775960\pi\)
−0.678152 + 0.734922i \(0.737219\pi\)
\(258\) −0.0656437 + 4.81630i −0.00408680 + 0.299849i
\(259\) −12.9067 1.50858i −0.801986 0.0937387i
\(260\) 1.72060 9.75801i 0.106707 0.605166i
\(261\) −11.7024 + 19.0504i −0.724358 + 1.17919i
\(262\) −1.01922 5.78030i −0.0629678 0.357108i
\(263\) 0.882761 + 15.1564i 0.0544333 + 0.934584i 0.909406 + 0.415911i \(0.136537\pi\)
−0.854972 + 0.518674i \(0.826426\pi\)
\(264\) −3.48884 + 5.15025i −0.214724 + 0.316976i
\(265\) −10.6691 + 24.7338i −0.655398 + 1.51938i
\(266\) 19.1325 9.60869i 1.17309 0.589147i
\(267\) 0.859013 + 1.34566i 0.0525707 + 0.0823530i
\(268\) 5.43050 1.28705i 0.331721 0.0786193i
\(269\) 4.66091 + 8.07293i 0.284181 + 0.492215i 0.972410 0.233278i \(-0.0749451\pi\)
−0.688229 + 0.725493i \(0.741612\pi\)
\(270\) 10.3961 5.44820i 0.632684 0.331567i
\(271\) 8.84975 15.3282i 0.537584 0.931123i −0.461449 0.887167i \(-0.652670\pi\)
0.999033 0.0439566i \(-0.0139963\pi\)
\(272\) 0.398618 1.33148i 0.0241697 0.0807326i
\(273\) −23.5643 + 21.6325i −1.42618 + 1.30926i
\(274\) 2.46888 + 1.62381i 0.149150 + 0.0980978i
\(275\) −0.219323 0.294602i −0.0132257 0.0177652i
\(276\) −0.488223 + 0.138943i −0.0293876 + 0.00836340i
\(277\) −15.4213 + 10.1427i −0.926576 + 0.609419i −0.920576 0.390563i \(-0.872280\pi\)
−0.00600004 + 0.999982i \(0.501910\pi\)
\(278\) −14.4185 5.24789i −0.864762 0.314748i
\(279\) −16.1677 18.1006i −0.967933 1.08365i
\(280\) 8.93649 3.25262i 0.534058 0.194381i
\(281\) 0.416337 0.559238i 0.0248366 0.0333614i −0.789531 0.613710i \(-0.789676\pi\)
0.814368 + 0.580349i \(0.197084\pi\)
\(282\) 0.613732 1.61729i 0.0365472 0.0963081i
\(283\) −8.93228 + 9.46767i −0.530969 + 0.562794i −0.936221 0.351411i \(-0.885702\pi\)
0.405252 + 0.914205i \(0.367184\pi\)
\(284\) −4.38045 + 4.64301i −0.259932 + 0.275512i
\(285\) 19.6385 3.18747i 1.16328 0.188809i
\(286\) 9.40799 12.6371i 0.556306 0.747249i
\(287\) −29.2346 + 10.6405i −1.72567 + 0.628091i
\(288\) −1.11272 2.78601i −0.0655678 0.164167i
\(289\) 14.1595 + 5.15365i 0.832915 + 0.303156i
\(290\) −14.0646 + 9.25040i −0.825899 + 0.543202i
\(291\) 0.788448 3.13565i 0.0462196 0.183815i
\(292\) 3.63606 + 4.88408i 0.212784 + 0.285819i
\(293\) 24.9319 + 16.3980i 1.45654 + 0.957980i 0.997580 + 0.0695225i \(0.0221476\pi\)
0.458958 + 0.888458i \(0.348223\pi\)
\(294\) −17.7225 5.57005i −1.03360 0.324852i
\(295\) −5.99606 + 20.0282i −0.349104 + 1.16609i
\(296\) −1.54324 + 2.67297i −0.0896990 + 0.155363i
\(297\) 18.6593 0.322683i 1.08272 0.0187240i
\(298\) −6.79987 11.7777i −0.393906 0.682265i
\(299\) 1.25092 0.296474i 0.0723427 0.0171455i
\(300\) 0.176948 0.00788807i 0.0102161 0.000455418i
\(301\) 10.4629 5.25466i 0.603071 0.302874i
\(302\) −1.72891 + 4.00806i −0.0994876 + 0.230638i
\(303\) −12.3907 0.891260i −0.711825 0.0512016i
\(304\) −0.295681 5.07665i −0.0169585 0.291166i
\(305\) −5.82181 33.0171i −0.333356 1.89055i
\(306\) −3.95555 + 1.31877i −0.226124 + 0.0753891i
\(307\) 1.01743 5.77016i 0.0580680 0.329320i −0.941911 0.335864i \(-0.890972\pi\)
0.999979 + 0.00654360i \(0.00208291\pi\)
\(308\) 15.0187 + 1.75543i 0.855769 + 0.100025i
\(309\) −8.12827 4.84174i −0.462401 0.275437i
\(310\) −5.24096 17.5060i −0.297667 0.994276i
\(311\) 6.95655 + 1.64873i 0.394470 + 0.0934910i 0.423063 0.906100i \(-0.360955\pi\)
−0.0285938 + 0.999591i \(0.509103\pi\)
\(312\) 2.50107 + 7.17437i 0.141595 + 0.406169i
\(313\) 4.96810 + 11.5173i 0.280813 + 0.650999i 0.998993 0.0448588i \(-0.0142838\pi\)
−0.718180 + 0.695857i \(0.755025\pi\)
\(314\) −1.46636 1.23042i −0.0827514 0.0694367i
\(315\) −23.4004 16.3213i −1.31846 0.919603i
\(316\) −9.28368 + 7.78993i −0.522248 + 0.438218i
\(317\) −13.9405 7.00116i −0.782974 0.393224i 0.0119537 0.999929i \(-0.496195\pi\)
−0.794928 + 0.606704i \(0.792491\pi\)
\(318\) −2.11808 20.5461i −0.118776 1.15217i
\(319\) −26.5850 + 3.10734i −1.48847 + 0.173978i
\(320\) 0.131339 2.25500i 0.00734205 0.126058i
\(321\) −22.1184 + 9.18549i −1.23453 + 0.512684i
\(322\) 0.846732 + 0.897483i 0.0471865 + 0.0500148i
\(323\) −7.06781 −0.393263
\(324\) −4.91800 + 7.53746i −0.273222 + 0.418748i
\(325\) −0.448585 −0.0248830
\(326\) −6.91690 7.33148i −0.383092 0.406053i
\(327\) 23.4335 + 17.9471i 1.29588 + 0.992478i
\(328\) −0.429658 + 7.37694i −0.0237239 + 0.407324i
\(329\) −4.17633 + 0.488142i −0.230248 + 0.0269122i
\(330\) 12.8252 + 5.74081i 0.706005 + 0.316021i
\(331\) 30.0560 + 15.0947i 1.65203 + 0.829680i 0.997270 + 0.0738429i \(0.0235263\pi\)
0.654759 + 0.755837i \(0.272770\pi\)
\(332\) −2.37402 + 1.99204i −0.130291 + 0.109327i
\(333\) 9.22271 0.823906i 0.505401 0.0451498i
\(334\) 12.5318 + 10.5154i 0.685711 + 0.575379i
\(335\) −4.99311 11.5753i −0.272803 0.632428i
\(336\) −4.76305 + 5.52178i −0.259846 + 0.301238i
\(337\) −9.34707 2.21530i −0.509168 0.120675i −0.0320011 0.999488i \(-0.510188\pi\)
−0.477167 + 0.878813i \(0.658336\pi\)
\(338\) −1.79031 5.98005i −0.0973800 0.325272i
\(339\) −13.2978 + 7.43773i −0.722238 + 0.403962i
\(340\) −3.11822 0.364468i −0.169109 0.0197661i
\(341\) 5.04539 28.6138i 0.273223 1.54953i
\(342\) −11.9495 + 9.48406i −0.646155 + 0.512839i
\(343\) 2.72371 + 15.4469i 0.147067 + 0.834056i
\(344\) −0.161698 2.77624i −0.00871816 0.149685i
\(345\) 0.500580 + 1.03155i 0.0269503 + 0.0555370i
\(346\) −8.48647 + 19.6739i −0.456236 + 1.05767i
\(347\) 2.62462 1.31813i 0.140897 0.0707610i −0.376954 0.926232i \(-0.623029\pi\)
0.517851 + 0.855471i \(0.326732\pi\)
\(348\) 5.94985 11.4551i 0.318945 0.614060i
\(349\) 0.0832690 0.0197351i 0.00445728 0.00105640i −0.228387 0.973571i \(-0.573345\pi\)
0.232844 + 0.972514i \(0.425197\pi\)
\(350\) −0.215271 0.372861i −0.0115067 0.0199302i
\(351\) 13.2931 18.5158i 0.709536 0.988299i
\(352\) 1.79576 3.11035i 0.0957144 0.165782i
\(353\) −5.58667 + 18.6608i −0.297348 + 0.993212i 0.670549 + 0.741865i \(0.266059\pi\)
−0.967897 + 0.251347i \(0.919127\pi\)
\(354\) −3.48408 15.6478i −0.185177 0.831673i
\(355\) 12.0466 + 7.92315i 0.639365 + 0.420517i
\(356\) −0.550413 0.739333i −0.0291718 0.0391846i
\(357\) 7.27662 + 7.05503i 0.385119 + 0.373392i
\(358\) −7.17505 + 4.71910i −0.379213 + 0.249412i
\(359\) 3.65287 + 1.32954i 0.192791 + 0.0701702i 0.436611 0.899650i \(-0.356178\pi\)
−0.243820 + 0.969820i \(0.578401\pi\)
\(360\) −5.76103 + 3.56804i −0.303633 + 0.188052i
\(361\) −6.44606 + 2.34617i −0.339266 + 0.123483i
\(362\) −0.111083 + 0.149211i −0.00583840 + 0.00784233i
\(363\) 2.07975 + 2.54828i 0.109158 + 0.133750i
\(364\) 12.6738 13.4334i 0.664285 0.704101i
\(365\) 9.43843 10.0042i 0.494030 0.523641i
\(366\) 16.2548 + 19.9168i 0.849653 + 1.04107i
\(367\) −13.3298 + 17.9050i −0.695809 + 0.934634i −0.999837 0.0180288i \(-0.994261\pi\)
0.304028 + 0.952663i \(0.401668\pi\)
\(368\) 0.275394 0.100235i 0.0143559 0.00522512i
\(369\) 18.8465 11.6724i 0.981109 0.607641i
\(370\) 6.55135 + 2.38449i 0.340588 + 0.123964i
\(371\) −41.9473 + 27.5892i −2.17779 + 1.43236i
\(372\) 10.0601 + 9.75377i 0.521593 + 0.505709i
\(373\) −3.99625 5.36789i −0.206918 0.277939i 0.686534 0.727097i \(-0.259131\pi\)
−0.893452 + 0.449159i \(0.851724\pi\)
\(374\) −4.17053 2.74300i −0.215653 0.141837i
\(375\) 4.16451 + 18.7038i 0.215055 + 0.965862i
\(376\) −0.286434 + 0.956757i −0.0147717 + 0.0493410i
\(377\) −16.3457 + 28.3115i −0.841845 + 1.45812i
\(378\) 21.7694 + 2.16364i 1.11970 + 0.111286i
\(379\) 14.2265 + 24.6411i 0.730767 + 1.26573i 0.956556 + 0.291550i \(0.0941708\pi\)
−0.225788 + 0.974176i \(0.572496\pi\)
\(380\) −11.1770 + 2.64900i −0.573370 + 0.135891i
\(381\) −16.4308 + 31.6339i −0.841774 + 1.62066i
\(382\) −6.56287 + 3.29600i −0.335786 + 0.168638i
\(383\) 13.7800 31.9456i 0.704124 1.63234i −0.0686342 0.997642i \(-0.521864\pi\)
0.772758 0.634701i \(-0.218877\pi\)
\(384\) 0.756177 + 1.55827i 0.0385885 + 0.0795200i
\(385\) −1.98596 34.0977i −0.101214 1.73778i
\(386\) 0.0848786 + 0.481371i 0.00432021 + 0.0245011i
\(387\) −6.53477 + 5.18651i −0.332181 + 0.263645i
\(388\) −0.324153 + 1.83836i −0.0164564 + 0.0933288i
\(389\) −20.5578 2.40286i −1.04232 0.121830i −0.422334 0.906440i \(-0.638789\pi\)
−0.619989 + 0.784610i \(0.712863\pi\)
\(390\) 14.9784 8.37770i 0.758460 0.424221i
\(391\) −0.116822 0.390213i −0.00590795 0.0197339i
\(392\) 10.4364 + 2.47348i 0.527120 + 0.124930i
\(393\) 6.64024 7.69799i 0.334956 0.388312i
\(394\) −3.30582 7.66374i −0.166545 0.386094i
\(395\) 20.9701 + 17.5960i 1.05512 + 0.885353i
\(396\) −10.7318 + 0.958723i −0.539295 + 0.0481776i
\(397\) 2.81853 2.36502i 0.141458 0.118697i −0.569313 0.822121i \(-0.692791\pi\)
0.710771 + 0.703424i \(0.248346\pi\)
\(398\) 6.24552 + 3.13662i 0.313060 + 0.157224i
\(399\) 33.8467 + 15.1504i 1.69445 + 0.758470i
\(400\) −0.101571 + 0.0118719i −0.00507855 + 0.000593597i
\(401\) −1.22319 + 21.0013i −0.0610830 + 1.04875i 0.818957 + 0.573855i \(0.194553\pi\)
−0.880040 + 0.474899i \(0.842484\pi\)
\(402\) 7.67431 + 5.87755i 0.382760 + 0.293145i
\(403\) −24.3529 25.8126i −1.21311 1.28582i
\(404\) 7.17224 0.356832
\(405\) 18.6961 + 7.98362i 0.929018 + 0.396709i
\(406\) −31.3765 −1.55719
\(407\) 7.60710 + 8.06305i 0.377070 + 0.399671i
\(408\) 2.22323 0.923276i 0.110066 0.0457090i
\(409\) 0.106998 1.83708i 0.00529069 0.0908376i −0.994629 0.103503i \(-0.966995\pi\)
0.999920 + 0.0126658i \(0.00403177\pi\)
\(410\) 16.5786 1.93776i 0.818757 0.0956989i
\(411\) 0.524855 + 5.09126i 0.0258892 + 0.251133i
\(412\) 4.88132 + 2.45149i 0.240485 + 0.120776i
\(413\) −29.8507 + 25.0477i −1.46886 + 1.23252i
\(414\) −0.721125 0.502971i −0.0354414 0.0247197i
\(415\) 5.36248 + 4.49966i 0.263234 + 0.220879i
\(416\) −1.73744 4.02785i −0.0851852 0.197482i
\(417\) −8.74843 25.0951i −0.428412 1.22891i
\(418\) −17.7715 4.21192i −0.869232 0.206012i
\(419\) −3.70575 12.3781i −0.181038 0.604709i −0.999544 0.0302103i \(-0.990382\pi\)
0.818506 0.574499i \(-0.194803\pi\)
\(420\) 14.1515 + 8.42956i 0.690521 + 0.411320i
\(421\) 12.4210 + 1.45181i 0.605365 + 0.0707570i 0.413253 0.910616i \(-0.364392\pi\)
0.192112 + 0.981373i \(0.438466\pi\)
\(422\) −1.01420 + 5.75182i −0.0493705 + 0.279994i
\(423\) 2.84233 0.947628i 0.138199 0.0460752i
\(424\) 2.07078 + 11.7440i 0.100566 + 0.570338i
\(425\) 0.00826418 + 0.141890i 0.000400871 + 0.00688270i
\(426\) −11.0276 0.793216i −0.534290 0.0384314i
\(427\) 24.7508 57.3788i 1.19777 2.77675i
\(428\) 12.3567 6.20576i 0.597283 0.299967i
\(429\) 27.2607 1.21524i 1.31616 0.0586723i
\(430\) −6.11233 + 1.44865i −0.294763 + 0.0698601i
\(431\) 2.34564 + 4.06276i 0.112985 + 0.195696i 0.916973 0.398950i \(-0.130625\pi\)
−0.803987 + 0.594647i \(0.797292\pi\)
\(432\) 2.51988 4.54425i 0.121238 0.218635i
\(433\) 11.1994 19.3979i 0.538209 0.932205i −0.460792 0.887508i \(-0.652434\pi\)
0.999001 0.0446970i \(-0.0142322\pi\)
\(434\) 9.76854 32.6292i 0.468905 1.56625i
\(435\) −27.8158 8.74228i −1.33366 0.419160i
\(436\) −14.2379 9.36441i −0.681871 0.448474i
\(437\) −0.889960 1.19542i −0.0425726 0.0571849i
\(438\) −2.57178 + 10.2280i −0.122885 + 0.488711i
\(439\) −1.97929 + 1.30180i −0.0944663 + 0.0621314i −0.595863 0.803086i \(-0.703190\pi\)
0.501397 + 0.865217i \(0.332820\pi\)
\(440\) −7.62335 2.77467i −0.363429 0.132277i
\(441\) −11.9346 29.8815i −0.568313 1.42293i
\(442\) −5.72910 + 2.08522i −0.272506 + 0.0991840i
\(443\) −13.1297 + 17.6362i −0.623809 + 0.837921i −0.995917 0.0902682i \(-0.971228\pi\)
0.372108 + 0.928189i \(0.378635\pi\)
\(444\) −5.27688 + 0.856477i −0.250430 + 0.0406466i
\(445\) −1.42875 + 1.51439i −0.0677294 + 0.0717890i
\(446\) −7.34206 + 7.78212i −0.347656 + 0.368494i
\(447\) 8.35734 22.0230i 0.395289 1.04165i
\(448\) 2.51414 3.37708i 0.118782 0.159552i
\(449\) −6.42022 + 2.33677i −0.302989 + 0.110279i −0.489041 0.872261i \(-0.662653\pi\)
0.186052 + 0.982540i \(0.440431\pi\)
\(450\) 0.204370 + 0.228804i 0.00963411 + 0.0107859i
\(451\) 24.9389 + 9.07700i 1.17432 + 0.427419i
\(452\) 7.34963 4.83393i 0.345697 0.227369i
\(453\) −7.27175 + 2.06947i −0.341657 + 0.0972320i
\(454\) 2.29997 + 3.08939i 0.107943 + 0.144992i
\(455\) −34.8538 22.9237i −1.63397 1.07468i
\(456\) 6.48842 5.95648i 0.303848 0.278938i
\(457\) 6.91767 23.1066i 0.323595 1.08088i −0.629193 0.777249i \(-0.716615\pi\)
0.952789 0.303634i \(-0.0982001\pi\)
\(458\) −7.15694 + 12.3962i −0.334422 + 0.579236i
\(459\) −6.10157 3.86360i −0.284797 0.180337i
\(460\) −0.330994 0.573299i −0.0154327 0.0267302i
\(461\) 23.2660 5.51415i 1.08361 0.256820i 0.350245 0.936658i \(-0.386098\pi\)
0.733362 + 0.679839i \(0.237950\pi\)
\(462\) 14.0922 + 22.0757i 0.655629 + 1.02706i
\(463\) −1.04020 + 0.522406i −0.0483420 + 0.0242783i −0.472806 0.881167i \(-0.656759\pi\)
0.424464 + 0.905445i \(0.360463\pi\)
\(464\) −2.95180 + 6.84304i −0.137034 + 0.317680i
\(465\) 17.7513 26.2046i 0.823197 1.21521i
\(466\) 0.989727 + 16.9930i 0.0458482 + 0.787184i
\(467\) 5.51838 + 31.2963i 0.255360 + 1.44822i 0.795146 + 0.606418i \(0.207394\pi\)
−0.539786 + 0.841802i \(0.681495\pi\)
\(468\) −6.88807 + 11.2132i −0.318401 + 0.518329i
\(469\) 4.08016 23.1397i 0.188404 1.06849i
\(470\) 2.24066 + 0.261895i 0.103354 + 0.0120803i
\(471\) 0.0451842 3.31518i 0.00208198 0.152755i
\(472\) 2.65451 + 8.86669i 0.122184 + 0.408122i
\(473\) −9.71862 2.30335i −0.446862 0.105908i
\(474\) −20.6202 3.92638i −0.947117 0.180344i
\(475\) 0.205973 + 0.477500i 0.00945070 + 0.0219092i
\(476\) −4.48256 3.76132i −0.205458 0.172400i
\(477\) 25.2507 25.3433i 1.15615 1.16039i
\(478\) −6.44740 + 5.41001i −0.294897 + 0.247448i
\(479\) −0.572276 0.287408i −0.0261479 0.0131320i 0.435677 0.900103i \(-0.356509\pi\)
−0.461825 + 0.886971i \(0.652805\pi\)
\(480\) 3.16977 2.29333i 0.144679 0.104676i
\(481\) 13.4476 1.57180i 0.613158 0.0716679i
\(482\) −0.845183 + 14.5112i −0.0384970 + 0.660969i
\(483\) −0.277010 + 2.11909i −0.0126044 + 0.0964221i
\(484\) −1.30320 1.38131i −0.0592365 0.0627870i
\(485\) 4.21659 0.191466
\(486\) −15.5003 + 1.65532i −0.703109 + 0.0750870i
\(487\) −32.1652 −1.45754 −0.728772 0.684756i \(-0.759909\pi\)
−0.728772 + 0.684756i \(0.759909\pi\)
\(488\) −10.1855 10.7960i −0.461077 0.488713i
\(489\) 2.26288 17.3107i 0.102331 0.782819i
\(490\) 1.40868 24.1861i 0.0636377 1.09262i
\(491\) −12.3627 + 1.44500i −0.557923 + 0.0652118i −0.390381 0.920653i \(-0.627657\pi\)
−0.167541 + 0.985865i \(0.553583\pi\)
\(492\) −10.3695 + 7.50235i −0.467493 + 0.338232i
\(493\) 9.25627 + 4.64867i 0.416881 + 0.209366i
\(494\) −17.0881 + 14.3386i −0.768831 + 0.645126i
\(495\) 6.34213 + 23.4969i 0.285058 + 1.05611i
\(496\) −6.19726 5.20012i −0.278265 0.233492i
\(497\) 10.6445 + 24.6767i 0.477470 + 1.10690i
\(498\) −5.27299 1.00405i −0.236289 0.0449927i
\(499\) −6.71533 1.59156i −0.300619 0.0712481i 0.0775381 0.996989i \(-0.475294\pi\)
−0.378157 + 0.925741i \(0.623442\pi\)
\(500\) −3.17293 10.5983i −0.141898 0.473972i
\(501\) −0.386154 + 28.3322i −0.0172521 + 1.26579i
\(502\) −28.7690 3.36261i −1.28402 0.150081i
\(503\) 3.29830 18.7056i 0.147064 0.834040i −0.818623 0.574331i \(-0.805262\pi\)
0.965687 0.259709i \(-0.0836267\pi\)
\(504\) −12.6258 0.344231i −0.562399 0.0153333i
\(505\) −2.81324 15.9547i −0.125187 0.709973i
\(506\) −0.0612010 1.05078i −0.00272072 0.0467129i
\(507\) 6.06383 8.95146i 0.269304 0.397548i
\(508\) 8.15154 18.8974i 0.361666 0.838436i
\(509\) 9.82955 4.93658i 0.435687 0.218810i −0.217416 0.976079i \(-0.569763\pi\)
0.653103 + 0.757269i \(0.273467\pi\)
\(510\) −2.92587 4.58342i −0.129560 0.202957i
\(511\) 24.9445 5.91195i 1.10348 0.261529i
\(512\) −0.500000 0.866025i −0.0220971 0.0382733i
\(513\) −25.8130 5.64825i −1.13967 0.249376i
\(514\) 8.16873 14.1487i 0.360307 0.624070i
\(515\) 3.53870 11.8201i 0.155934 0.520855i
\(516\) 3.54829 3.25740i 0.156205 0.143399i
\(517\) 2.99681 + 1.97104i 0.131800 + 0.0866860i
\(518\) 7.75984 + 10.4233i 0.340948 + 0.457973i
\(519\) −35.6939 + 10.1581i −1.56679 + 0.445892i
\(520\) −8.27847 + 5.44483i −0.363035 + 0.238772i
\(521\) 20.7976 + 7.56971i 0.911159 + 0.331635i 0.754716 0.656052i \(-0.227775\pi\)
0.156444 + 0.987687i \(0.449997\pi\)
\(522\) 21.8874 4.56120i 0.957986 0.199638i
\(523\) 17.2973 6.29571i 0.756359 0.275292i 0.0650798 0.997880i \(-0.479270\pi\)
0.691279 + 0.722588i \(0.257048\pi\)
\(524\) −3.50500 + 4.70804i −0.153117 + 0.205672i
\(525\) 0.264578 0.697208i 0.0115471 0.0304286i
\(526\) 10.4186 11.0431i 0.454272 0.481500i
\(527\) −7.71606 + 8.17854i −0.336117 + 0.356263i
\(528\) 6.14035 0.996624i 0.267224 0.0433725i
\(529\) −13.6834 + 18.3799i −0.594929 + 0.799128i
\(530\) 25.3123 9.21291i 1.09949 0.400183i
\(531\) 17.1819 21.8120i 0.745630 0.946561i
\(532\) −20.1186 7.32257i −0.872252 0.317474i
\(533\) 27.0820 17.8121i 1.17305 0.771528i
\(534\) 0.389307 1.54827i 0.0168469 0.0670002i
\(535\) −18.6515 25.0533i −0.806375 1.08315i
\(536\) −4.66281 3.06678i −0.201403 0.132465i
\(537\) −14.1902 4.45989i −0.612354 0.192458i
\(538\) 2.67353 8.93021i 0.115264 0.385008i
\(539\) 19.2605 33.3602i 0.829610 1.43693i
\(540\) −11.0971 3.82304i −0.477543 0.164517i
\(541\) −8.09100 14.0140i −0.347859 0.602510i 0.638010 0.770028i \(-0.279758\pi\)
−0.985869 + 0.167518i \(0.946425\pi\)
\(542\) −17.2224 + 4.08179i −0.739766 + 0.175328i
\(543\) −0.321876 + 0.0143487i −0.0138130 + 0.000615763i
\(544\) −1.24203 + 0.623770i −0.0532515 + 0.0267439i
\(545\) −15.2465 + 35.3453i −0.653088 + 1.51403i
\(546\) 31.9057 + 2.29498i 1.36544 + 0.0982159i
\(547\) −2.59023 44.4725i −0.110750 1.90151i −0.359821 0.933021i \(-0.617162\pi\)
0.249071 0.968485i \(-0.419875\pi\)
\(548\) −0.513133 2.91012i −0.0219200 0.124314i
\(549\) −8.92435 + 43.6239i −0.380882 + 1.86182i
\(550\) −0.0637771 + 0.361698i −0.00271947 + 0.0154229i
\(551\) 37.6418 + 4.39969i 1.60359 + 0.187433i
\(552\) 0.436103 + 0.259772i 0.0185618 + 0.0110566i
\(553\) 14.6336 + 48.8795i 0.622282 + 2.07857i
\(554\) 17.9603 + 4.25667i 0.763060 + 0.180849i
\(555\) 3.97504 + 11.4025i 0.168731 + 0.484009i
\(556\) 6.07737 + 14.0889i 0.257738 + 0.597504i
\(557\) −10.0552 8.43728i −0.426051 0.357499i 0.404409 0.914578i \(-0.367477\pi\)
−0.830459 + 0.557080i \(0.811922\pi\)
\(558\) −2.07097 + 24.1813i −0.0876712 + 1.02368i
\(559\) −9.34491 + 7.84131i −0.395248 + 0.331652i
\(560\) −8.49846 4.26809i −0.359126 0.180360i
\(561\) −0.886606 8.60035i −0.0374325 0.363107i
\(562\) −0.692483 + 0.0809397i −0.0292106 + 0.00341423i
\(563\) −1.95829 + 33.6226i −0.0825322 + 1.41702i 0.662034 + 0.749474i \(0.269694\pi\)
−0.744566 + 0.667549i \(0.767343\pi\)
\(564\) −1.59754 + 0.663438i −0.0672686 + 0.0279358i
\(565\) −13.6359 14.4532i −0.573666 0.608051i
\(566\) 13.0162 0.547113
\(567\) 20.9376 + 31.5814i 0.879295 + 1.32630i
\(568\) 6.38325 0.267835
\(569\) −24.8075 26.2944i −1.03998 1.10232i −0.994645 0.103346i \(-0.967045\pi\)
−0.0453375 0.998972i \(-0.514436\pi\)
\(570\) −15.7952 12.0971i −0.661589 0.506693i
\(571\) −1.96662 + 33.7656i −0.0823005 + 1.41305i 0.664148 + 0.747601i \(0.268795\pi\)
−0.746448 + 0.665444i \(0.768242\pi\)
\(572\) −15.6481 + 1.82900i −0.654278 + 0.0764742i
\(573\) −11.6102 5.19694i −0.485023 0.217105i
\(574\) 27.8017 + 13.9625i 1.16042 + 0.582784i
\(575\) −0.0229582 + 0.0192643i −0.000957425 + 0.000803375i
\(576\) −1.26287 + 2.72124i −0.0526197 + 0.113385i
\(577\) 21.3204 + 17.8899i 0.887580 + 0.744768i 0.967723 0.252016i \(-0.0810935\pi\)
−0.0801436 + 0.996783i \(0.525538\pi\)
\(578\) −5.96824 13.8359i −0.248246 0.575499i
\(579\) −0.552985 + 0.641072i −0.0229813 + 0.0266420i
\(580\) 16.3802 + 3.88217i 0.680150 + 0.161198i
\(581\) 3.74209 + 12.4995i 0.155248 + 0.518565i
\(582\) −2.82186 + 1.57832i −0.116970 + 0.0654235i
\(583\) 42.5398 + 4.97220i 1.76182 + 0.205927i
\(584\) 1.05733 5.99643i 0.0437527 0.248134i
\(585\) 27.6455 + 10.9243i 1.14300 + 0.451663i
\(586\) −5.18186 29.3878i −0.214061 1.21400i
\(587\) 0.518114 + 8.89568i 0.0213849 + 0.367164i 0.991976 + 0.126429i \(0.0403515\pi\)
−0.970591 + 0.240735i \(0.922611\pi\)
\(588\) 8.11042 + 16.7133i 0.334468 + 0.689244i
\(589\) −16.2945 + 37.7749i −0.671403 + 1.55649i
\(590\) 18.6828 9.38283i 0.769157 0.386285i
\(591\) 6.66342 12.8290i 0.274097 0.527714i
\(592\) 3.00328 0.711791i 0.123434 0.0292544i
\(593\) −17.5496 30.3968i −0.720675 1.24825i −0.960729 0.277487i \(-0.910499\pi\)
0.240054 0.970760i \(-0.422835\pi\)
\(594\) −13.0395 13.3509i −0.535018 0.547792i
\(595\) −6.60882 + 11.4468i −0.270935 + 0.469273i
\(596\) −3.90045 + 13.0284i −0.159769 + 0.533664i
\(597\) 2.63085 + 11.8158i 0.107674 + 0.483589i
\(598\) −1.07408 0.706435i −0.0439225 0.0288883i
\(599\) 1.20379 + 1.61697i 0.0491855 + 0.0660675i 0.826035 0.563618i \(-0.190591\pi\)
−0.776850 + 0.629686i \(0.783184\pi\)
\(600\) −0.127167 0.123294i −0.00519156 0.00503346i
\(601\) 9.97324 6.55950i 0.406817 0.267568i −0.329566 0.944132i \(-0.606902\pi\)
0.736383 + 0.676565i \(0.236532\pi\)
\(602\) −11.0022 4.00446i −0.448415 0.163210i
\(603\) 0.517611 + 16.7348i 0.0210788 + 0.681494i
\(604\) 4.10181 1.49294i 0.166900 0.0607467i
\(605\) −2.56157 + 3.44078i −0.104143 + 0.139888i
\(606\) 7.85471 + 9.62426i 0.319076 + 0.390959i
\(607\) −5.73034 + 6.07381i −0.232587 + 0.246528i −0.833147 0.553052i \(-0.813463\pi\)
0.600559 + 0.799580i \(0.294945\pi\)
\(608\) −3.48971 + 3.69888i −0.141526 + 0.150009i
\(609\) −34.3621 42.1034i −1.39242 1.70612i
\(610\) −20.0206 + 26.8924i −0.810611 + 1.08884i
\(611\) 4.11676 1.49838i 0.166546 0.0606178i
\(612\) 3.67370 + 1.97217i 0.148501 + 0.0797201i
\(613\) −24.8380 9.04029i −1.00320 0.365134i −0.212381 0.977187i \(-0.568122\pi\)
−0.790817 + 0.612053i \(0.790344\pi\)
\(614\) −4.89527 + 3.21967i −0.197557 + 0.129935i
\(615\) 20.7563 + 20.1243i 0.836976 + 0.811488i
\(616\) −9.02960 12.1289i −0.363813 0.488685i
\(617\) 12.6415 + 8.31444i 0.508927 + 0.334727i 0.777866 0.628431i \(-0.216302\pi\)
−0.268938 + 0.963157i \(0.586673\pi\)
\(618\) 2.05620 + 9.23489i 0.0827125 + 0.371482i
\(619\) −11.0904 + 37.0446i −0.445762 + 1.48895i 0.380031 + 0.924974i \(0.375913\pi\)
−0.825793 + 0.563974i \(0.809272\pi\)
\(620\) −9.13687 + 15.8255i −0.366945 + 0.635568i
\(621\) −0.114818 1.51849i −0.00460748 0.0609350i
\(622\) −3.57463 6.19144i −0.143330 0.248254i
\(623\) −3.77600 + 0.894928i −0.151282 + 0.0358545i
\(624\) 3.50211 6.74256i 0.140197 0.269918i
\(625\) −22.7884 + 11.4448i −0.911536 + 0.457791i
\(626\) 4.96810 11.5173i 0.198565 0.460326i
\(627\) −13.8107 28.4599i −0.551544 1.13658i
\(628\) 0.111301 + 1.91096i 0.00444138 + 0.0762555i
\(629\) −0.744914 4.22462i −0.0297017 0.168446i
\(630\) 4.18661 + 28.2212i 0.166798 + 1.12436i
\(631\) −4.17190 + 23.6600i −0.166081 + 0.941892i 0.781862 + 0.623451i \(0.214270\pi\)
−0.947943 + 0.318440i \(0.896841\pi\)
\(632\) 12.0370 + 1.40693i 0.478808 + 0.0559646i
\(633\) −8.82894 + 4.93820i −0.350919 + 0.196276i
\(634\) 4.47406 + 14.9444i 0.177688 + 0.593518i
\(635\) −45.2346 10.7208i −1.79508 0.425442i
\(636\) −13.4912 + 15.6402i −0.534959 + 0.620175i
\(637\) −18.6351 43.2009i −0.738348 1.71168i
\(638\) 20.5039 + 17.2048i 0.811758 + 0.681146i
\(639\) −11.0126 15.6664i −0.435650 0.619754i
\(640\) −1.73036 + 1.45194i −0.0683983 + 0.0573930i
\(641\) 5.31254 + 2.66806i 0.209833 + 0.105382i 0.550612 0.834762i \(-0.314395\pi\)
−0.340779 + 0.940143i \(0.610691\pi\)
\(642\) 21.8599 + 9.78489i 0.862740 + 0.386179i
\(643\) 14.6766 1.71545i 0.578788 0.0676507i 0.178338 0.983969i \(-0.442928\pi\)
0.400450 + 0.916319i \(0.368854\pi\)
\(644\) 0.0717430 1.23178i 0.00282707 0.0485390i
\(645\) −8.63787 6.61551i −0.340116 0.260485i
\(646\) 4.85022 + 5.14094i 0.190829 + 0.202267i
\(647\) 19.6797 0.773690 0.386845 0.922145i \(-0.373565\pi\)
0.386845 + 0.922145i \(0.373565\pi\)
\(648\) 8.85749 1.59529i 0.347955 0.0626689i
\(649\) 33.2414 1.30484
\(650\) 0.307837 + 0.326289i 0.0120744 + 0.0127981i
\(651\) 54.4825 22.6259i 2.13534 0.886777i
\(652\) −0.586065 + 10.0623i −0.0229521 + 0.394072i
\(653\) −33.4217 + 3.90644i −1.30789 + 0.152871i −0.741326 0.671145i \(-0.765803\pi\)
−0.566566 + 0.824016i \(0.691729\pi\)
\(654\) −3.02681 29.3610i −0.118358 1.14811i
\(655\) 11.8478 + 5.95021i 0.462933 + 0.232494i
\(656\) 5.66064 4.74984i 0.221011 0.185450i
\(657\) −16.5412 + 7.75020i −0.645333 + 0.302364i
\(658\) 3.22103 + 2.70277i 0.125569 + 0.105365i
\(659\) 17.9088 + 41.5172i 0.697626 + 1.61728i 0.783811 + 0.621000i \(0.213273\pi\)
−0.0861849 + 0.996279i \(0.527468\pi\)
\(660\) −4.62548 13.2683i −0.180047 0.516468i
\(661\) −12.5188 2.96701i −0.486926 0.115403i −0.0201823 0.999796i \(-0.506425\pi\)
−0.466743 + 0.884393i \(0.654573\pi\)
\(662\) −9.64621 32.2206i −0.374911 1.25229i
\(663\) −9.07237 5.40411i −0.352342 0.209878i
\(664\) 3.07811 + 0.359779i 0.119454 + 0.0139621i
\(665\) −8.39777 + 47.6261i −0.325651 + 1.84686i
\(666\) −6.92829 6.14296i −0.268466 0.238035i
\(667\) 0.379266 + 2.15092i 0.0146852 + 0.0832840i
\(668\) −0.951199 16.3314i −0.0368030 0.631883i
\(669\) −18.4833 1.32951i −0.714608 0.0514017i
\(670\) −4.99311 + 11.5753i −0.192901 + 0.447194i
\(671\) −47.6370 + 23.9242i −1.83900 + 0.923583i
\(672\) 7.28500 0.324754i 0.281025 0.0125277i
\(673\) 8.59055 2.03600i 0.331141 0.0784819i −0.0616821 0.998096i \(-0.519646\pi\)
0.392823 + 0.919614i \(0.371498\pi\)
\(674\) 4.80300 + 8.31904i 0.185005 + 0.320438i
\(675\) −0.0832096 + 0.524815i −0.00320274 + 0.0202002i
\(676\) −3.12115 + 5.40598i −0.120044 + 0.207922i
\(677\) −4.78789 + 15.9927i −0.184013 + 0.614648i 0.815350 + 0.578969i \(0.196545\pi\)
−0.999363 + 0.0356792i \(0.988641\pi\)
\(678\) 14.5355 + 4.56840i 0.558233 + 0.175448i
\(679\) 6.56629 + 4.31872i 0.251991 + 0.165737i
\(680\) 1.87475 + 2.51823i 0.0718934 + 0.0965696i
\(681\) −1.62677 + 6.46964i −0.0623378 + 0.247917i
\(682\) −24.2753 + 15.9661i −0.929549 + 0.611374i
\(683\) −2.56187 0.932444i −0.0980272 0.0356790i 0.292541 0.956253i \(-0.405499\pi\)
−0.390568 + 0.920574i \(0.627721\pi\)
\(684\) 15.0987 + 2.18339i 0.577313 + 0.0834841i
\(685\) −6.27230 + 2.28293i −0.239652 + 0.0872263i
\(686\) 9.36657 12.5815i 0.357617 0.480363i
\(687\) −24.4721 + 3.97201i −0.933670 + 0.151542i
\(688\) −1.90840 + 2.02279i −0.0727572 + 0.0771181i
\(689\) 35.8979 38.0496i 1.36760 1.44957i
\(690\) 0.406807 1.07200i 0.0154869 0.0408105i
\(691\) −2.78748 + 3.74424i −0.106041 + 0.142437i −0.851976 0.523581i \(-0.824596\pi\)
0.745935 + 0.666019i \(0.232003\pi\)
\(692\) 20.1340 7.32818i 0.765380 0.278576i
\(693\) −14.1897 + 43.0864i −0.539024 + 1.63672i
\(694\) −2.75990 1.00452i −0.104764 0.0381311i
\(695\) 28.9571 19.0454i 1.09840 0.722432i
\(696\) −12.4152 + 3.53324i −0.470597 + 0.133927i
\(697\) −6.13302 8.23807i −0.232305 0.312039i
\(698\) −0.0714974 0.0470246i −0.00270622 0.00177991i
\(699\) −21.7186 + 19.9380i −0.821472 + 0.754125i
\(700\) −0.123481 + 0.412455i −0.00466714 + 0.0155893i
\(701\) 25.3003 43.8213i 0.955577 1.65511i 0.222536 0.974925i \(-0.428567\pi\)
0.733042 0.680184i \(-0.238100\pi\)
\(702\) −22.5902 + 3.03722i −0.852612 + 0.114632i
\(703\) −7.84776 13.5927i −0.295984 0.512659i
\(704\) −3.49471 + 0.828262i −0.131712 + 0.0312163i
\(705\) 2.10244 + 3.29351i 0.0791824 + 0.124041i
\(706\) 17.4072 8.74220i 0.655127 0.329017i
\(707\) 11.9602 27.7268i 0.449808 1.04277i
\(708\) −8.99091 + 13.2724i −0.337899 + 0.498808i
\(709\) −0.865531 14.8606i −0.0325057 0.558101i −0.974767 0.223224i \(-0.928342\pi\)
0.942262 0.334878i \(-0.108695\pi\)
\(710\) −2.50376 14.1995i −0.0939646 0.532900i
\(711\) −17.3136 31.9698i −0.649311 1.19896i
\(712\) −0.160055 + 0.907717i −0.00599831 + 0.0340181i
\(713\) −2.35488 0.275246i −0.0881908 0.0103080i
\(714\) 0.138125 10.1343i 0.00516920 0.379266i
\(715\) 10.2064 + 34.0917i 0.381698 + 1.27496i
\(716\) 8.35637 + 1.98050i 0.312292 + 0.0740146i
\(717\) −14.3205 2.72682i −0.534808 0.101835i
\(718\) −1.53968 3.56938i −0.0574604 0.133208i
\(719\) −10.0350 8.42040i −0.374244 0.314028i 0.436194 0.899853i \(-0.356326\pi\)
−0.810438 + 0.585825i \(0.800771\pi\)
\(720\) 6.54876 + 1.74188i 0.244058 + 0.0649162i
\(721\) 17.6170 14.7824i 0.656091 0.550526i
\(722\) 6.13010 + 3.07865i 0.228139 + 0.114576i
\(723\) −20.3979 + 14.7579i −0.758606 + 0.548853i
\(724\) 0.184762 0.0215955i 0.00686662 0.000802592i
\(725\) 0.0443130 0.760825i 0.00164574 0.0282563i
\(726\) 0.426345 3.26149i 0.0158232 0.121045i
\(727\) 21.5371 + 22.8280i 0.798768 + 0.846645i 0.990883 0.134728i \(-0.0430160\pi\)
−0.192115 + 0.981372i \(0.561535\pi\)
\(728\) −18.4684 −0.684483
\(729\) −19.1965 18.9867i −0.710981 0.703211i
\(730\) −13.7538 −0.509051
\(731\) 2.65242 + 2.81140i 0.0981033 + 0.103983i
\(732\) 3.33222 25.4911i 0.123162 0.942176i
\(733\) −1.84946 + 31.7541i −0.0683115 + 1.17286i 0.773753 + 0.633487i \(0.218377\pi\)
−0.842065 + 0.539377i \(0.818660\pi\)
\(734\) 22.1711 2.59143i 0.818350 0.0956514i
\(735\) 33.9975 24.5973i 1.25402 0.907283i
\(736\) −0.261895 0.131529i −0.00965359 0.00484822i
\(737\) −15.3547 + 12.8841i −0.565596 + 0.474591i
\(738\) −21.4234 5.69836i −0.788608 0.209760i
\(739\) −13.0781 10.9738i −0.481086 0.403679i 0.369733 0.929138i \(-0.379449\pi\)
−0.850819 + 0.525459i \(0.823894\pi\)
\(740\) −2.76139 6.40162i −0.101511 0.235328i
\(741\) −37.9549 7.22714i −1.39431 0.265496i
\(742\) 48.8536 + 11.5785i 1.79347 + 0.425061i
\(743\) 11.7045 + 39.0957i 0.429396 + 1.43428i 0.849877 + 0.526981i \(0.176676\pi\)
−0.420481 + 0.907301i \(0.638139\pi\)
\(744\) 0.190962 14.0109i 0.00700099 0.513665i
\(745\) 30.5116 + 3.56630i 1.11786 + 0.130659i
\(746\) −1.16207 + 6.59043i −0.0425464 + 0.241293i
\(747\) −4.42743 8.17531i −0.161991 0.299119i
\(748\) 0.866805 + 4.91590i 0.0316935 + 0.179743i
\(749\) −3.38496 58.1176i −0.123684 2.12357i
\(750\) 10.7468 15.8645i 0.392418 0.579290i
\(751\) −4.37209 + 10.1356i −0.159540 + 0.369855i −0.979171 0.203036i \(-0.934919\pi\)
0.819631 + 0.572891i \(0.194178\pi\)
\(752\) 0.892483 0.448222i 0.0325455 0.0163450i
\(753\) −26.9943 42.2870i −0.983726 1.54103i
\(754\) 31.8101 7.53914i 1.15846 0.274559i
\(755\) −4.92993 8.53889i −0.179419 0.310762i
\(756\) −13.3653 17.3193i −0.486092 0.629897i
\(757\) −10.2741 + 17.7953i −0.373419 + 0.646780i −0.990089 0.140441i \(-0.955148\pi\)
0.616670 + 0.787222i \(0.288481\pi\)
\(758\) 8.16042 27.2577i 0.296400 0.990045i
\(759\) 1.34299 1.23289i 0.0487476 0.0447512i
\(760\) 9.59696 + 6.31202i 0.348118 + 0.228961i
\(761\) 6.46390 + 8.68252i 0.234316 + 0.314741i 0.903692 0.428183i \(-0.140846\pi\)
−0.669376 + 0.742924i \(0.733439\pi\)
\(762\) 34.2852 9.75720i 1.24202 0.353466i
\(763\) −59.9440 + 39.4258i −2.17012 + 1.42731i
\(764\) 6.90114 + 2.51181i 0.249675 + 0.0908741i
\(765\) 2.94612 8.94572i 0.106517 0.323433i
\(766\) −32.6928 + 11.8992i −1.18124 + 0.429935i
\(767\) 24.2448 32.5664i