Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [162,2,Mod(7,162)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(162, base_ring=CyclotomicField(54))
chi = DirichletCharacter(H, H._module([16]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("162.7");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.g (of order \(27\), degree \(18\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.29357651274\) |
Analytic rank: | \(0\) |
Dimension: | \(90\) |
Relative dimension: | \(5\) over \(\Q(\zeta_{27})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{27}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | 0.597159 | + | 0.802123i | −1.58049 | + | 0.708545i | −0.286803 | + | 0.957990i | −0.763144 | + | 0.501928i | −1.51215 | − | 0.844638i | −2.48772 | + | 2.63683i | −0.939693 | + | 0.342020i | 1.99593 | − | 2.23970i | −0.858326 | − | 0.312405i |
7.2 | 0.597159 | + | 0.802123i | 0.156275 | + | 1.72499i | −0.286803 | + | 0.957990i | 3.59342 | − | 2.36343i | −1.29033 | + | 1.15544i | −0.0885835 | + | 0.0938930i | −0.939693 | + | 0.342020i | −2.95116 | + | 0.539145i | 4.04160 | + | 1.47102i |
7.3 | 0.597159 | + | 0.802123i | 0.427379 | − | 1.67850i | −0.286803 | + | 0.957990i | 1.23282 | − | 0.810835i | 1.60157 | − | 0.659517i | 0.694984 | − | 0.736640i | −0.939693 | + | 0.342020i | −2.63469 | − | 1.43471i | 1.38658 | + | 0.504672i |
7.4 | 0.597159 | + | 0.802123i | 0.497048 | + | 1.65920i | −0.286803 | + | 0.957990i | −3.09160 | + | 2.03338i | −1.03407 | + | 1.38950i | 2.90797 | − | 3.08226i | −0.939693 | + | 0.342020i | −2.50589 | + | 1.64940i | −3.47720 | − | 1.26560i |
7.5 | 0.597159 | + | 0.802123i | 1.73136 | − | 0.0489119i | −0.286803 | + | 0.957990i | −0.660279 | + | 0.434273i | 1.07313 | + | 1.35956i | −2.31933 | + | 2.45835i | −0.939693 | + | 0.342020i | 2.99522 | − | 0.169368i | −0.742632 | − | 0.270296i |
13.1 | 0.893633 | + | 0.448799i | −1.57770 | − | 0.714739i | 0.597159 | + | 0.802123i | 0.891212 | + | 2.97686i | −1.08911 | − | 1.34679i | 0.275210 | + | 0.638009i | 0.173648 | + | 0.984808i | 1.97830 | + | 2.25529i | −0.539594 | + | 3.06019i |
13.2 | 0.893633 | + | 0.448799i | −0.977769 | − | 1.42967i | 0.597159 | + | 0.802123i | −1.15296 | − | 3.85116i | −0.232129 | − | 1.71643i | −0.663579 | − | 1.53835i | 0.173648 | + | 0.984808i | −1.08794 | + | 2.79578i | 0.698073 | − | 3.95897i |
13.3 | 0.893633 | + | 0.448799i | −0.530234 | + | 1.64889i | 0.597159 | + | 0.802123i | −0.536865 | − | 1.79325i | −1.21386 | + | 1.23554i | 1.99514 | + | 4.62524i | 0.173648 | + | 0.984808i | −2.43770 | − | 1.74860i | 0.325051 | − | 1.84346i |
13.4 | 0.893633 | + | 0.448799i | 1.02523 | − | 1.39603i | 0.597159 | + | 0.802123i | 0.664151 | + | 2.21842i | 1.54272 | − | 0.787412i | −0.590051 | − | 1.36789i | 0.173648 | + | 0.984808i | −0.897788 | − | 2.86251i | −0.402118 | + | 2.28052i |
13.5 | 0.893633 | + | 0.448799i | 1.51179 | + | 0.845280i | 0.597159 | + | 0.802123i | −0.379535 | − | 1.26773i | 0.971622 | + | 1.43386i | −0.768169 | − | 1.78082i | 0.173648 | + | 0.984808i | 1.57100 | + | 2.55577i | 0.229793 | − | 1.30322i |
25.1 | 0.893633 | − | 0.448799i | −1.57770 | + | 0.714739i | 0.597159 | − | 0.802123i | 0.891212 | − | 2.97686i | −1.08911 | + | 1.34679i | 0.275210 | − | 0.638009i | 0.173648 | − | 0.984808i | 1.97830 | − | 2.25529i | −0.539594 | − | 3.06019i |
25.2 | 0.893633 | − | 0.448799i | −0.977769 | + | 1.42967i | 0.597159 | − | 0.802123i | −1.15296 | + | 3.85116i | −0.232129 | + | 1.71643i | −0.663579 | + | 1.53835i | 0.173648 | − | 0.984808i | −1.08794 | − | 2.79578i | 0.698073 | + | 3.95897i |
25.3 | 0.893633 | − | 0.448799i | −0.530234 | − | 1.64889i | 0.597159 | − | 0.802123i | −0.536865 | + | 1.79325i | −1.21386 | − | 1.23554i | 1.99514 | − | 4.62524i | 0.173648 | − | 0.984808i | −2.43770 | + | 1.74860i | 0.325051 | + | 1.84346i |
25.4 | 0.893633 | − | 0.448799i | 1.02523 | + | 1.39603i | 0.597159 | − | 0.802123i | 0.664151 | − | 2.21842i | 1.54272 | + | 0.787412i | −0.590051 | + | 1.36789i | 0.173648 | − | 0.984808i | −0.897788 | + | 2.86251i | −0.402118 | − | 2.28052i |
25.5 | 0.893633 | − | 0.448799i | 1.51179 | − | 0.845280i | 0.597159 | − | 0.802123i | −0.379535 | + | 1.26773i | 0.971622 | − | 1.43386i | −0.768169 | + | 1.78082i | 0.173648 | − | 0.984808i | 1.57100 | − | 2.55577i | 0.229793 | + | 1.30322i |
31.1 | 0.396080 | + | 0.918216i | −1.62304 | + | 0.604777i | −0.686242 | + | 0.727374i | −0.102641 | + | 1.76229i | −1.19817 | − | 1.25076i | −1.24262 | + | 0.294506i | −0.939693 | − | 0.342020i | 2.26849 | − | 1.96315i | −1.65881 | + | 0.603759i |
31.2 | 0.396080 | + | 0.918216i | −1.57515 | − | 0.720348i | −0.686242 | + | 0.727374i | 0.193287 | − | 3.31862i | 0.0375499 | − | 1.73164i | 2.86227 | − | 0.678371i | −0.939693 | − | 0.342020i | 1.96220 | + | 2.26931i | 3.12376 | − | 1.13696i |
31.3 | 0.396080 | + | 0.918216i | 0.178274 | − | 1.72285i | −0.686242 | + | 0.727374i | −0.253242 | + | 4.34800i | 1.65256 | − | 0.518693i | 3.96081 | − | 0.938728i | −0.939693 | − | 0.342020i | −2.93644 | − | 0.614278i | −4.09271 | + | 1.48962i |
31.4 | 0.396080 | + | 0.918216i | 0.360138 | + | 1.69420i | −0.686242 | + | 0.727374i | −0.0437737 | + | 0.751566i | −1.41299 | + | 1.00172i | −2.40536 | + | 0.570080i | −0.939693 | − | 0.342020i | −2.74060 | + | 1.22029i | −0.707437 | + | 0.257486i |
31.5 | 0.396080 | + | 0.918216i | 1.72468 | + | 0.159609i | −0.686242 | + | 0.727374i | 0.0350699 | − | 0.602127i | 0.536555 | + | 1.64685i | 0.510080 | − | 0.120891i | −0.939693 | − | 0.342020i | 2.94905 | + | 0.550550i | 0.566774 | − | 0.206289i |
See all 90 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
81.g | even | 27 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 162.2.g.b | ✓ | 90 |
3.b | odd | 2 | 1 | 486.2.g.b | 90 | ||
81.g | even | 27 | 1 | inner | 162.2.g.b | ✓ | 90 |
81.h | odd | 54 | 1 | 486.2.g.b | 90 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
162.2.g.b | ✓ | 90 | 1.a | even | 1 | 1 | trivial |
162.2.g.b | ✓ | 90 | 81.g | even | 27 | 1 | inner |
486.2.g.b | 90 | 3.b | odd | 2 | 1 | ||
486.2.g.b | 90 | 81.h | odd | 54 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{90} + 9 T_{5}^{88} + 30 T_{5}^{87} + 45 T_{5}^{86} + 1377 T_{5}^{85} + 2673 T_{5}^{84} + 10341 T_{5}^{83} + 18657 T_{5}^{82} + 199554 T_{5}^{81} + 401679 T_{5}^{80} + 1119420 T_{5}^{79} + \cdots + 21\!\cdots\!84 \)
acting on \(S_{2}^{\mathrm{new}}(162, [\chi])\).