gp: [N,k,chi] = [162,2,Mod(7,162)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("162.7");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(162, base_ring=CyclotomicField(54))
chi = DirichletCharacter(H, H._module([16]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [90]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{90} + 9 T_{5}^{88} + 30 T_{5}^{87} + 45 T_{5}^{86} + 1377 T_{5}^{85} + 2673 T_{5}^{84} + \cdots + 21\!\cdots\!84 \)
T5^90 + 9*T5^88 + 30*T5^87 + 45*T5^86 + 1377*T5^85 + 2673*T5^84 + 10341*T5^83 + 18657*T5^82 + 199554*T5^81 + 401679*T5^80 + 1119420*T5^79 + 1084239*T5^78 - 24612417*T5^77 + 98528886*T5^76 - 65730204*T5^75 - 929247633*T5^74 + 1639840059*T5^73 + 24185855529*T5^72 - 42151663548*T5^71 + 256550208768*T5^70 + 505217165517*T5^69 - 310113318528*T5^68 + 14626993751289*T5^67 - 46862802103995*T5^66 + 98648407198593*T5^65 + 241283604609126*T5^64 - 2179837803028608*T5^63 + 2431845517854726*T5^62 + 17722648468233045*T5^61 - 83512317182777046*T5^60 + 82185776764317441*T5^59 + 366205736133129213*T5^58 - 1094104737479163285*T5^57 + 2008298410228848933*T5^56 - 16143925626605563065*T5^55 + 99310226536061712972*T5^54 - 314876374223690518785*T5^53 + 434559364641225455751*T5^52 - 60548283948033569529*T5^51 - 707149525081102433379*T5^50 + 2133896119490138973651*T5^49 - 3220125759018869838327*T5^48 + 5794485434190770233518*T5^47 + 19929529166113712619936*T5^46 - 147405157172736804808227*T5^45 + 163498481799491804973759*T5^44 - 31668841512366898040721*T5^43 + 153273797907869100335454*T5^42 + 836861199459883872543153*T5^41 - 467112100191177372223113*T5^40 + 151377945412765544333901*T5^39 - 4483674900541729648436337*T5^38 - 37558115046638207961898428*T5^37 + 39543162387433124901825798*T5^36 + 35909817816133618000250553*T5^35 + 285463096760160390000918627*T5^34 - 108181032051909813359804010*T5^33 - 744000885593744946674536440*T5^32 - 615473213179954777712304876*T5^31 - 213902949342769725630796398*T5^30 + 3746152965213370716483385773*T5^29 + 2848456034563110747036788709*T5^28 - 6513357017984872248246957444*T5^27 - 2641351231633686074707117176*T5^26 - 8220157629446437962791465475*T5^25 + 19987311860779359930380418600*T5^24 + 186072182037808652969492085*T5^23 + 10025537701520304834165724716*T5^22 - 19274893745098595880695693103*T5^21 + 22468899189394876965923342214*T5^20 - 9324570534844648648583017521*T5^19 + 13466359432484510396981260743*T5^18 - 13052959761107015672418190566*T5^17 + 18846158645335012763819787936*T5^16 - 7219160523294617290624580304*T5^15 + 14143023309965392116437798016*T5^14 - 3524514765645467317889355840*T5^13 + 7598161538874375068591376192*T5^12 - 4769047955389781332202675328*T5^11 + 3485221352150551854315641856*T5^10 - 3276843512126123653663371264*T5^9 + 675639319029391357274492928*T5^8 - 1071059594812861120105494528*T5^7 + 860783773094835233074532352*T5^6 - 293935089809926304086597632*T5^5 + 304525784995279173771411456*T5^4 - 57505636468225888844120064*T5^3 + 3839935105319228540780544*T5^2 - 9862674662200699668529152*T5 + 2163784203674077249142784
acting on \(S_{2}^{\mathrm{new}}(162, [\chi])\).