Properties

Label 162.10.a.f.1.4
Level $162$
Weight $10$
Character 162.1
Self dual yes
Analytic conductor $83.436$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,10,Mod(1,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-64,0,1024,1968] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(83.4358054585\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 953x^{2} + 954x + 195702 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{8} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(26.1057\) of defining polynomial
Character \(\chi\) \(=\) 162.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} +256.000 q^{4} +1985.27 q^{5} +3496.33 q^{7} -4096.00 q^{8} -31764.3 q^{10} -92426.8 q^{11} -156467. q^{13} -55941.3 q^{14} +65536.0 q^{16} +606661. q^{17} +793782. q^{19} +508229. q^{20} +1.47883e6 q^{22} +107894. q^{23} +1.98817e6 q^{25} +2.50348e6 q^{26} +895062. q^{28} -3.95259e6 q^{29} -356140. q^{31} -1.04858e6 q^{32} -9.70657e6 q^{34} +6.94117e6 q^{35} +4.63798e6 q^{37} -1.27005e7 q^{38} -8.13167e6 q^{40} +2.51530e7 q^{41} -4.09013e6 q^{43} -2.36613e7 q^{44} -1.72630e6 q^{46} +4.52307e7 q^{47} -2.81293e7 q^{49} -3.18108e7 q^{50} -4.00556e7 q^{52} -41008.3 q^{53} -1.83492e8 q^{55} -1.43210e7 q^{56} +6.32414e7 q^{58} +1.44716e8 q^{59} +2.38311e7 q^{61} +5.69824e6 q^{62} +1.67772e7 q^{64} -3.10630e8 q^{65} -1.29326e8 q^{67} +1.55305e8 q^{68} -1.11059e8 q^{70} +2.92490e8 q^{71} +1.45424e8 q^{73} -7.42077e7 q^{74} +2.03208e8 q^{76} -3.23155e8 q^{77} -9.11909e7 q^{79} +1.30107e8 q^{80} -4.02448e8 q^{82} +3.33108e8 q^{83} +1.20439e9 q^{85} +6.54421e7 q^{86} +3.78580e8 q^{88} +4.73579e8 q^{89} -5.47062e8 q^{91} +2.76208e7 q^{92} -7.23691e8 q^{94} +1.57587e9 q^{95} -1.68662e9 q^{97} +4.50068e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{2} + 1024 q^{4} + 1968 q^{5} + 4496 q^{7} - 16384 q^{8} - 31488 q^{10} - 8784 q^{11} - 162556 q^{13} - 71936 q^{14} + 262144 q^{16} + 538080 q^{17} - 8224 q^{19} + 503808 q^{20} + 140544 q^{22}+ \cdots + 2038788288 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) 0 0
\(4\) 256.000 0.500000
\(5\) 1985.27 1.42054 0.710272 0.703927i \(-0.248572\pi\)
0.710272 + 0.703927i \(0.248572\pi\)
\(6\) 0 0
\(7\) 3496.33 0.550392 0.275196 0.961388i \(-0.411257\pi\)
0.275196 + 0.961388i \(0.411257\pi\)
\(8\) −4096.00 −0.353553
\(9\) 0 0
\(10\) −31764.3 −1.00448
\(11\) −92426.8 −1.90340 −0.951702 0.307023i \(-0.900667\pi\)
−0.951702 + 0.307023i \(0.900667\pi\)
\(12\) 0 0
\(13\) −156467. −1.51942 −0.759711 0.650261i \(-0.774660\pi\)
−0.759711 + 0.650261i \(0.774660\pi\)
\(14\) −55941.3 −0.389186
\(15\) 0 0
\(16\) 65536.0 0.250000
\(17\) 606661. 1.76167 0.880837 0.473419i \(-0.156980\pi\)
0.880837 + 0.473419i \(0.156980\pi\)
\(18\) 0 0
\(19\) 793782. 1.39736 0.698682 0.715432i \(-0.253770\pi\)
0.698682 + 0.715432i \(0.253770\pi\)
\(20\) 508229. 0.710272
\(21\) 0 0
\(22\) 1.47883e6 1.34591
\(23\) 107894. 0.0803936 0.0401968 0.999192i \(-0.487202\pi\)
0.0401968 + 0.999192i \(0.487202\pi\)
\(24\) 0 0
\(25\) 1.98817e6 1.01795
\(26\) 2.50348e6 1.07439
\(27\) 0 0
\(28\) 895062. 0.275196
\(29\) −3.95259e6 −1.03774 −0.518872 0.854852i \(-0.673648\pi\)
−0.518872 + 0.854852i \(0.673648\pi\)
\(30\) 0 0
\(31\) −356140. −0.0692617 −0.0346309 0.999400i \(-0.511026\pi\)
−0.0346309 + 0.999400i \(0.511026\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) 0 0
\(34\) −9.70657e6 −1.24569
\(35\) 6.94117e6 0.781855
\(36\) 0 0
\(37\) 4.63798e6 0.406838 0.203419 0.979092i \(-0.434795\pi\)
0.203419 + 0.979092i \(0.434795\pi\)
\(38\) −1.27005e7 −0.988086
\(39\) 0 0
\(40\) −8.13167e6 −0.502238
\(41\) 2.51530e7 1.39015 0.695075 0.718937i \(-0.255371\pi\)
0.695075 + 0.718937i \(0.255371\pi\)
\(42\) 0 0
\(43\) −4.09013e6 −0.182444 −0.0912219 0.995831i \(-0.529077\pi\)
−0.0912219 + 0.995831i \(0.529077\pi\)
\(44\) −2.36613e7 −0.951702
\(45\) 0 0
\(46\) −1.72630e6 −0.0568469
\(47\) 4.52307e7 1.35205 0.676025 0.736879i \(-0.263701\pi\)
0.676025 + 0.736879i \(0.263701\pi\)
\(48\) 0 0
\(49\) −2.81293e7 −0.697069
\(50\) −3.18108e7 −0.719796
\(51\) 0 0
\(52\) −4.00556e7 −0.759711
\(53\) −41008.3 −0.000713889 0 −0.000356944 1.00000i \(-0.500114\pi\)
−0.000356944 1.00000i \(0.500114\pi\)
\(54\) 0 0
\(55\) −1.83492e8 −2.70387
\(56\) −1.43210e7 −0.194593
\(57\) 0 0
\(58\) 6.32414e7 0.733796
\(59\) 1.44716e8 1.55483 0.777417 0.628986i \(-0.216530\pi\)
0.777417 + 0.628986i \(0.216530\pi\)
\(60\) 0 0
\(61\) 2.38311e7 0.220374 0.110187 0.993911i \(-0.464855\pi\)
0.110187 + 0.993911i \(0.464855\pi\)
\(62\) 5.69824e6 0.0489754
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) −3.10630e8 −2.15841
\(66\) 0 0
\(67\) −1.29326e8 −0.784057 −0.392029 0.919953i \(-0.628227\pi\)
−0.392029 + 0.919953i \(0.628227\pi\)
\(68\) 1.55305e8 0.880837
\(69\) 0 0
\(70\) −1.11059e8 −0.552855
\(71\) 2.92490e8 1.36599 0.682996 0.730422i \(-0.260676\pi\)
0.682996 + 0.730422i \(0.260676\pi\)
\(72\) 0 0
\(73\) 1.45424e8 0.599355 0.299678 0.954041i \(-0.403121\pi\)
0.299678 + 0.954041i \(0.403121\pi\)
\(74\) −7.42077e7 −0.287678
\(75\) 0 0
\(76\) 2.03208e8 0.698682
\(77\) −3.23155e8 −1.04762
\(78\) 0 0
\(79\) −9.11909e7 −0.263408 −0.131704 0.991289i \(-0.542045\pi\)
−0.131704 + 0.991289i \(0.542045\pi\)
\(80\) 1.30107e8 0.355136
\(81\) 0 0
\(82\) −4.02448e8 −0.982985
\(83\) 3.33108e8 0.770430 0.385215 0.922827i \(-0.374127\pi\)
0.385215 + 0.922827i \(0.374127\pi\)
\(84\) 0 0
\(85\) 1.20439e9 2.50254
\(86\) 6.54421e7 0.129007
\(87\) 0 0
\(88\) 3.78580e8 0.672955
\(89\) 4.73579e8 0.800087 0.400044 0.916496i \(-0.368995\pi\)
0.400044 + 0.916496i \(0.368995\pi\)
\(90\) 0 0
\(91\) −5.47062e8 −0.836277
\(92\) 2.76208e7 0.0401968
\(93\) 0 0
\(94\) −7.23691e8 −0.956043
\(95\) 1.57587e9 1.98502
\(96\) 0 0
\(97\) −1.68662e9 −1.93440 −0.967198 0.254025i \(-0.918246\pi\)
−0.967198 + 0.254025i \(0.918246\pi\)
\(98\) 4.50068e8 0.492902
\(99\) 0 0
\(100\) 5.08973e8 0.508973
\(101\) 7.73784e8 0.739901 0.369950 0.929052i \(-0.379375\pi\)
0.369950 + 0.929052i \(0.379375\pi\)
\(102\) 0 0
\(103\) 6.55861e8 0.574175 0.287087 0.957904i \(-0.407313\pi\)
0.287087 + 0.957904i \(0.407313\pi\)
\(104\) 6.40890e8 0.537197
\(105\) 0 0
\(106\) 656133. 0.000504796 0
\(107\) −4.88739e8 −0.360454 −0.180227 0.983625i \(-0.557683\pi\)
−0.180227 + 0.983625i \(0.557683\pi\)
\(108\) 0 0
\(109\) −1.55839e9 −1.05744 −0.528721 0.848796i \(-0.677328\pi\)
−0.528721 + 0.848796i \(0.677328\pi\)
\(110\) 2.93588e9 1.91192
\(111\) 0 0
\(112\) 2.29136e8 0.137598
\(113\) −4.71555e8 −0.272069 −0.136035 0.990704i \(-0.543436\pi\)
−0.136035 + 0.990704i \(0.543436\pi\)
\(114\) 0 0
\(115\) 2.14199e8 0.114203
\(116\) −1.01186e9 −0.518872
\(117\) 0 0
\(118\) −2.31546e9 −1.09943
\(119\) 2.12109e9 0.969611
\(120\) 0 0
\(121\) 6.18477e9 2.62295
\(122\) −3.81297e8 −0.155828
\(123\) 0 0
\(124\) −9.11719e7 −0.0346309
\(125\) 6.95826e7 0.0254921
\(126\) 0 0
\(127\) 2.23394e9 0.761999 0.380999 0.924575i \(-0.375580\pi\)
0.380999 + 0.924575i \(0.375580\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) 0 0
\(130\) 4.97008e9 1.52622
\(131\) −6.31423e8 −0.187327 −0.0936634 0.995604i \(-0.529858\pi\)
−0.0936634 + 0.995604i \(0.529858\pi\)
\(132\) 0 0
\(133\) 2.77533e9 0.769098
\(134\) 2.06921e9 0.554412
\(135\) 0 0
\(136\) −2.48488e9 −0.622846
\(137\) 3.89809e9 0.945388 0.472694 0.881227i \(-0.343282\pi\)
0.472694 + 0.881227i \(0.343282\pi\)
\(138\) 0 0
\(139\) 4.74014e9 1.07702 0.538511 0.842619i \(-0.318987\pi\)
0.538511 + 0.842619i \(0.318987\pi\)
\(140\) 1.77694e9 0.390928
\(141\) 0 0
\(142\) −4.67984e9 −0.965903
\(143\) 1.44618e10 2.89207
\(144\) 0 0
\(145\) −7.84695e9 −1.47416
\(146\) −2.32679e9 −0.423808
\(147\) 0 0
\(148\) 1.18732e9 0.203419
\(149\) 8.22496e8 0.136709 0.0683543 0.997661i \(-0.478225\pi\)
0.0683543 + 0.997661i \(0.478225\pi\)
\(150\) 0 0
\(151\) 6.31122e6 0.000987909 0 0.000493954 1.00000i \(-0.499843\pi\)
0.000493954 1.00000i \(0.499843\pi\)
\(152\) −3.25133e9 −0.494043
\(153\) 0 0
\(154\) 5.17048e9 0.740778
\(155\) −7.07035e8 −0.0983893
\(156\) 0 0
\(157\) 4.84563e9 0.636505 0.318253 0.948006i \(-0.396904\pi\)
0.318253 + 0.948006i \(0.396904\pi\)
\(158\) 1.45905e9 0.186258
\(159\) 0 0
\(160\) −2.08171e9 −0.251119
\(161\) 3.77233e8 0.0442480
\(162\) 0 0
\(163\) −2.47695e9 −0.274836 −0.137418 0.990513i \(-0.543880\pi\)
−0.137418 + 0.990513i \(0.543880\pi\)
\(164\) 6.43916e9 0.695075
\(165\) 0 0
\(166\) −5.32972e9 −0.544776
\(167\) 1.20374e10 1.19759 0.598795 0.800902i \(-0.295646\pi\)
0.598795 + 0.800902i \(0.295646\pi\)
\(168\) 0 0
\(169\) 1.38775e10 1.30864
\(170\) −1.92702e10 −1.76956
\(171\) 0 0
\(172\) −1.04707e9 −0.0912219
\(173\) 5.55954e9 0.471880 0.235940 0.971768i \(-0.424183\pi\)
0.235940 + 0.971768i \(0.424183\pi\)
\(174\) 0 0
\(175\) 6.95132e9 0.560268
\(176\) −6.05729e9 −0.475851
\(177\) 0 0
\(178\) −7.57726e9 −0.565747
\(179\) 1.40559e10 1.02334 0.511669 0.859183i \(-0.329027\pi\)
0.511669 + 0.859183i \(0.329027\pi\)
\(180\) 0 0
\(181\) −8.33092e9 −0.576952 −0.288476 0.957487i \(-0.593149\pi\)
−0.288476 + 0.957487i \(0.593149\pi\)
\(182\) 8.75299e9 0.591337
\(183\) 0 0
\(184\) −4.41933e8 −0.0284234
\(185\) 9.20765e9 0.577931
\(186\) 0 0
\(187\) −5.60717e10 −3.35318
\(188\) 1.15791e10 0.676025
\(189\) 0 0
\(190\) −2.52139e10 −1.40362
\(191\) −1.80382e10 −0.980716 −0.490358 0.871521i \(-0.663134\pi\)
−0.490358 + 0.871521i \(0.663134\pi\)
\(192\) 0 0
\(193\) −2.68848e10 −1.39476 −0.697380 0.716702i \(-0.745651\pi\)
−0.697380 + 0.716702i \(0.745651\pi\)
\(194\) 2.69860e10 1.36782
\(195\) 0 0
\(196\) −7.20109e9 −0.348535
\(197\) −6.01487e9 −0.284530 −0.142265 0.989829i \(-0.545439\pi\)
−0.142265 + 0.989829i \(0.545439\pi\)
\(198\) 0 0
\(199\) 4.06076e10 1.83556 0.917781 0.397087i \(-0.129979\pi\)
0.917781 + 0.397087i \(0.129979\pi\)
\(200\) −8.14356e9 −0.359898
\(201\) 0 0
\(202\) −1.23805e10 −0.523189
\(203\) −1.38196e10 −0.571166
\(204\) 0 0
\(205\) 4.99355e10 1.97477
\(206\) −1.04938e10 −0.406003
\(207\) 0 0
\(208\) −1.02542e10 −0.379855
\(209\) −7.33667e10 −2.65975
\(210\) 0 0
\(211\) 8.50220e9 0.295298 0.147649 0.989040i \(-0.452829\pi\)
0.147649 + 0.989040i \(0.452829\pi\)
\(212\) −1.04981e7 −0.000356944 0
\(213\) 0 0
\(214\) 7.81983e9 0.254880
\(215\) −8.12002e9 −0.259169
\(216\) 0 0
\(217\) −1.24518e9 −0.0381211
\(218\) 2.49342e10 0.747724
\(219\) 0 0
\(220\) −4.69740e10 −1.35193
\(221\) −9.49225e10 −2.67673
\(222\) 0 0
\(223\) 6.43288e10 1.74194 0.870971 0.491334i \(-0.163491\pi\)
0.870971 + 0.491334i \(0.163491\pi\)
\(224\) −3.66617e9 −0.0972964
\(225\) 0 0
\(226\) 7.54489e9 0.192382
\(227\) −1.54775e10 −0.386887 −0.193444 0.981111i \(-0.561966\pi\)
−0.193444 + 0.981111i \(0.561966\pi\)
\(228\) 0 0
\(229\) 5.55452e10 1.33471 0.667355 0.744740i \(-0.267427\pi\)
0.667355 + 0.744740i \(0.267427\pi\)
\(230\) −3.42718e9 −0.0807535
\(231\) 0 0
\(232\) 1.61898e10 0.366898
\(233\) 7.45295e10 1.65663 0.828317 0.560259i \(-0.189299\pi\)
0.828317 + 0.560259i \(0.189299\pi\)
\(234\) 0 0
\(235\) 8.97951e10 1.92065
\(236\) 3.70474e10 0.777417
\(237\) 0 0
\(238\) −3.39374e10 −0.685618
\(239\) 3.32399e10 0.658975 0.329487 0.944160i \(-0.393124\pi\)
0.329487 + 0.944160i \(0.393124\pi\)
\(240\) 0 0
\(241\) −3.35131e10 −0.639937 −0.319969 0.947428i \(-0.603672\pi\)
−0.319969 + 0.947428i \(0.603672\pi\)
\(242\) −9.89564e10 −1.85470
\(243\) 0 0
\(244\) 6.10076e9 0.110187
\(245\) −5.58442e10 −0.990217
\(246\) 0 0
\(247\) −1.24201e11 −2.12319
\(248\) 1.45875e9 0.0244877
\(249\) 0 0
\(250\) −1.11332e9 −0.0180256
\(251\) −1.33603e10 −0.212464 −0.106232 0.994341i \(-0.533879\pi\)
−0.106232 + 0.994341i \(0.533879\pi\)
\(252\) 0 0
\(253\) −9.97229e9 −0.153022
\(254\) −3.57430e10 −0.538814
\(255\) 0 0
\(256\) 4.29497e9 0.0625000
\(257\) −1.24665e10 −0.178257 −0.0891284 0.996020i \(-0.528408\pi\)
−0.0891284 + 0.996020i \(0.528408\pi\)
\(258\) 0 0
\(259\) 1.62159e10 0.223920
\(260\) −7.95212e10 −1.07920
\(261\) 0 0
\(262\) 1.01028e10 0.132460
\(263\) 7.58179e10 0.977172 0.488586 0.872516i \(-0.337513\pi\)
0.488586 + 0.872516i \(0.337513\pi\)
\(264\) 0 0
\(265\) −8.14126e7 −0.00101411
\(266\) −4.44052e10 −0.543834
\(267\) 0 0
\(268\) −3.31074e10 −0.392029
\(269\) −9.89798e10 −1.15255 −0.576277 0.817255i \(-0.695495\pi\)
−0.576277 + 0.817255i \(0.695495\pi\)
\(270\) 0 0
\(271\) 6.28601e10 0.707968 0.353984 0.935252i \(-0.384827\pi\)
0.353984 + 0.935252i \(0.384827\pi\)
\(272\) 3.97581e10 0.440419
\(273\) 0 0
\(274\) −6.23695e10 −0.668490
\(275\) −1.83761e11 −1.93756
\(276\) 0 0
\(277\) 1.25003e11 1.27573 0.637867 0.770147i \(-0.279817\pi\)
0.637867 + 0.770147i \(0.279817\pi\)
\(278\) −7.58422e10 −0.761569
\(279\) 0 0
\(280\) −2.84310e10 −0.276428
\(281\) 1.05613e10 0.101051 0.0505254 0.998723i \(-0.483910\pi\)
0.0505254 + 0.998723i \(0.483910\pi\)
\(282\) 0 0
\(283\) −1.22575e11 −1.13596 −0.567978 0.823043i \(-0.692274\pi\)
−0.567978 + 0.823043i \(0.692274\pi\)
\(284\) 7.48774e10 0.682996
\(285\) 0 0
\(286\) −2.31388e11 −2.04501
\(287\) 8.79432e10 0.765127
\(288\) 0 0
\(289\) 2.49449e11 2.10350
\(290\) 1.25551e11 1.04239
\(291\) 0 0
\(292\) 3.72286e10 0.299678
\(293\) −8.83183e10 −0.700078 −0.350039 0.936735i \(-0.613832\pi\)
−0.350039 + 0.936735i \(0.613832\pi\)
\(294\) 0 0
\(295\) 2.87301e11 2.20871
\(296\) −1.89972e10 −0.143839
\(297\) 0 0
\(298\) −1.31599e10 −0.0966676
\(299\) −1.68819e10 −0.122152
\(300\) 0 0
\(301\) −1.43005e10 −0.100416
\(302\) −1.00979e8 −0.000698557 0
\(303\) 0 0
\(304\) 5.20213e10 0.349341
\(305\) 4.73112e10 0.313050
\(306\) 0 0
\(307\) 3.87556e10 0.249007 0.124503 0.992219i \(-0.460266\pi\)
0.124503 + 0.992219i \(0.460266\pi\)
\(308\) −8.27277e10 −0.523809
\(309\) 0 0
\(310\) 1.13126e10 0.0695718
\(311\) 2.17955e11 1.32113 0.660563 0.750770i \(-0.270317\pi\)
0.660563 + 0.750770i \(0.270317\pi\)
\(312\) 0 0
\(313\) −7.22320e10 −0.425383 −0.212692 0.977119i \(-0.568223\pi\)
−0.212692 + 0.977119i \(0.568223\pi\)
\(314\) −7.75301e10 −0.450077
\(315\) 0 0
\(316\) −2.33449e10 −0.131704
\(317\) −2.76799e11 −1.53957 −0.769783 0.638306i \(-0.779636\pi\)
−0.769783 + 0.638306i \(0.779636\pi\)
\(318\) 0 0
\(319\) 3.65325e11 1.97525
\(320\) 3.33073e10 0.177568
\(321\) 0 0
\(322\) −6.03573e9 −0.0312880
\(323\) 4.81556e11 2.46170
\(324\) 0 0
\(325\) −3.11084e11 −1.54669
\(326\) 3.96313e10 0.194338
\(327\) 0 0
\(328\) −1.03027e11 −0.491493
\(329\) 1.58142e11 0.744157
\(330\) 0 0
\(331\) −1.81639e11 −0.831732 −0.415866 0.909426i \(-0.636522\pi\)
−0.415866 + 0.909426i \(0.636522\pi\)
\(332\) 8.52755e10 0.385215
\(333\) 0 0
\(334\) −1.92598e11 −0.846824
\(335\) −2.56746e11 −1.11379
\(336\) 0 0
\(337\) −6.20015e10 −0.261859 −0.130930 0.991392i \(-0.541796\pi\)
−0.130930 + 0.991392i \(0.541796\pi\)
\(338\) −2.22040e11 −0.925350
\(339\) 0 0
\(340\) 3.08323e11 1.25127
\(341\) 3.29169e10 0.131833
\(342\) 0 0
\(343\) −2.39439e11 −0.934052
\(344\) 1.67532e10 0.0645036
\(345\) 0 0
\(346\) −8.89527e10 −0.333669
\(347\) −2.55503e11 −0.946049 −0.473024 0.881049i \(-0.656838\pi\)
−0.473024 + 0.881049i \(0.656838\pi\)
\(348\) 0 0
\(349\) −2.45242e11 −0.884873 −0.442437 0.896800i \(-0.645886\pi\)
−0.442437 + 0.896800i \(0.645886\pi\)
\(350\) −1.11221e11 −0.396170
\(351\) 0 0
\(352\) 9.69166e10 0.336478
\(353\) 2.76510e11 0.947818 0.473909 0.880574i \(-0.342843\pi\)
0.473909 + 0.880574i \(0.342843\pi\)
\(354\) 0 0
\(355\) 5.80672e11 1.94045
\(356\) 1.21236e11 0.400044
\(357\) 0 0
\(358\) −2.24894e11 −0.723609
\(359\) −5.93920e11 −1.88713 −0.943567 0.331181i \(-0.892553\pi\)
−0.943567 + 0.331181i \(0.892553\pi\)
\(360\) 0 0
\(361\) 3.07401e11 0.952628
\(362\) 1.33295e11 0.407967
\(363\) 0 0
\(364\) −1.40048e11 −0.418138
\(365\) 2.88707e11 0.851410
\(366\) 0 0
\(367\) −1.74195e11 −0.501230 −0.250615 0.968087i \(-0.580633\pi\)
−0.250615 + 0.968087i \(0.580633\pi\)
\(368\) 7.07094e9 0.0200984
\(369\) 0 0
\(370\) −1.47322e11 −0.408659
\(371\) −1.43379e8 −0.000392918 0
\(372\) 0 0
\(373\) −4.95214e10 −0.132466 −0.0662328 0.997804i \(-0.521098\pi\)
−0.0662328 + 0.997804i \(0.521098\pi\)
\(374\) 8.97148e11 2.37106
\(375\) 0 0
\(376\) −1.85265e11 −0.478022
\(377\) 6.18450e11 1.57677
\(378\) 0 0
\(379\) −6.61837e11 −1.64769 −0.823843 0.566819i \(-0.808174\pi\)
−0.823843 + 0.566819i \(0.808174\pi\)
\(380\) 4.03423e11 0.992509
\(381\) 0 0
\(382\) 2.88611e11 0.693471
\(383\) 2.41369e11 0.573175 0.286587 0.958054i \(-0.407479\pi\)
0.286587 + 0.958054i \(0.407479\pi\)
\(384\) 0 0
\(385\) −6.41550e11 −1.48819
\(386\) 4.30157e11 0.986244
\(387\) 0 0
\(388\) −4.31776e11 −0.967198
\(389\) 6.15256e11 1.36233 0.681165 0.732130i \(-0.261474\pi\)
0.681165 + 0.732130i \(0.261474\pi\)
\(390\) 0 0
\(391\) 6.54550e10 0.141627
\(392\) 1.15217e11 0.246451
\(393\) 0 0
\(394\) 9.62379e10 0.201193
\(395\) −1.81039e11 −0.374183
\(396\) 0 0
\(397\) −6.78022e11 −1.36989 −0.684946 0.728594i \(-0.740174\pi\)
−0.684946 + 0.728594i \(0.740174\pi\)
\(398\) −6.49722e11 −1.29794
\(399\) 0 0
\(400\) 1.30297e11 0.254486
\(401\) 1.74580e11 0.337166 0.168583 0.985687i \(-0.446081\pi\)
0.168583 + 0.985687i \(0.446081\pi\)
\(402\) 0 0
\(403\) 5.57243e10 0.105238
\(404\) 1.98089e11 0.369950
\(405\) 0 0
\(406\) 2.21113e11 0.403875
\(407\) −4.28674e11 −0.774377
\(408\) 0 0
\(409\) 1.88605e11 0.333271 0.166636 0.986019i \(-0.446710\pi\)
0.166636 + 0.986019i \(0.446710\pi\)
\(410\) −7.98967e11 −1.39637
\(411\) 0 0
\(412\) 1.67900e11 0.287087
\(413\) 5.05977e11 0.855767
\(414\) 0 0
\(415\) 6.61309e11 1.09443
\(416\) 1.64068e11 0.268598
\(417\) 0 0
\(418\) 1.17387e12 1.88073
\(419\) 4.12173e11 0.653305 0.326653 0.945144i \(-0.394079\pi\)
0.326653 + 0.945144i \(0.394079\pi\)
\(420\) 0 0
\(421\) 9.50502e11 1.47463 0.737316 0.675548i \(-0.236093\pi\)
0.737316 + 0.675548i \(0.236093\pi\)
\(422\) −1.36035e11 −0.208807
\(423\) 0 0
\(424\) 1.67970e8 0.000252398 0
\(425\) 1.20615e12 1.79329
\(426\) 0 0
\(427\) 8.33215e10 0.121292
\(428\) −1.25117e11 −0.180227
\(429\) 0 0
\(430\) 1.29920e11 0.183260
\(431\) −3.36328e11 −0.469478 −0.234739 0.972058i \(-0.575424\pi\)
−0.234739 + 0.972058i \(0.575424\pi\)
\(432\) 0 0
\(433\) 1.15663e12 1.58124 0.790620 0.612307i \(-0.209758\pi\)
0.790620 + 0.612307i \(0.209758\pi\)
\(434\) 1.99230e10 0.0269557
\(435\) 0 0
\(436\) −3.98948e11 −0.528721
\(437\) 8.56442e10 0.112339
\(438\) 0 0
\(439\) −5.91073e11 −0.759540 −0.379770 0.925081i \(-0.623997\pi\)
−0.379770 + 0.925081i \(0.623997\pi\)
\(440\) 7.51584e11 0.955962
\(441\) 0 0
\(442\) 1.51876e12 1.89273
\(443\) 6.18685e11 0.763226 0.381613 0.924322i \(-0.375369\pi\)
0.381613 + 0.924322i \(0.375369\pi\)
\(444\) 0 0
\(445\) 9.40182e11 1.13656
\(446\) −1.02926e12 −1.23174
\(447\) 0 0
\(448\) 5.86588e10 0.0687989
\(449\) 8.68676e11 1.00867 0.504335 0.863508i \(-0.331738\pi\)
0.504335 + 0.863508i \(0.331738\pi\)
\(450\) 0 0
\(451\) −2.32481e12 −2.64602
\(452\) −1.20718e11 −0.136035
\(453\) 0 0
\(454\) 2.47640e11 0.273571
\(455\) −1.08607e12 −1.18797
\(456\) 0 0
\(457\) 4.76007e11 0.510494 0.255247 0.966876i \(-0.417843\pi\)
0.255247 + 0.966876i \(0.417843\pi\)
\(458\) −8.88723e11 −0.943782
\(459\) 0 0
\(460\) 5.48348e10 0.0571014
\(461\) −2.88560e11 −0.297565 −0.148782 0.988870i \(-0.547535\pi\)
−0.148782 + 0.988870i \(0.547535\pi\)
\(462\) 0 0
\(463\) −4.69763e11 −0.475077 −0.237539 0.971378i \(-0.576341\pi\)
−0.237539 + 0.971378i \(0.576341\pi\)
\(464\) −2.59037e11 −0.259436
\(465\) 0 0
\(466\) −1.19247e12 −1.17142
\(467\) −1.29156e12 −1.25658 −0.628289 0.777980i \(-0.716245\pi\)
−0.628289 + 0.777980i \(0.716245\pi\)
\(468\) 0 0
\(469\) −4.52166e11 −0.431539
\(470\) −1.43672e12 −1.35810
\(471\) 0 0
\(472\) −5.92759e11 −0.549717
\(473\) 3.78038e11 0.347264
\(474\) 0 0
\(475\) 1.57818e12 1.42244
\(476\) 5.42999e11 0.484805
\(477\) 0 0
\(478\) −5.31838e11 −0.465965
\(479\) 3.29340e11 0.285848 0.142924 0.989734i \(-0.454350\pi\)
0.142924 + 0.989734i \(0.454350\pi\)
\(480\) 0 0
\(481\) −7.25692e11 −0.618158
\(482\) 5.36209e11 0.452504
\(483\) 0 0
\(484\) 1.58330e12 1.31147
\(485\) −3.34840e12 −2.74789
\(486\) 0 0
\(487\) 3.91063e11 0.315040 0.157520 0.987516i \(-0.449650\pi\)
0.157520 + 0.987516i \(0.449650\pi\)
\(488\) −9.76121e10 −0.0779139
\(489\) 0 0
\(490\) 8.93507e11 0.700189
\(491\) 1.65436e12 1.28458 0.642292 0.766460i \(-0.277984\pi\)
0.642292 + 0.766460i \(0.277984\pi\)
\(492\) 0 0
\(493\) −2.39788e12 −1.82817
\(494\) 1.98721e12 1.50132
\(495\) 0 0
\(496\) −2.33400e10 −0.0173154
\(497\) 1.02264e12 0.751831
\(498\) 0 0
\(499\) −2.11182e12 −1.52477 −0.762386 0.647123i \(-0.775972\pi\)
−0.762386 + 0.647123i \(0.775972\pi\)
\(500\) 1.78131e10 0.0127460
\(501\) 0 0
\(502\) 2.13765e11 0.150234
\(503\) −1.34067e12 −0.933829 −0.466915 0.884302i \(-0.654634\pi\)
−0.466915 + 0.884302i \(0.654634\pi\)
\(504\) 0 0
\(505\) 1.53617e12 1.05106
\(506\) 1.59557e11 0.108203
\(507\) 0 0
\(508\) 5.71888e11 0.380999
\(509\) −2.19594e12 −1.45007 −0.725037 0.688710i \(-0.758177\pi\)
−0.725037 + 0.688710i \(0.758177\pi\)
\(510\) 0 0
\(511\) 5.08452e11 0.329880
\(512\) −6.87195e10 −0.0441942
\(513\) 0 0
\(514\) 1.99464e11 0.126047
\(515\) 1.30206e12 0.815641
\(516\) 0 0
\(517\) −4.18053e12 −2.57350
\(518\) −2.59455e11 −0.158335
\(519\) 0 0
\(520\) 1.27234e12 0.763112
\(521\) −1.88176e12 −1.11891 −0.559454 0.828862i \(-0.688989\pi\)
−0.559454 + 0.828862i \(0.688989\pi\)
\(522\) 0 0
\(523\) 2.34521e12 1.37064 0.685322 0.728240i \(-0.259662\pi\)
0.685322 + 0.728240i \(0.259662\pi\)
\(524\) −1.61644e11 −0.0936634
\(525\) 0 0
\(526\) −1.21309e12 −0.690965
\(527\) −2.16056e11 −0.122017
\(528\) 0 0
\(529\) −1.78951e12 −0.993537
\(530\) 1.30260e9 0.000717084 0
\(531\) 0 0
\(532\) 7.10483e11 0.384549
\(533\) −3.93562e12 −2.11223
\(534\) 0 0
\(535\) −9.70280e11 −0.512041
\(536\) 5.29718e11 0.277206
\(537\) 0 0
\(538\) 1.58368e12 0.814979
\(539\) 2.59990e12 1.32680
\(540\) 0 0
\(541\) −1.50433e12 −0.755015 −0.377507 0.926007i \(-0.623219\pi\)
−0.377507 + 0.926007i \(0.623219\pi\)
\(542\) −1.00576e12 −0.500609
\(543\) 0 0
\(544\) −6.36130e11 −0.311423
\(545\) −3.09382e12 −1.50214
\(546\) 0 0
\(547\) −8.62929e11 −0.412128 −0.206064 0.978539i \(-0.566065\pi\)
−0.206064 + 0.978539i \(0.566065\pi\)
\(548\) 9.97912e11 0.472694
\(549\) 0 0
\(550\) 2.94017e12 1.37006
\(551\) −3.13749e12 −1.45011
\(552\) 0 0
\(553\) −3.18834e11 −0.144978
\(554\) −2.00004e12 −0.902080
\(555\) 0 0
\(556\) 1.21348e12 0.538511
\(557\) −8.24319e11 −0.362866 −0.181433 0.983403i \(-0.558074\pi\)
−0.181433 + 0.983403i \(0.558074\pi\)
\(558\) 0 0
\(559\) 6.39971e11 0.277209
\(560\) 4.54896e11 0.195464
\(561\) 0 0
\(562\) −1.68981e11 −0.0714537
\(563\) 4.02214e12 1.68721 0.843606 0.536963i \(-0.180428\pi\)
0.843606 + 0.536963i \(0.180428\pi\)
\(564\) 0 0
\(565\) −9.36165e11 −0.386487
\(566\) 1.96120e12 0.803243
\(567\) 0 0
\(568\) −1.19804e12 −0.482951
\(569\) −3.67705e12 −1.47060 −0.735300 0.677741i \(-0.762959\pi\)
−0.735300 + 0.677741i \(0.762959\pi\)
\(570\) 0 0
\(571\) 2.74332e12 1.07998 0.539988 0.841673i \(-0.318429\pi\)
0.539988 + 0.841673i \(0.318429\pi\)
\(572\) 3.70221e12 1.44604
\(573\) 0 0
\(574\) −1.40709e12 −0.541027
\(575\) 2.14512e11 0.0818363
\(576\) 0 0
\(577\) −3.52716e12 −1.32475 −0.662375 0.749172i \(-0.730452\pi\)
−0.662375 + 0.749172i \(0.730452\pi\)
\(578\) −3.99119e12 −1.48740
\(579\) 0 0
\(580\) −2.00882e12 −0.737081
\(581\) 1.16466e12 0.424038
\(582\) 0 0
\(583\) 3.79027e9 0.00135882
\(584\) −5.95658e11 −0.211904
\(585\) 0 0
\(586\) 1.41309e12 0.495030
\(587\) −4.41152e11 −0.153362 −0.0766808 0.997056i \(-0.524432\pi\)
−0.0766808 + 0.997056i \(0.524432\pi\)
\(588\) 0 0
\(589\) −2.82697e11 −0.0967839
\(590\) −4.59682e12 −1.56179
\(591\) 0 0
\(592\) 3.03955e11 0.101709
\(593\) 2.03482e11 0.0675739 0.0337870 0.999429i \(-0.489243\pi\)
0.0337870 + 0.999429i \(0.489243\pi\)
\(594\) 0 0
\(595\) 4.21094e12 1.37738
\(596\) 2.10559e11 0.0683543
\(597\) 0 0
\(598\) 2.70110e11 0.0863744
\(599\) −2.44246e12 −0.775189 −0.387594 0.921830i \(-0.626694\pi\)
−0.387594 + 0.921830i \(0.626694\pi\)
\(600\) 0 0
\(601\) 3.51374e12 1.09859 0.549293 0.835630i \(-0.314897\pi\)
0.549293 + 0.835630i \(0.314897\pi\)
\(602\) 2.28807e11 0.0710045
\(603\) 0 0
\(604\) 1.61567e9 0.000493954 0
\(605\) 1.22785e13 3.72601
\(606\) 0 0
\(607\) −5.35941e12 −1.60239 −0.801194 0.598404i \(-0.795802\pi\)
−0.801194 + 0.598404i \(0.795802\pi\)
\(608\) −8.32340e11 −0.247022
\(609\) 0 0
\(610\) −7.56979e11 −0.221360
\(611\) −7.07712e12 −2.05433
\(612\) 0 0
\(613\) −1.14841e12 −0.328491 −0.164245 0.986420i \(-0.552519\pi\)
−0.164245 + 0.986420i \(0.552519\pi\)
\(614\) −6.20089e11 −0.176075
\(615\) 0 0
\(616\) 1.32364e12 0.370389
\(617\) −1.00275e12 −0.278554 −0.139277 0.990253i \(-0.544478\pi\)
−0.139277 + 0.990253i \(0.544478\pi\)
\(618\) 0 0
\(619\) 2.16456e10 0.00592599 0.00296300 0.999996i \(-0.499057\pi\)
0.00296300 + 0.999996i \(0.499057\pi\)
\(620\) −1.81001e11 −0.0491947
\(621\) 0 0
\(622\) −3.48728e12 −0.934178
\(623\) 1.65579e12 0.440361
\(624\) 0 0
\(625\) −3.74501e12 −0.981733
\(626\) 1.15571e12 0.300791
\(627\) 0 0
\(628\) 1.24048e12 0.318253
\(629\) 2.81368e12 0.716716
\(630\) 0 0
\(631\) 4.01608e12 1.00849 0.504244 0.863561i \(-0.331771\pi\)
0.504244 + 0.863561i \(0.331771\pi\)
\(632\) 3.73518e11 0.0931289
\(633\) 0 0
\(634\) 4.42879e12 1.08864
\(635\) 4.43497e12 1.08245
\(636\) 0 0
\(637\) 4.40131e12 1.05914
\(638\) −5.84520e12 −1.39671
\(639\) 0 0
\(640\) −5.32917e11 −0.125560
\(641\) −8.03352e12 −1.87951 −0.939755 0.341849i \(-0.888947\pi\)
−0.939755 + 0.341849i \(0.888947\pi\)
\(642\) 0 0
\(643\) 6.81517e12 1.57227 0.786135 0.618055i \(-0.212079\pi\)
0.786135 + 0.618055i \(0.212079\pi\)
\(644\) 9.65717e10 0.0221240
\(645\) 0 0
\(646\) −7.70490e12 −1.74069
\(647\) −1.78611e12 −0.400718 −0.200359 0.979723i \(-0.564211\pi\)
−0.200359 + 0.979723i \(0.564211\pi\)
\(648\) 0 0
\(649\) −1.33757e13 −2.95948
\(650\) 4.97735e12 1.09367
\(651\) 0 0
\(652\) −6.34100e11 −0.137418
\(653\) 4.20558e11 0.0905142 0.0452571 0.998975i \(-0.485589\pi\)
0.0452571 + 0.998975i \(0.485589\pi\)
\(654\) 0 0
\(655\) −1.25355e12 −0.266106
\(656\) 1.64843e12 0.347538
\(657\) 0 0
\(658\) −2.53026e12 −0.526198
\(659\) 2.55219e12 0.527144 0.263572 0.964640i \(-0.415099\pi\)
0.263572 + 0.964640i \(0.415099\pi\)
\(660\) 0 0
\(661\) 6.36695e12 1.29725 0.648627 0.761106i \(-0.275343\pi\)
0.648627 + 0.761106i \(0.275343\pi\)
\(662\) 2.90623e12 0.588124
\(663\) 0 0
\(664\) −1.36441e12 −0.272388
\(665\) 5.50977e12 1.09254
\(666\) 0 0
\(667\) −4.26460e11 −0.0834281
\(668\) 3.08157e12 0.598795
\(669\) 0 0
\(670\) 4.10794e12 0.787567
\(671\) −2.20263e12 −0.419460
\(672\) 0 0
\(673\) 1.69690e12 0.318852 0.159426 0.987210i \(-0.449036\pi\)
0.159426 + 0.987210i \(0.449036\pi\)
\(674\) 9.92024e11 0.185162
\(675\) 0 0
\(676\) 3.55264e12 0.654321
\(677\) 2.51339e12 0.459845 0.229922 0.973209i \(-0.426153\pi\)
0.229922 + 0.973209i \(0.426153\pi\)
\(678\) 0 0
\(679\) −5.89700e12 −1.06467
\(680\) −4.93316e12 −0.884780
\(681\) 0 0
\(682\) −5.26671e11 −0.0932201
\(683\) 9.57413e12 1.68347 0.841737 0.539888i \(-0.181533\pi\)
0.841737 + 0.539888i \(0.181533\pi\)
\(684\) 0 0
\(685\) 7.73877e12 1.34296
\(686\) 3.83102e12 0.660475
\(687\) 0 0
\(688\) −2.68051e11 −0.0456109
\(689\) 6.41646e9 0.00108470
\(690\) 0 0
\(691\) −6.38711e12 −1.06574 −0.532872 0.846196i \(-0.678887\pi\)
−0.532872 + 0.846196i \(0.678887\pi\)
\(692\) 1.42324e12 0.235940
\(693\) 0 0
\(694\) 4.08805e12 0.668957
\(695\) 9.41046e12 1.52996
\(696\) 0 0
\(697\) 1.52593e13 2.44899
\(698\) 3.92388e12 0.625700
\(699\) 0 0
\(700\) 1.77954e12 0.280134
\(701\) 7.78314e12 1.21737 0.608687 0.793411i \(-0.291697\pi\)
0.608687 + 0.793411i \(0.291697\pi\)
\(702\) 0 0
\(703\) 3.68154e12 0.568501
\(704\) −1.55067e12 −0.237926
\(705\) 0 0
\(706\) −4.42416e12 −0.670208
\(707\) 2.70541e12 0.407235
\(708\) 0 0
\(709\) −2.82895e12 −0.420453 −0.210226 0.977653i \(-0.567420\pi\)
−0.210226 + 0.977653i \(0.567420\pi\)
\(710\) −9.29075e12 −1.37211
\(711\) 0 0
\(712\) −1.93978e12 −0.282874
\(713\) −3.84254e10 −0.00556820
\(714\) 0 0
\(715\) 2.87105e13 4.10832
\(716\) 3.59830e12 0.511669
\(717\) 0 0
\(718\) 9.50272e12 1.33441
\(719\) −1.31870e12 −0.184021 −0.0920103 0.995758i \(-0.529329\pi\)
−0.0920103 + 0.995758i \(0.529329\pi\)
\(720\) 0 0
\(721\) 2.29311e12 0.316021
\(722\) −4.91842e12 −0.673610
\(723\) 0 0
\(724\) −2.13272e12 −0.288476
\(725\) −7.85843e12 −1.05637
\(726\) 0 0
\(727\) 6.88647e12 0.914306 0.457153 0.889388i \(-0.348869\pi\)
0.457153 + 0.889388i \(0.348869\pi\)
\(728\) 2.24077e12 0.295669
\(729\) 0 0
\(730\) −4.61931e12 −0.602038
\(731\) −2.48132e12 −0.321407
\(732\) 0 0
\(733\) −1.09729e13 −1.40396 −0.701979 0.712198i \(-0.747700\pi\)
−0.701979 + 0.712198i \(0.747700\pi\)
\(734\) 2.78711e12 0.354423
\(735\) 0 0
\(736\) −1.13135e11 −0.0142117
\(737\) 1.19532e13 1.49238
\(738\) 0 0
\(739\) −7.00379e12 −0.863839 −0.431920 0.901912i \(-0.642164\pi\)
−0.431920 + 0.901912i \(0.642164\pi\)
\(740\) 2.35716e12 0.288965
\(741\) 0 0
\(742\) 2.29406e9 0.000277835 0
\(743\) 1.14605e13 1.37960 0.689799 0.724001i \(-0.257699\pi\)
0.689799 + 0.724001i \(0.257699\pi\)
\(744\) 0 0
\(745\) 1.63288e12 0.194201
\(746\) 7.92342e11 0.0936673
\(747\) 0 0
\(748\) −1.43544e13 −1.67659
\(749\) −1.70880e12 −0.198391
\(750\) 0 0
\(751\) 7.25973e11 0.0832800 0.0416400 0.999133i \(-0.486742\pi\)
0.0416400 + 0.999133i \(0.486742\pi\)
\(752\) 2.96424e12 0.338012
\(753\) 0 0
\(754\) −9.89521e12 −1.11495
\(755\) 1.25295e10 0.00140337
\(756\) 0 0
\(757\) −3.91708e12 −0.433542 −0.216771 0.976222i \(-0.569553\pi\)
−0.216771 + 0.976222i \(0.569553\pi\)
\(758\) 1.05894e13 1.16509
\(759\) 0 0
\(760\) −6.45477e12 −0.701810
\(761\) −1.62290e13 −1.75413 −0.877064 0.480374i \(-0.840501\pi\)
−0.877064 + 0.480374i \(0.840501\pi\)
\(762\) 0 0
\(763\) −5.44865e12 −0.582007
\(764\) −4.61778e12 −0.490358
\(765\) 0 0
\(766\) −3.86191e12 −0.405296
\(767\) −2.26434e13 −2.36245
\(768\) 0 0
\(769\) −6.91300e12 −0.712850 −0.356425 0.934324i \(-0.616004\pi\)
−0.356425 + 0.934324i \(0.616004\pi\)
\(770\) 1.02648e13 1.05231
\(771\) 0 0
\(772\) −6.88252e12 −0.697380
\(773\) 1.72391e11 0.0173663 0.00868315 0.999962i \(-0.497236\pi\)
0.00868315 + 0.999962i \(0.497236\pi\)
\(774\) 0 0
\(775\) −7.08069e11 −0.0705046
\(776\) 6.90841e12 0.683912
\(777\) 0 0
\(778\) −9.84409e12 −0.963313
\(779\) 1.99660e13 1.94255
\(780\) 0 0
\(781\) −2.70339e13 −2.60004
\(782\) −1.04728e12 −0.100146
\(783\) 0 0
\(784\) −1.84348e12 −0.174267
\(785\) 9.61989e12 0.904184
\(786\) 0 0
\(787\) 9.84010e12 0.914351 0.457176 0.889376i \(-0.348861\pi\)
0.457176 + 0.889376i \(0.348861\pi\)
\(788\) −1.53981e12 −0.142265
\(789\) 0 0
\(790\) 2.89662e12 0.264587
\(791\) −1.64872e12 −0.149745
\(792\) 0 0
\(793\) −3.72879e12 −0.334841
\(794\) 1.08484e13 0.968660
\(795\) 0 0
\(796\) 1.03956e13 0.917781
\(797\) 2.06457e12 0.181245 0.0906226 0.995885i \(-0.471114\pi\)
0.0906226 + 0.995885i \(0.471114\pi\)
\(798\) 0 0
\(799\) 2.74397e13 2.38187
\(800\) −2.08475e12 −0.179949
\(801\) 0 0
\(802\) −2.79328e12 −0.238413
\(803\) −1.34411e13 −1.14082
\(804\) 0 0
\(805\) 7.48910e11 0.0628562
\(806\) −8.91588e11 −0.0744143
\(807\) 0 0
\(808\) −3.16942e12 −0.261594
\(809\) −1.49430e13 −1.22651 −0.613254 0.789886i \(-0.710140\pi\)
−0.613254 + 0.789886i \(0.710140\pi\)
\(810\) 0 0
\(811\) −8.17959e12 −0.663954 −0.331977 0.943288i \(-0.607716\pi\)
−0.331977 + 0.943288i \(0.607716\pi\)
\(812\) −3.53781e12 −0.285583
\(813\) 0 0
\(814\) 6.85878e12 0.547567
\(815\) −4.91742e12 −0.390417
\(816\) 0 0
\(817\) −3.24667e12 −0.254941
\(818\) −3.01768e12 −0.235658
\(819\) 0 0
\(820\) 1.27835e13 0.987385
\(821\) −4.70391e12 −0.361339 −0.180669 0.983544i \(-0.557826\pi\)
−0.180669 + 0.983544i \(0.557826\pi\)
\(822\) 0 0
\(823\) −2.42535e13 −1.84279 −0.921393 0.388633i \(-0.872947\pi\)
−0.921393 + 0.388633i \(0.872947\pi\)
\(824\) −2.68641e12 −0.203001
\(825\) 0 0
\(826\) −8.09563e12 −0.605119
\(827\) 6.61385e11 0.0491676 0.0245838 0.999698i \(-0.492174\pi\)
0.0245838 + 0.999698i \(0.492174\pi\)
\(828\) 0 0
\(829\) 1.49619e13 1.10025 0.550126 0.835081i \(-0.314580\pi\)
0.550126 + 0.835081i \(0.314580\pi\)
\(830\) −1.05809e13 −0.773878
\(831\) 0 0
\(832\) −2.62508e12 −0.189928
\(833\) −1.70649e13 −1.22801
\(834\) 0 0
\(835\) 2.38975e13 1.70123
\(836\) −1.87819e13 −1.32988
\(837\) 0 0
\(838\) −6.59476e12 −0.461956
\(839\) −1.06092e13 −0.739187 −0.369593 0.929194i \(-0.620503\pi\)
−0.369593 + 0.929194i \(0.620503\pi\)
\(840\) 0 0
\(841\) 1.11580e12 0.0769135
\(842\) −1.52080e13 −1.04272
\(843\) 0 0
\(844\) 2.17656e12 0.147649
\(845\) 2.75506e13 1.85898
\(846\) 0 0
\(847\) 2.16240e13 1.44365
\(848\) −2.68752e9 −0.000178472 0
\(849\) 0 0
\(850\) −1.92984e13 −1.26805
\(851\) 5.00410e11 0.0327072
\(852\) 0 0
\(853\) −1.04916e13 −0.678533 −0.339266 0.940690i \(-0.610179\pi\)
−0.339266 + 0.940690i \(0.610179\pi\)
\(854\) −1.33314e12 −0.0857662
\(855\) 0 0
\(856\) 2.00188e12 0.127440
\(857\) −7.29064e12 −0.461691 −0.230846 0.972990i \(-0.574149\pi\)
−0.230846 + 0.972990i \(0.574149\pi\)
\(858\) 0 0
\(859\) −7.12984e12 −0.446797 −0.223399 0.974727i \(-0.571715\pi\)
−0.223399 + 0.974727i \(0.571715\pi\)
\(860\) −2.07872e12 −0.129585
\(861\) 0 0
\(862\) 5.38125e12 0.331971
\(863\) 6.59591e12 0.404787 0.202393 0.979304i \(-0.435128\pi\)
0.202393 + 0.979304i \(0.435128\pi\)
\(864\) 0 0
\(865\) 1.10372e13 0.670326
\(866\) −1.85060e13 −1.11811
\(867\) 0 0
\(868\) −3.18767e11 −0.0190605
\(869\) 8.42848e12 0.501372
\(870\) 0 0
\(871\) 2.02352e13 1.19131
\(872\) 6.38316e12 0.373862
\(873\) 0 0
\(874\) −1.37031e12 −0.0794358
\(875\) 2.43284e11 0.0140306
\(876\) 0 0
\(877\) −1.74094e13 −0.993771 −0.496885 0.867816i \(-0.665523\pi\)
−0.496885 + 0.867816i \(0.665523\pi\)
\(878\) 9.45717e12 0.537076
\(879\) 0 0
\(880\) −1.20254e13 −0.675967
\(881\) 1.81298e13 1.01392 0.506958 0.861971i \(-0.330770\pi\)
0.506958 + 0.861971i \(0.330770\pi\)
\(882\) 0 0
\(883\) −1.92731e12 −0.106691 −0.0533457 0.998576i \(-0.516989\pi\)
−0.0533457 + 0.998576i \(0.516989\pi\)
\(884\) −2.43002e13 −1.33836
\(885\) 0 0
\(886\) −9.89896e12 −0.539682
\(887\) 9.81475e12 0.532382 0.266191 0.963920i \(-0.414235\pi\)
0.266191 + 0.963920i \(0.414235\pi\)
\(888\) 0 0
\(889\) 7.81059e12 0.419398
\(890\) −1.50429e13 −0.803669
\(891\) 0 0
\(892\) 1.64682e13 0.870971
\(893\) 3.59033e13 1.88931
\(894\) 0 0
\(895\) 2.79047e13 1.45370
\(896\) −9.38540e11 −0.0486482
\(897\) 0 0
\(898\) −1.38988e13 −0.713237
\(899\) 1.40767e12 0.0718760
\(900\) 0 0
\(901\) −2.48781e10 −0.00125764
\(902\) 3.71970e13 1.87102
\(903\) 0 0
\(904\) 1.93149e12 0.0961911
\(905\) −1.65391e13 −0.819585
\(906\) 0 0
\(907\) 6.78766e12 0.333033 0.166516 0.986039i \(-0.446748\pi\)
0.166516 + 0.986039i \(0.446748\pi\)
\(908\) −3.96224e12 −0.193444
\(909\) 0 0
\(910\) 1.73771e13 0.840020
\(911\) −2.98654e13 −1.43660 −0.718300 0.695734i \(-0.755079\pi\)
−0.718300 + 0.695734i \(0.755079\pi\)
\(912\) 0 0
\(913\) −3.07881e13 −1.46644
\(914\) −7.61612e12 −0.360974
\(915\) 0 0
\(916\) 1.42196e13 0.667355
\(917\) −2.20767e12 −0.103103
\(918\) 0 0
\(919\) 3.83406e13 1.77312 0.886562 0.462609i \(-0.153087\pi\)
0.886562 + 0.462609i \(0.153087\pi\)
\(920\) −8.77358e11 −0.0403768
\(921\) 0 0
\(922\) 4.61696e12 0.210410
\(923\) −4.57651e13 −2.07552
\(924\) 0 0
\(925\) 9.22111e12 0.414138
\(926\) 7.51621e12 0.335931
\(927\) 0 0
\(928\) 4.14459e12 0.183449
\(929\) 1.75006e13 0.770873 0.385437 0.922734i \(-0.374051\pi\)
0.385437 + 0.922734i \(0.374051\pi\)
\(930\) 0 0
\(931\) −2.23285e13 −0.974060
\(932\) 1.90796e13 0.828317
\(933\) 0 0
\(934\) 2.06650e13 0.888535
\(935\) −1.11318e14 −4.76334
\(936\) 0 0
\(937\) −5.75033e12 −0.243705 −0.121853 0.992548i \(-0.538883\pi\)
−0.121853 + 0.992548i \(0.538883\pi\)
\(938\) 7.23465e12 0.305144
\(939\) 0 0
\(940\) 2.29875e13 0.960323
\(941\) −3.85054e13 −1.60092 −0.800458 0.599389i \(-0.795410\pi\)
−0.800458 + 0.599389i \(0.795410\pi\)
\(942\) 0 0
\(943\) 2.71385e12 0.111759
\(944\) 9.48414e12 0.388708
\(945\) 0 0
\(946\) −6.04861e12 −0.245553
\(947\) 4.22310e13 1.70630 0.853152 0.521662i \(-0.174688\pi\)
0.853152 + 0.521662i \(0.174688\pi\)
\(948\) 0 0
\(949\) −2.27541e13 −0.910673
\(950\) −2.52508e13 −1.00582
\(951\) 0 0
\(952\) −8.68798e12 −0.342809
\(953\) −4.92293e12 −0.193333 −0.0966664 0.995317i \(-0.530818\pi\)
−0.0966664 + 0.995317i \(0.530818\pi\)
\(954\) 0 0
\(955\) −3.58107e13 −1.39315
\(956\) 8.50941e12 0.329487
\(957\) 0 0
\(958\) −5.26944e12 −0.202125
\(959\) 1.36290e13 0.520333
\(960\) 0 0
\(961\) −2.63128e13 −0.995203
\(962\) 1.16111e13 0.437104
\(963\) 0 0
\(964\) −8.57934e12 −0.319969
\(965\) −5.33737e13 −1.98132
\(966\) 0 0
\(967\) −1.61089e13 −0.592445 −0.296222 0.955119i \(-0.595727\pi\)
−0.296222 + 0.955119i \(0.595727\pi\)
\(968\) −2.53328e13 −0.927352
\(969\) 0 0
\(970\) 5.35745e13 1.94305
\(971\) −2.15164e13 −0.776754 −0.388377 0.921501i \(-0.626964\pi\)
−0.388377 + 0.921501i \(0.626964\pi\)
\(972\) 0 0
\(973\) 1.65731e13 0.592784
\(974\) −6.25700e12 −0.222767
\(975\) 0 0
\(976\) 1.56179e12 0.0550934
\(977\) 2.35966e13 0.828560 0.414280 0.910149i \(-0.364033\pi\)
0.414280 + 0.910149i \(0.364033\pi\)
\(978\) 0 0
\(979\) −4.37714e13 −1.52289
\(980\) −1.42961e13 −0.495109
\(981\) 0 0
\(982\) −2.64697e13 −0.908338
\(983\) −4.07118e13 −1.39069 −0.695343 0.718678i \(-0.744748\pi\)
−0.695343 + 0.718678i \(0.744748\pi\)
\(984\) 0 0
\(985\) −1.19411e13 −0.404188
\(986\) 3.83661e13 1.29271
\(987\) 0 0
\(988\) −3.17954e13 −1.06159
\(989\) −4.41300e11 −0.0146673
\(990\) 0 0
\(991\) 2.38946e13 0.786988 0.393494 0.919327i \(-0.371266\pi\)
0.393494 + 0.919327i \(0.371266\pi\)
\(992\) 3.73440e11 0.0122439
\(993\) 0 0
\(994\) −1.63623e13 −0.531625
\(995\) 8.06172e13 2.60750
\(996\) 0 0
\(997\) 1.97857e13 0.634195 0.317098 0.948393i \(-0.397292\pi\)
0.317098 + 0.948393i \(0.397292\pi\)
\(998\) 3.37891e13 1.07818
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.10.a.f.1.4 4
3.2 odd 2 162.10.a.g.1.1 yes 4
9.2 odd 6 162.10.c.s.109.4 8
9.4 even 3 162.10.c.t.55.1 8
9.5 odd 6 162.10.c.s.55.4 8
9.7 even 3 162.10.c.t.109.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.10.a.f.1.4 4 1.1 even 1 trivial
162.10.a.g.1.1 yes 4 3.2 odd 2
162.10.c.s.55.4 8 9.5 odd 6
162.10.c.s.109.4 8 9.2 odd 6
162.10.c.t.55.1 8 9.4 even 3
162.10.c.t.109.1 8 9.7 even 3