Properties

Label 162.10.a.f.1.2
Level $162$
Weight $10$
Character 162.1
Self dual yes
Analytic conductor $83.436$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,10,Mod(1,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-64,0,1024,1968] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(83.4358054585\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 953x^{2} + 954x + 195702 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{8} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-25.1057\) of defining polynomial
Character \(\chi\) \(=\) 162.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} +256.000 q^{4} -637.540 q^{5} +3781.54 q^{7} -4096.00 q^{8} +10200.6 q^{10} +89240.4 q^{11} +21274.0 q^{13} -60504.7 q^{14} +65536.0 q^{16} +132912. q^{17} -268177. q^{19} -163210. q^{20} -1.42785e6 q^{22} +1.64033e6 q^{23} -1.54667e6 q^{25} -340384. q^{26} +968075. q^{28} +999678. q^{29} +1.71956e6 q^{31} -1.04858e6 q^{32} -2.12659e6 q^{34} -2.41088e6 q^{35} +7.62670e6 q^{37} +4.29083e6 q^{38} +2.61136e6 q^{40} +8.18478e6 q^{41} -1.48027e7 q^{43} +2.28455e7 q^{44} -2.62453e7 q^{46} -5.49249e7 q^{47} -2.60536e7 q^{49} +2.47467e7 q^{50} +5.44614e6 q^{52} +3.84097e7 q^{53} -5.68943e7 q^{55} -1.54892e7 q^{56} -1.59948e7 q^{58} +2.83312e7 q^{59} -6.13813e6 q^{61} -2.75130e7 q^{62} +1.67772e7 q^{64} -1.35630e7 q^{65} +2.02943e8 q^{67} +3.40254e7 q^{68} +3.85741e7 q^{70} +6.46176e7 q^{71} -4.04658e8 q^{73} -1.22027e8 q^{74} -6.86533e7 q^{76} +3.37466e8 q^{77} -6.50469e8 q^{79} -4.17818e7 q^{80} -1.30957e8 q^{82} -1.35342e8 q^{83} -8.47365e7 q^{85} +2.36844e8 q^{86} -3.65528e8 q^{88} +6.44360e8 q^{89} +8.04484e7 q^{91} +4.19925e8 q^{92} +8.78798e8 q^{94} +1.70974e8 q^{95} +1.13571e9 q^{97} +4.16857e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{2} + 1024 q^{4} + 1968 q^{5} + 4496 q^{7} - 16384 q^{8} - 31488 q^{10} - 8784 q^{11} - 162556 q^{13} - 71936 q^{14} + 262144 q^{16} + 538080 q^{17} - 8224 q^{19} + 503808 q^{20} + 140544 q^{22}+ \cdots + 2038788288 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) 0 0
\(4\) 256.000 0.500000
\(5\) −637.540 −0.456186 −0.228093 0.973639i \(-0.573249\pi\)
−0.228093 + 0.973639i \(0.573249\pi\)
\(6\) 0 0
\(7\) 3781.54 0.595289 0.297644 0.954677i \(-0.403799\pi\)
0.297644 + 0.954677i \(0.403799\pi\)
\(8\) −4096.00 −0.353553
\(9\) 0 0
\(10\) 10200.6 0.322573
\(11\) 89240.4 1.83778 0.918891 0.394510i \(-0.129086\pi\)
0.918891 + 0.394510i \(0.129086\pi\)
\(12\) 0 0
\(13\) 21274.0 0.206587 0.103294 0.994651i \(-0.467062\pi\)
0.103294 + 0.994651i \(0.467062\pi\)
\(14\) −60504.7 −0.420933
\(15\) 0 0
\(16\) 65536.0 0.250000
\(17\) 132912. 0.385960 0.192980 0.981203i \(-0.438185\pi\)
0.192980 + 0.981203i \(0.438185\pi\)
\(18\) 0 0
\(19\) −268177. −0.472096 −0.236048 0.971741i \(-0.575852\pi\)
−0.236048 + 0.971741i \(0.575852\pi\)
\(20\) −163210. −0.228093
\(21\) 0 0
\(22\) −1.42785e6 −1.29951
\(23\) 1.64033e6 1.22224 0.611121 0.791537i \(-0.290719\pi\)
0.611121 + 0.791537i \(0.290719\pi\)
\(24\) 0 0
\(25\) −1.54667e6 −0.791894
\(26\) −340384. −0.146079
\(27\) 0 0
\(28\) 968075. 0.297644
\(29\) 999678. 0.262464 0.131232 0.991352i \(-0.458107\pi\)
0.131232 + 0.991352i \(0.458107\pi\)
\(30\) 0 0
\(31\) 1.71956e6 0.334419 0.167209 0.985921i \(-0.446524\pi\)
0.167209 + 0.985921i \(0.446524\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) 0 0
\(34\) −2.12659e6 −0.272915
\(35\) −2.41088e6 −0.271563
\(36\) 0 0
\(37\) 7.62670e6 0.669004 0.334502 0.942395i \(-0.391432\pi\)
0.334502 + 0.942395i \(0.391432\pi\)
\(38\) 4.29083e6 0.333822
\(39\) 0 0
\(40\) 2.61136e6 0.161286
\(41\) 8.18478e6 0.452355 0.226178 0.974086i \(-0.427377\pi\)
0.226178 + 0.974086i \(0.427377\pi\)
\(42\) 0 0
\(43\) −1.48027e7 −0.660289 −0.330145 0.943930i \(-0.607097\pi\)
−0.330145 + 0.943930i \(0.607097\pi\)
\(44\) 2.28455e7 0.918891
\(45\) 0 0
\(46\) −2.62453e7 −0.864255
\(47\) −5.49249e7 −1.64183 −0.820916 0.571049i \(-0.806536\pi\)
−0.820916 + 0.571049i \(0.806536\pi\)
\(48\) 0 0
\(49\) −2.60536e7 −0.645631
\(50\) 2.47467e7 0.559954
\(51\) 0 0
\(52\) 5.44614e6 0.103294
\(53\) 3.84097e7 0.668650 0.334325 0.942458i \(-0.391492\pi\)
0.334325 + 0.942458i \(0.391492\pi\)
\(54\) 0 0
\(55\) −5.68943e7 −0.838372
\(56\) −1.54892e7 −0.210466
\(57\) 0 0
\(58\) −1.59948e7 −0.185590
\(59\) 2.83312e7 0.304390 0.152195 0.988350i \(-0.451366\pi\)
0.152195 + 0.988350i \(0.451366\pi\)
\(60\) 0 0
\(61\) −6.13813e6 −0.0567612 −0.0283806 0.999597i \(-0.509035\pi\)
−0.0283806 + 0.999597i \(0.509035\pi\)
\(62\) −2.75130e7 −0.236470
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) −1.35630e7 −0.0942423
\(66\) 0 0
\(67\) 2.02943e8 1.23038 0.615188 0.788380i \(-0.289080\pi\)
0.615188 + 0.788380i \(0.289080\pi\)
\(68\) 3.40254e7 0.192980
\(69\) 0 0
\(70\) 3.85741e7 0.192024
\(71\) 6.46176e7 0.301778 0.150889 0.988551i \(-0.451786\pi\)
0.150889 + 0.988551i \(0.451786\pi\)
\(72\) 0 0
\(73\) −4.04658e8 −1.66777 −0.833884 0.551940i \(-0.813888\pi\)
−0.833884 + 0.551940i \(0.813888\pi\)
\(74\) −1.22027e8 −0.473057
\(75\) 0 0
\(76\) −6.86533e7 −0.236048
\(77\) 3.37466e8 1.09401
\(78\) 0 0
\(79\) −6.50469e8 −1.87890 −0.939452 0.342679i \(-0.888666\pi\)
−0.939452 + 0.342679i \(0.888666\pi\)
\(80\) −4.17818e7 −0.114047
\(81\) 0 0
\(82\) −1.30957e8 −0.319864
\(83\) −1.35342e8 −0.313028 −0.156514 0.987676i \(-0.550026\pi\)
−0.156514 + 0.987676i \(0.550026\pi\)
\(84\) 0 0
\(85\) −8.47365e7 −0.176070
\(86\) 2.36844e8 0.466895
\(87\) 0 0
\(88\) −3.65528e8 −0.649754
\(89\) 6.44360e8 1.08861 0.544307 0.838886i \(-0.316793\pi\)
0.544307 + 0.838886i \(0.316793\pi\)
\(90\) 0 0
\(91\) 8.04484e7 0.122979
\(92\) 4.19925e8 0.611121
\(93\) 0 0
\(94\) 8.78798e8 1.16095
\(95\) 1.70974e8 0.215364
\(96\) 0 0
\(97\) 1.13571e9 1.30255 0.651274 0.758842i \(-0.274235\pi\)
0.651274 + 0.758842i \(0.274235\pi\)
\(98\) 4.16857e8 0.456530
\(99\) 0 0
\(100\) −3.95947e8 −0.395947
\(101\) 1.74490e9 1.66849 0.834245 0.551394i \(-0.185904\pi\)
0.834245 + 0.551394i \(0.185904\pi\)
\(102\) 0 0
\(103\) 1.75960e9 1.54044 0.770222 0.637776i \(-0.220145\pi\)
0.770222 + 0.637776i \(0.220145\pi\)
\(104\) −8.71382e7 −0.0730396
\(105\) 0 0
\(106\) −6.14554e8 −0.472807
\(107\) 7.07625e8 0.521887 0.260943 0.965354i \(-0.415966\pi\)
0.260943 + 0.965354i \(0.415966\pi\)
\(108\) 0 0
\(109\) −1.68385e8 −0.114258 −0.0571288 0.998367i \(-0.518195\pi\)
−0.0571288 + 0.998367i \(0.518195\pi\)
\(110\) 9.10309e8 0.592818
\(111\) 0 0
\(112\) 2.47827e8 0.148822
\(113\) 1.51673e9 0.875093 0.437547 0.899196i \(-0.355848\pi\)
0.437547 + 0.899196i \(0.355848\pi\)
\(114\) 0 0
\(115\) −1.04578e9 −0.557570
\(116\) 2.55918e8 0.131232
\(117\) 0 0
\(118\) −4.53299e8 −0.215236
\(119\) 5.02611e8 0.229758
\(120\) 0 0
\(121\) 5.60589e9 2.37745
\(122\) 9.82101e7 0.0401363
\(123\) 0 0
\(124\) 4.40208e8 0.167209
\(125\) 2.23126e9 0.817438
\(126\) 0 0
\(127\) −4.26548e9 −1.45496 −0.727480 0.686129i \(-0.759309\pi\)
−0.727480 + 0.686129i \(0.759309\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) 0 0
\(130\) 2.17008e8 0.0666394
\(131\) −1.17007e8 −0.0347128 −0.0173564 0.999849i \(-0.505525\pi\)
−0.0173564 + 0.999849i \(0.505525\pi\)
\(132\) 0 0
\(133\) −1.01412e9 −0.281033
\(134\) −3.24709e9 −0.870008
\(135\) 0 0
\(136\) −5.44406e8 −0.136458
\(137\) 7.28209e9 1.76609 0.883047 0.469285i \(-0.155488\pi\)
0.883047 + 0.469285i \(0.155488\pi\)
\(138\) 0 0
\(139\) 7.27338e9 1.65261 0.826303 0.563226i \(-0.190440\pi\)
0.826303 + 0.563226i \(0.190440\pi\)
\(140\) −6.17186e8 −0.135781
\(141\) 0 0
\(142\) −1.03388e9 −0.213389
\(143\) 1.89850e9 0.379662
\(144\) 0 0
\(145\) −6.37335e8 −0.119732
\(146\) 6.47453e9 1.17929
\(147\) 0 0
\(148\) 1.95243e9 0.334502
\(149\) −2.85456e9 −0.474461 −0.237231 0.971453i \(-0.576240\pi\)
−0.237231 + 0.971453i \(0.576240\pi\)
\(150\) 0 0
\(151\) 2.03027e9 0.317803 0.158901 0.987294i \(-0.449205\pi\)
0.158901 + 0.987294i \(0.449205\pi\)
\(152\) 1.09845e9 0.166911
\(153\) 0 0
\(154\) −5.39946e9 −0.773583
\(155\) −1.09629e9 −0.152557
\(156\) 0 0
\(157\) 4.25662e9 0.559134 0.279567 0.960126i \(-0.409809\pi\)
0.279567 + 0.960126i \(0.409809\pi\)
\(158\) 1.04075e10 1.32859
\(159\) 0 0
\(160\) 6.68509e8 0.0806431
\(161\) 6.20299e9 0.727587
\(162\) 0 0
\(163\) −4.16936e9 −0.462621 −0.231311 0.972880i \(-0.574301\pi\)
−0.231311 + 0.972880i \(0.574301\pi\)
\(164\) 2.09530e9 0.226178
\(165\) 0 0
\(166\) 2.16548e9 0.221344
\(167\) 1.07024e10 1.06477 0.532386 0.846502i \(-0.321295\pi\)
0.532386 + 0.846502i \(0.321295\pi\)
\(168\) 0 0
\(169\) −1.01519e10 −0.957322
\(170\) 1.35578e9 0.124500
\(171\) 0 0
\(172\) −3.78950e9 −0.330145
\(173\) −1.59012e10 −1.34966 −0.674828 0.737975i \(-0.735782\pi\)
−0.674828 + 0.737975i \(0.735782\pi\)
\(174\) 0 0
\(175\) −5.84879e9 −0.471406
\(176\) 5.84846e9 0.459446
\(177\) 0 0
\(178\) −1.03098e10 −0.769766
\(179\) 2.05365e10 1.49516 0.747579 0.664173i \(-0.231216\pi\)
0.747579 + 0.664173i \(0.231216\pi\)
\(180\) 0 0
\(181\) 1.50797e10 1.04433 0.522167 0.852843i \(-0.325124\pi\)
0.522167 + 0.852843i \(0.325124\pi\)
\(182\) −1.28717e9 −0.0869593
\(183\) 0 0
\(184\) −6.71881e9 −0.432128
\(185\) −4.86232e9 −0.305191
\(186\) 0 0
\(187\) 1.18611e10 0.709312
\(188\) −1.40608e10 −0.820916
\(189\) 0 0
\(190\) −2.73558e9 −0.152285
\(191\) −4.78381e9 −0.260090 −0.130045 0.991508i \(-0.541512\pi\)
−0.130045 + 0.991508i \(0.541512\pi\)
\(192\) 0 0
\(193\) 1.94088e10 1.00691 0.503456 0.864021i \(-0.332062\pi\)
0.503456 + 0.864021i \(0.332062\pi\)
\(194\) −1.81713e10 −0.921041
\(195\) 0 0
\(196\) −6.66971e9 −0.322816
\(197\) 3.64545e9 0.172446 0.0862230 0.996276i \(-0.472520\pi\)
0.0862230 + 0.996276i \(0.472520\pi\)
\(198\) 0 0
\(199\) −6.13755e9 −0.277432 −0.138716 0.990332i \(-0.544297\pi\)
−0.138716 + 0.990332i \(0.544297\pi\)
\(200\) 6.33515e9 0.279977
\(201\) 0 0
\(202\) −2.79184e10 −1.17980
\(203\) 3.78032e9 0.156242
\(204\) 0 0
\(205\) −5.21813e9 −0.206358
\(206\) −2.81536e10 −1.08926
\(207\) 0 0
\(208\) 1.39421e9 0.0516468
\(209\) −2.39322e10 −0.867610
\(210\) 0 0
\(211\) −1.57584e10 −0.547321 −0.273660 0.961826i \(-0.588234\pi\)
−0.273660 + 0.961826i \(0.588234\pi\)
\(212\) 9.83287e9 0.334325
\(213\) 0 0
\(214\) −1.13220e10 −0.369030
\(215\) 9.43734e9 0.301215
\(216\) 0 0
\(217\) 6.50260e9 0.199076
\(218\) 2.69416e9 0.0807923
\(219\) 0 0
\(220\) −1.45649e10 −0.419186
\(221\) 2.82756e9 0.0797345
\(222\) 0 0
\(223\) 4.21334e10 1.14092 0.570459 0.821326i \(-0.306765\pi\)
0.570459 + 0.821326i \(0.306765\pi\)
\(224\) −3.96523e9 −0.105233
\(225\) 0 0
\(226\) −2.42676e10 −0.618784
\(227\) −6.76606e10 −1.69129 −0.845647 0.533742i \(-0.820785\pi\)
−0.845647 + 0.533742i \(0.820785\pi\)
\(228\) 0 0
\(229\) −6.88813e10 −1.65517 −0.827583 0.561343i \(-0.810285\pi\)
−0.827583 + 0.561343i \(0.810285\pi\)
\(230\) 1.67325e10 0.394261
\(231\) 0 0
\(232\) −4.09468e9 −0.0927949
\(233\) 2.23441e9 0.0496662 0.0248331 0.999692i \(-0.492095\pi\)
0.0248331 + 0.999692i \(0.492095\pi\)
\(234\) 0 0
\(235\) 3.50168e10 0.748981
\(236\) 7.25278e9 0.152195
\(237\) 0 0
\(238\) −8.04177e9 −0.162463
\(239\) −9.21624e10 −1.82710 −0.913552 0.406723i \(-0.866671\pi\)
−0.913552 + 0.406723i \(0.866671\pi\)
\(240\) 0 0
\(241\) 7.86149e10 1.50116 0.750582 0.660777i \(-0.229773\pi\)
0.750582 + 0.660777i \(0.229773\pi\)
\(242\) −8.96943e10 −1.68111
\(243\) 0 0
\(244\) −1.57136e9 −0.0283806
\(245\) 1.66102e10 0.294528
\(246\) 0 0
\(247\) −5.70519e9 −0.0975290
\(248\) −7.04333e9 −0.118235
\(249\) 0 0
\(250\) −3.57001e10 −0.578016
\(251\) −5.33618e10 −0.848591 −0.424296 0.905524i \(-0.639478\pi\)
−0.424296 + 0.905524i \(0.639478\pi\)
\(252\) 0 0
\(253\) 1.46384e11 2.24621
\(254\) 6.82477e10 1.02881
\(255\) 0 0
\(256\) 4.29497e9 0.0625000
\(257\) −8.11180e10 −1.15989 −0.579947 0.814654i \(-0.696927\pi\)
−0.579947 + 0.814654i \(0.696927\pi\)
\(258\) 0 0
\(259\) 2.88407e10 0.398251
\(260\) −3.47213e9 −0.0471211
\(261\) 0 0
\(262\) 1.87211e9 0.0245457
\(263\) −2.55619e10 −0.329452 −0.164726 0.986339i \(-0.552674\pi\)
−0.164726 + 0.986339i \(0.552674\pi\)
\(264\) 0 0
\(265\) −2.44877e10 −0.305029
\(266\) 1.62260e10 0.198721
\(267\) 0 0
\(268\) 5.19535e10 0.615188
\(269\) 1.19720e11 1.39406 0.697028 0.717044i \(-0.254505\pi\)
0.697028 + 0.717044i \(0.254505\pi\)
\(270\) 0 0
\(271\) 1.32991e11 1.49783 0.748914 0.662667i \(-0.230576\pi\)
0.748914 + 0.662667i \(0.230576\pi\)
\(272\) 8.71050e9 0.0964901
\(273\) 0 0
\(274\) −1.16514e11 −1.24882
\(275\) −1.38025e11 −1.45533
\(276\) 0 0
\(277\) −1.27005e10 −0.129617 −0.0648084 0.997898i \(-0.520644\pi\)
−0.0648084 + 0.997898i \(0.520644\pi\)
\(278\) −1.16374e11 −1.16857
\(279\) 0 0
\(280\) 9.87498e9 0.0960119
\(281\) −1.00052e11 −0.957302 −0.478651 0.878005i \(-0.658874\pi\)
−0.478651 + 0.878005i \(0.658874\pi\)
\(282\) 0 0
\(283\) 9.22944e10 0.855336 0.427668 0.903936i \(-0.359335\pi\)
0.427668 + 0.903936i \(0.359335\pi\)
\(284\) 1.65421e10 0.150889
\(285\) 0 0
\(286\) −3.03759e10 −0.268462
\(287\) 3.09511e10 0.269282
\(288\) 0 0
\(289\) −1.00922e11 −0.851035
\(290\) 1.01974e10 0.0846636
\(291\) 0 0
\(292\) −1.03593e11 −0.833884
\(293\) 1.21880e11 0.966114 0.483057 0.875589i \(-0.339526\pi\)
0.483057 + 0.875589i \(0.339526\pi\)
\(294\) 0 0
\(295\) −1.80622e10 −0.138859
\(296\) −3.12390e10 −0.236529
\(297\) 0 0
\(298\) 4.56730e10 0.335495
\(299\) 3.48964e10 0.252499
\(300\) 0 0
\(301\) −5.59772e10 −0.393063
\(302\) −3.24843e10 −0.224720
\(303\) 0 0
\(304\) −1.75752e10 −0.118024
\(305\) 3.91330e9 0.0258937
\(306\) 0 0
\(307\) 1.46439e11 0.940881 0.470441 0.882432i \(-0.344095\pi\)
0.470441 + 0.882432i \(0.344095\pi\)
\(308\) 8.63913e10 0.547006
\(309\) 0 0
\(310\) 1.75407e10 0.107874
\(311\) 6.86279e10 0.415986 0.207993 0.978130i \(-0.433307\pi\)
0.207993 + 0.978130i \(0.433307\pi\)
\(312\) 0 0
\(313\) 2.72147e11 1.60270 0.801352 0.598193i \(-0.204114\pi\)
0.801352 + 0.598193i \(0.204114\pi\)
\(314\) −6.81059e10 −0.395368
\(315\) 0 0
\(316\) −1.66520e11 −0.939452
\(317\) 3.26443e9 0.0181569 0.00907844 0.999959i \(-0.497110\pi\)
0.00907844 + 0.999959i \(0.497110\pi\)
\(318\) 0 0
\(319\) 8.92116e10 0.482351
\(320\) −1.06961e10 −0.0570233
\(321\) 0 0
\(322\) −9.92478e10 −0.514481
\(323\) −3.56438e10 −0.182210
\(324\) 0 0
\(325\) −3.29038e10 −0.163595
\(326\) 6.67098e10 0.327123
\(327\) 0 0
\(328\) −3.35249e10 −0.159932
\(329\) −2.07701e11 −0.977364
\(330\) 0 0
\(331\) −5.33327e10 −0.244212 −0.122106 0.992517i \(-0.538965\pi\)
−0.122106 + 0.992517i \(0.538965\pi\)
\(332\) −3.46477e10 −0.156514
\(333\) 0 0
\(334\) −1.71238e11 −0.752908
\(335\) −1.29384e11 −0.561281
\(336\) 0 0
\(337\) 9.17605e10 0.387544 0.193772 0.981047i \(-0.437928\pi\)
0.193772 + 0.981047i \(0.437928\pi\)
\(338\) 1.62431e11 0.676929
\(339\) 0 0
\(340\) −2.16925e10 −0.0880350
\(341\) 1.53454e11 0.614589
\(342\) 0 0
\(343\) −2.51121e11 −0.979626
\(344\) 6.06320e10 0.233447
\(345\) 0 0
\(346\) 2.54420e11 0.954351
\(347\) 2.81551e11 1.04250 0.521248 0.853405i \(-0.325467\pi\)
0.521248 + 0.853405i \(0.325467\pi\)
\(348\) 0 0
\(349\) −4.04395e11 −1.45912 −0.729561 0.683916i \(-0.760275\pi\)
−0.729561 + 0.683916i \(0.760275\pi\)
\(350\) 9.35806e10 0.333334
\(351\) 0 0
\(352\) −9.35753e10 −0.324877
\(353\) −3.56621e11 −1.22242 −0.611211 0.791468i \(-0.709317\pi\)
−0.611211 + 0.791468i \(0.709317\pi\)
\(354\) 0 0
\(355\) −4.11963e10 −0.137667
\(356\) 1.64956e11 0.544307
\(357\) 0 0
\(358\) −3.28583e11 −1.05724
\(359\) 4.93016e11 1.56652 0.783261 0.621693i \(-0.213555\pi\)
0.783261 + 0.621693i \(0.213555\pi\)
\(360\) 0 0
\(361\) −2.50769e11 −0.777125
\(362\) −2.41275e11 −0.738456
\(363\) 0 0
\(364\) 2.05948e10 0.0614895
\(365\) 2.57986e11 0.760813
\(366\) 0 0
\(367\) 1.06005e11 0.305021 0.152510 0.988302i \(-0.451264\pi\)
0.152510 + 0.988302i \(0.451264\pi\)
\(368\) 1.07501e11 0.305560
\(369\) 0 0
\(370\) 7.77972e10 0.215802
\(371\) 1.45248e11 0.398040
\(372\) 0 0
\(373\) 5.40318e11 1.44531 0.722653 0.691211i \(-0.242923\pi\)
0.722653 + 0.691211i \(0.242923\pi\)
\(374\) −1.89777e11 −0.501559
\(375\) 0 0
\(376\) 2.24972e11 0.580475
\(377\) 2.12671e10 0.0542216
\(378\) 0 0
\(379\) −4.89358e11 −1.21829 −0.609145 0.793059i \(-0.708487\pi\)
−0.609145 + 0.793059i \(0.708487\pi\)
\(380\) 4.37692e10 0.107682
\(381\) 0 0
\(382\) 7.65409e10 0.183911
\(383\) 2.95665e11 0.702110 0.351055 0.936355i \(-0.385823\pi\)
0.351055 + 0.936355i \(0.385823\pi\)
\(384\) 0 0
\(385\) −2.15148e11 −0.499073
\(386\) −3.10541e11 −0.711994
\(387\) 0 0
\(388\) 2.90741e11 0.651274
\(389\) 7.57118e11 1.67645 0.838224 0.545326i \(-0.183594\pi\)
0.838224 + 0.545326i \(0.183594\pi\)
\(390\) 0 0
\(391\) 2.18019e11 0.471737
\(392\) 1.06715e11 0.228265
\(393\) 0 0
\(394\) −5.83272e10 −0.121938
\(395\) 4.14700e11 0.857131
\(396\) 0 0
\(397\) 1.91762e11 0.387441 0.193721 0.981057i \(-0.437944\pi\)
0.193721 + 0.981057i \(0.437944\pi\)
\(398\) 9.82008e10 0.196174
\(399\) 0 0
\(400\) −1.01362e11 −0.197973
\(401\) 3.59283e10 0.0693884 0.0346942 0.999398i \(-0.488954\pi\)
0.0346942 + 0.999398i \(0.488954\pi\)
\(402\) 0 0
\(403\) 3.65820e10 0.0690867
\(404\) 4.46694e11 0.834245
\(405\) 0 0
\(406\) −6.04852e10 −0.110480
\(407\) 6.80609e11 1.22948
\(408\) 0 0
\(409\) 5.56662e11 0.983642 0.491821 0.870696i \(-0.336331\pi\)
0.491821 + 0.870696i \(0.336331\pi\)
\(410\) 8.34900e10 0.145917
\(411\) 0 0
\(412\) 4.50457e11 0.770222
\(413\) 1.07135e11 0.181200
\(414\) 0 0
\(415\) 8.62862e10 0.142799
\(416\) −2.23074e10 −0.0365198
\(417\) 0 0
\(418\) 3.82915e11 0.613493
\(419\) 4.50049e11 0.713341 0.356670 0.934230i \(-0.383912\pi\)
0.356670 + 0.934230i \(0.383912\pi\)
\(420\) 0 0
\(421\) −6.42393e11 −0.996625 −0.498312 0.866998i \(-0.666047\pi\)
−0.498312 + 0.866998i \(0.666047\pi\)
\(422\) 2.52135e11 0.387014
\(423\) 0 0
\(424\) −1.57326e11 −0.236404
\(425\) −2.05570e11 −0.305640
\(426\) 0 0
\(427\) −2.32116e10 −0.0337893
\(428\) 1.81152e11 0.260943
\(429\) 0 0
\(430\) −1.50997e11 −0.212991
\(431\) −8.75529e11 −1.22215 −0.611073 0.791574i \(-0.709262\pi\)
−0.611073 + 0.791574i \(0.709262\pi\)
\(432\) 0 0
\(433\) −1.13112e12 −1.54637 −0.773185 0.634180i \(-0.781338\pi\)
−0.773185 + 0.634180i \(0.781338\pi\)
\(434\) −1.04042e11 −0.140768
\(435\) 0 0
\(436\) −4.31066e10 −0.0571288
\(437\) −4.39900e11 −0.577015
\(438\) 0 0
\(439\) −4.62516e11 −0.594343 −0.297171 0.954824i \(-0.596043\pi\)
−0.297171 + 0.954824i \(0.596043\pi\)
\(440\) 2.33039e11 0.296409
\(441\) 0 0
\(442\) −4.52409e10 −0.0563808
\(443\) 1.40914e11 0.173834 0.0869172 0.996216i \(-0.472298\pi\)
0.0869172 + 0.996216i \(0.472298\pi\)
\(444\) 0 0
\(445\) −4.10805e11 −0.496611
\(446\) −6.74134e11 −0.806751
\(447\) 0 0
\(448\) 6.34437e10 0.0744111
\(449\) −1.31651e12 −1.52867 −0.764337 0.644817i \(-0.776934\pi\)
−0.764337 + 0.644817i \(0.776934\pi\)
\(450\) 0 0
\(451\) 7.30413e11 0.831331
\(452\) 3.88282e11 0.437547
\(453\) 0 0
\(454\) 1.08257e12 1.19593
\(455\) −5.12891e10 −0.0561014
\(456\) 0 0
\(457\) 1.00287e12 1.07553 0.537766 0.843094i \(-0.319269\pi\)
0.537766 + 0.843094i \(0.319269\pi\)
\(458\) 1.10210e12 1.17038
\(459\) 0 0
\(460\) −2.67719e11 −0.278785
\(461\) 1.22220e12 1.26034 0.630171 0.776457i \(-0.282985\pi\)
0.630171 + 0.776457i \(0.282985\pi\)
\(462\) 0 0
\(463\) −2.35538e11 −0.238203 −0.119102 0.992882i \(-0.538001\pi\)
−0.119102 + 0.992882i \(0.538001\pi\)
\(464\) 6.55149e10 0.0656159
\(465\) 0 0
\(466\) −3.57505e10 −0.0351193
\(467\) −6.25942e11 −0.608987 −0.304493 0.952514i \(-0.598487\pi\)
−0.304493 + 0.952514i \(0.598487\pi\)
\(468\) 0 0
\(469\) 7.67438e11 0.732429
\(470\) −5.60269e11 −0.529610
\(471\) 0 0
\(472\) −1.16044e11 −0.107618
\(473\) −1.32100e12 −1.21347
\(474\) 0 0
\(475\) 4.14781e11 0.373850
\(476\) 1.28668e11 0.114879
\(477\) 0 0
\(478\) 1.47460e12 1.29196
\(479\) −5.29764e11 −0.459804 −0.229902 0.973214i \(-0.573841\pi\)
−0.229902 + 0.973214i \(0.573841\pi\)
\(480\) 0 0
\(481\) 1.62250e11 0.138208
\(482\) −1.25784e12 −1.06148
\(483\) 0 0
\(484\) 1.43511e12 1.18872
\(485\) −7.24059e11 −0.594205
\(486\) 0 0
\(487\) −5.57418e10 −0.0449056 −0.0224528 0.999748i \(-0.507148\pi\)
−0.0224528 + 0.999748i \(0.507148\pi\)
\(488\) 2.51418e10 0.0200681
\(489\) 0 0
\(490\) −2.65763e11 −0.208263
\(491\) 3.73586e11 0.290084 0.145042 0.989426i \(-0.453668\pi\)
0.145042 + 0.989426i \(0.453668\pi\)
\(492\) 0 0
\(493\) 1.32869e11 0.101301
\(494\) 9.12830e10 0.0689634
\(495\) 0 0
\(496\) 1.12693e11 0.0836047
\(497\) 2.44354e11 0.179645
\(498\) 0 0
\(499\) −3.44539e11 −0.248763 −0.124381 0.992234i \(-0.539695\pi\)
−0.124381 + 0.992234i \(0.539695\pi\)
\(500\) 5.71202e11 0.408719
\(501\) 0 0
\(502\) 8.53789e11 0.600045
\(503\) −1.14060e12 −0.794468 −0.397234 0.917717i \(-0.630030\pi\)
−0.397234 + 0.917717i \(0.630030\pi\)
\(504\) 0 0
\(505\) −1.11244e12 −0.761143
\(506\) −2.34214e12 −1.58831
\(507\) 0 0
\(508\) −1.09196e12 −0.727480
\(509\) 1.14345e12 0.755068 0.377534 0.925996i \(-0.376772\pi\)
0.377534 + 0.925996i \(0.376772\pi\)
\(510\) 0 0
\(511\) −1.53023e12 −0.992803
\(512\) −6.87195e10 −0.0441942
\(513\) 0 0
\(514\) 1.29789e12 0.820169
\(515\) −1.12181e12 −0.702730
\(516\) 0 0
\(517\) −4.90151e12 −3.01733
\(518\) −4.61451e11 −0.281606
\(519\) 0 0
\(520\) 5.55541e10 0.0333197
\(521\) 2.26626e12 1.34753 0.673767 0.738944i \(-0.264675\pi\)
0.673767 + 0.738944i \(0.264675\pi\)
\(522\) 0 0
\(523\) 5.87333e11 0.343263 0.171631 0.985161i \(-0.445096\pi\)
0.171631 + 0.985161i \(0.445096\pi\)
\(524\) −2.99537e10 −0.0173564
\(525\) 0 0
\(526\) 4.08990e11 0.232958
\(527\) 2.28550e11 0.129072
\(528\) 0 0
\(529\) 8.89542e11 0.493874
\(530\) 3.91803e11 0.215688
\(531\) 0 0
\(532\) −2.59615e11 −0.140517
\(533\) 1.74123e11 0.0934509
\(534\) 0 0
\(535\) −4.51139e11 −0.238078
\(536\) −8.31256e11 −0.435004
\(537\) 0 0
\(538\) −1.91552e12 −0.985747
\(539\) −2.32503e12 −1.18653
\(540\) 0 0
\(541\) 5.23918e11 0.262951 0.131476 0.991319i \(-0.458028\pi\)
0.131476 + 0.991319i \(0.458028\pi\)
\(542\) −2.12786e12 −1.05912
\(543\) 0 0
\(544\) −1.39368e11 −0.0682288
\(545\) 1.07352e11 0.0521228
\(546\) 0 0
\(547\) −1.45512e12 −0.694955 −0.347477 0.937688i \(-0.612962\pi\)
−0.347477 + 0.937688i \(0.612962\pi\)
\(548\) 1.86422e12 0.883047
\(549\) 0 0
\(550\) 2.20840e12 1.02907
\(551\) −2.68091e11 −0.123908
\(552\) 0 0
\(553\) −2.45978e12 −1.11849
\(554\) 2.03208e11 0.0916529
\(555\) 0 0
\(556\) 1.86198e12 0.826303
\(557\) −3.34803e12 −1.47381 −0.736903 0.675999i \(-0.763713\pi\)
−0.736903 + 0.675999i \(0.763713\pi\)
\(558\) 0 0
\(559\) −3.14913e11 −0.136407
\(560\) −1.58000e11 −0.0678907
\(561\) 0 0
\(562\) 1.60084e12 0.676915
\(563\) −2.74036e12 −1.14953 −0.574764 0.818319i \(-0.694906\pi\)
−0.574764 + 0.818319i \(0.694906\pi\)
\(564\) 0 0
\(565\) −9.66974e11 −0.399206
\(566\) −1.47671e12 −0.604814
\(567\) 0 0
\(568\) −2.64674e11 −0.106695
\(569\) −7.62690e11 −0.305030 −0.152515 0.988301i \(-0.548737\pi\)
−0.152515 + 0.988301i \(0.548737\pi\)
\(570\) 0 0
\(571\) −3.98085e12 −1.56716 −0.783581 0.621290i \(-0.786609\pi\)
−0.783581 + 0.621290i \(0.786609\pi\)
\(572\) 4.86015e11 0.189831
\(573\) 0 0
\(574\) −4.95218e11 −0.190411
\(575\) −2.53705e12 −0.967886
\(576\) 0 0
\(577\) 3.34927e12 1.25794 0.628969 0.777430i \(-0.283477\pi\)
0.628969 + 0.777430i \(0.283477\pi\)
\(578\) 1.61476e12 0.601772
\(579\) 0 0
\(580\) −1.63158e11 −0.0598662
\(581\) −5.11803e11 −0.186342
\(582\) 0 0
\(583\) 3.42769e12 1.22883
\(584\) 1.65748e12 0.589645
\(585\) 0 0
\(586\) −1.95008e12 −0.683145
\(587\) −1.78876e12 −0.621844 −0.310922 0.950435i \(-0.600638\pi\)
−0.310922 + 0.950435i \(0.600638\pi\)
\(588\) 0 0
\(589\) −4.61147e11 −0.157878
\(590\) 2.88996e11 0.0981878
\(591\) 0 0
\(592\) 4.99823e11 0.167251
\(593\) 2.66988e12 0.886638 0.443319 0.896364i \(-0.353801\pi\)
0.443319 + 0.896364i \(0.353801\pi\)
\(594\) 0 0
\(595\) −3.20434e11 −0.104812
\(596\) −7.30767e11 −0.237231
\(597\) 0 0
\(598\) −5.58343e11 −0.178544
\(599\) 3.81780e12 1.21169 0.605847 0.795581i \(-0.292834\pi\)
0.605847 + 0.795581i \(0.292834\pi\)
\(600\) 0 0
\(601\) −5.09322e12 −1.59242 −0.796210 0.605020i \(-0.793165\pi\)
−0.796210 + 0.605020i \(0.793165\pi\)
\(602\) 8.95635e11 0.277937
\(603\) 0 0
\(604\) 5.19749e11 0.158901
\(605\) −3.57398e12 −1.08456
\(606\) 0 0
\(607\) 2.26983e12 0.678649 0.339324 0.940669i \(-0.389802\pi\)
0.339324 + 0.940669i \(0.389802\pi\)
\(608\) 2.81204e11 0.0834556
\(609\) 0 0
\(610\) −6.26128e10 −0.0183096
\(611\) −1.16847e12 −0.339181
\(612\) 0 0
\(613\) −6.42677e12 −1.83832 −0.919158 0.393888i \(-0.871130\pi\)
−0.919158 + 0.393888i \(0.871130\pi\)
\(614\) −2.34303e12 −0.665303
\(615\) 0 0
\(616\) −1.38226e12 −0.386791
\(617\) −1.45823e11 −0.0405082 −0.0202541 0.999795i \(-0.506448\pi\)
−0.0202541 + 0.999795i \(0.506448\pi\)
\(618\) 0 0
\(619\) 6.02775e12 1.65024 0.825120 0.564957i \(-0.191107\pi\)
0.825120 + 0.564957i \(0.191107\pi\)
\(620\) −2.80650e11 −0.0762787
\(621\) 0 0
\(622\) −1.09805e12 −0.294147
\(623\) 2.43668e12 0.648039
\(624\) 0 0
\(625\) 1.59832e12 0.418990
\(626\) −4.35435e12 −1.13328
\(627\) 0 0
\(628\) 1.08969e12 0.279567
\(629\) 1.01368e12 0.258209
\(630\) 0 0
\(631\) 1.57062e12 0.394401 0.197201 0.980363i \(-0.436815\pi\)
0.197201 + 0.980363i \(0.436815\pi\)
\(632\) 2.66432e12 0.664293
\(633\) 0 0
\(634\) −5.22309e10 −0.0128389
\(635\) 2.71941e12 0.663733
\(636\) 0 0
\(637\) −5.54262e11 −0.133379
\(638\) −1.42739e12 −0.341074
\(639\) 0 0
\(640\) 1.71138e11 0.0403216
\(641\) 3.74112e12 0.875266 0.437633 0.899154i \(-0.355817\pi\)
0.437633 + 0.899154i \(0.355817\pi\)
\(642\) 0 0
\(643\) 6.57372e12 1.51657 0.758284 0.651924i \(-0.226038\pi\)
0.758284 + 0.651924i \(0.226038\pi\)
\(644\) 1.58797e12 0.363793
\(645\) 0 0
\(646\) 5.70301e11 0.128842
\(647\) 4.02950e12 0.904029 0.452014 0.892011i \(-0.350706\pi\)
0.452014 + 0.892011i \(0.350706\pi\)
\(648\) 0 0
\(649\) 2.52828e12 0.559403
\(650\) 5.26460e11 0.115679
\(651\) 0 0
\(652\) −1.06736e12 −0.231311
\(653\) −7.61308e12 −1.63852 −0.819259 0.573424i \(-0.805615\pi\)
−0.819259 + 0.573424i \(0.805615\pi\)
\(654\) 0 0
\(655\) 7.45964e10 0.0158355
\(656\) 5.36398e11 0.113089
\(657\) 0 0
\(658\) 3.32321e12 0.691101
\(659\) 6.20851e12 1.28234 0.641170 0.767399i \(-0.278449\pi\)
0.641170 + 0.767399i \(0.278449\pi\)
\(660\) 0 0
\(661\) 7.26145e12 1.47951 0.739753 0.672878i \(-0.234942\pi\)
0.739753 + 0.672878i \(0.234942\pi\)
\(662\) 8.53323e11 0.172684
\(663\) 0 0
\(664\) 5.54363e11 0.110672
\(665\) 6.46544e11 0.128204
\(666\) 0 0
\(667\) 1.63981e12 0.320794
\(668\) 2.73981e12 0.532386
\(669\) 0 0
\(670\) 2.07015e12 0.396886
\(671\) −5.47769e11 −0.104315
\(672\) 0 0
\(673\) −3.46324e12 −0.650750 −0.325375 0.945585i \(-0.605491\pi\)
−0.325375 + 0.945585i \(0.605491\pi\)
\(674\) −1.46817e12 −0.274035
\(675\) 0 0
\(676\) −2.59889e12 −0.478661
\(677\) 3.52792e12 0.645461 0.322731 0.946491i \(-0.395399\pi\)
0.322731 + 0.946491i \(0.395399\pi\)
\(678\) 0 0
\(679\) 4.29473e12 0.775393
\(680\) 3.47081e11 0.0622501
\(681\) 0 0
\(682\) −2.45527e12 −0.434580
\(683\) 2.51223e11 0.0441739 0.0220869 0.999756i \(-0.492969\pi\)
0.0220869 + 0.999756i \(0.492969\pi\)
\(684\) 0 0
\(685\) −4.64263e12 −0.805668
\(686\) 4.01794e12 0.692700
\(687\) 0 0
\(688\) −9.70113e11 −0.165072
\(689\) 8.17126e11 0.138135
\(690\) 0 0
\(691\) −6.74721e11 −0.112583 −0.0562915 0.998414i \(-0.517928\pi\)
−0.0562915 + 0.998414i \(0.517928\pi\)
\(692\) −4.07071e12 −0.674828
\(693\) 0 0
\(694\) −4.50482e12 −0.737157
\(695\) −4.63707e12 −0.753897
\(696\) 0 0
\(697\) 1.08785e12 0.174591
\(698\) 6.47032e12 1.03175
\(699\) 0 0
\(700\) −1.49729e12 −0.235703
\(701\) 4.08357e12 0.638718 0.319359 0.947634i \(-0.396532\pi\)
0.319359 + 0.947634i \(0.396532\pi\)
\(702\) 0 0
\(703\) −2.04531e12 −0.315834
\(704\) 1.49720e12 0.229723
\(705\) 0 0
\(706\) 5.70594e12 0.864383
\(707\) 6.59840e12 0.993233
\(708\) 0 0
\(709\) −4.13746e12 −0.614930 −0.307465 0.951559i \(-0.599481\pi\)
−0.307465 + 0.951559i \(0.599481\pi\)
\(710\) 6.59140e11 0.0973454
\(711\) 0 0
\(712\) −2.63930e12 −0.384883
\(713\) 2.82066e12 0.408741
\(714\) 0 0
\(715\) −1.21037e12 −0.173197
\(716\) 5.25733e12 0.747579
\(717\) 0 0
\(718\) −7.88826e12 −1.10770
\(719\) 3.39080e12 0.473175 0.236588 0.971610i \(-0.423971\pi\)
0.236588 + 0.971610i \(0.423971\pi\)
\(720\) 0 0
\(721\) 6.65399e12 0.917009
\(722\) 4.01230e12 0.549511
\(723\) 0 0
\(724\) 3.86041e12 0.522167
\(725\) −1.54617e12 −0.207843
\(726\) 0 0
\(727\) 8.11665e12 1.07764 0.538818 0.842422i \(-0.318871\pi\)
0.538818 + 0.842422i \(0.318871\pi\)
\(728\) −3.29517e11 −0.0434797
\(729\) 0 0
\(730\) −4.12777e12 −0.537976
\(731\) −1.96746e12 −0.254845
\(732\) 0 0
\(733\) 2.21754e12 0.283729 0.141864 0.989886i \(-0.454690\pi\)
0.141864 + 0.989886i \(0.454690\pi\)
\(734\) −1.69608e12 −0.215682
\(735\) 0 0
\(736\) −1.72001e12 −0.216064
\(737\) 1.81107e13 2.26117
\(738\) 0 0
\(739\) −2.27864e11 −0.0281045 −0.0140522 0.999901i \(-0.504473\pi\)
−0.0140522 + 0.999901i \(0.504473\pi\)
\(740\) −1.24476e12 −0.152595
\(741\) 0 0
\(742\) −2.32396e12 −0.281457
\(743\) 1.15018e13 1.38457 0.692284 0.721625i \(-0.256604\pi\)
0.692284 + 0.721625i \(0.256604\pi\)
\(744\) 0 0
\(745\) 1.81990e12 0.216443
\(746\) −8.64509e12 −1.02199
\(747\) 0 0
\(748\) 3.03644e12 0.354656
\(749\) 2.67591e12 0.310673
\(750\) 0 0
\(751\) 1.42337e13 1.63282 0.816410 0.577472i \(-0.195961\pi\)
0.816410 + 0.577472i \(0.195961\pi\)
\(752\) −3.59956e12 −0.410458
\(753\) 0 0
\(754\) −3.40274e11 −0.0383405
\(755\) −1.29438e12 −0.144977
\(756\) 0 0
\(757\) −1.25855e13 −1.39296 −0.696482 0.717574i \(-0.745252\pi\)
−0.696482 + 0.717574i \(0.745252\pi\)
\(758\) 7.82974e12 0.861461
\(759\) 0 0
\(760\) −7.00308e11 −0.0761426
\(761\) −1.19352e13 −1.29003 −0.645015 0.764170i \(-0.723149\pi\)
−0.645015 + 0.764170i \(0.723149\pi\)
\(762\) 0 0
\(763\) −6.36756e11 −0.0680162
\(764\) −1.22465e12 −0.130045
\(765\) 0 0
\(766\) −4.73064e12 −0.496467
\(767\) 6.02716e11 0.0628831
\(768\) 0 0
\(769\) −4.81732e12 −0.496749 −0.248375 0.968664i \(-0.579896\pi\)
−0.248375 + 0.968664i \(0.579896\pi\)
\(770\) 3.44237e12 0.352898
\(771\) 0 0
\(772\) 4.96866e12 0.503456
\(773\) 2.50535e12 0.252383 0.126192 0.992006i \(-0.459725\pi\)
0.126192 + 0.992006i \(0.459725\pi\)
\(774\) 0 0
\(775\) −2.65959e12 −0.264824
\(776\) −4.65186e12 −0.460520
\(777\) 0 0
\(778\) −1.21139e13 −1.18543
\(779\) −2.19497e12 −0.213555
\(780\) 0 0
\(781\) 5.76649e12 0.554603
\(782\) −3.48831e12 −0.333568
\(783\) 0 0
\(784\) −1.70745e12 −0.161408
\(785\) −2.71376e12 −0.255069
\(786\) 0 0
\(787\) 1.17409e13 1.09097 0.545487 0.838120i \(-0.316345\pi\)
0.545487 + 0.838120i \(0.316345\pi\)
\(788\) 9.33235e11 0.0862230
\(789\) 0 0
\(790\) −6.63520e12 −0.606083
\(791\) 5.73556e12 0.520933
\(792\) 0 0
\(793\) −1.30582e11 −0.0117261
\(794\) −3.06820e12 −0.273962
\(795\) 0 0
\(796\) −1.57121e12 −0.138716
\(797\) 9.51802e12 0.835573 0.417786 0.908545i \(-0.362806\pi\)
0.417786 + 0.908545i \(0.362806\pi\)
\(798\) 0 0
\(799\) −7.30015e12 −0.633682
\(800\) 1.62180e12 0.139988
\(801\) 0 0
\(802\) −5.74853e11 −0.0490650
\(803\) −3.61118e13 −3.06499
\(804\) 0 0
\(805\) −3.95465e12 −0.331915
\(806\) −5.85311e11 −0.0488516
\(807\) 0 0
\(808\) −7.14710e12 −0.589900
\(809\) 1.01787e13 0.835457 0.417728 0.908572i \(-0.362826\pi\)
0.417728 + 0.908572i \(0.362826\pi\)
\(810\) 0 0
\(811\) 1.40364e13 1.13937 0.569683 0.821864i \(-0.307066\pi\)
0.569683 + 0.821864i \(0.307066\pi\)
\(812\) 9.67763e11 0.0781208
\(813\) 0 0
\(814\) −1.08897e13 −0.869377
\(815\) 2.65814e12 0.211042
\(816\) 0 0
\(817\) 3.96976e12 0.311720
\(818\) −8.90660e12 −0.695540
\(819\) 0 0
\(820\) −1.33584e12 −0.103179
\(821\) −8.80683e12 −0.676512 −0.338256 0.941054i \(-0.609837\pi\)
−0.338256 + 0.941054i \(0.609837\pi\)
\(822\) 0 0
\(823\) 2.92677e12 0.222377 0.111188 0.993799i \(-0.464534\pi\)
0.111188 + 0.993799i \(0.464534\pi\)
\(824\) −7.20731e12 −0.544629
\(825\) 0 0
\(826\) −1.71417e12 −0.128128
\(827\) −7.82793e12 −0.581932 −0.290966 0.956733i \(-0.593977\pi\)
−0.290966 + 0.956733i \(0.593977\pi\)
\(828\) 0 0
\(829\) −1.26014e13 −0.926669 −0.463334 0.886183i \(-0.653347\pi\)
−0.463334 + 0.886183i \(0.653347\pi\)
\(830\) −1.38058e12 −0.100974
\(831\) 0 0
\(832\) 3.56918e11 0.0258234
\(833\) −3.46282e12 −0.249188
\(834\) 0 0
\(835\) −6.82320e12 −0.485735
\(836\) −6.12665e12 −0.433805
\(837\) 0 0
\(838\) −7.20079e12 −0.504408
\(839\) 3.58798e12 0.249989 0.124995 0.992157i \(-0.460109\pi\)
0.124995 + 0.992157i \(0.460109\pi\)
\(840\) 0 0
\(841\) −1.35078e13 −0.931113
\(842\) 1.02783e13 0.704720
\(843\) 0 0
\(844\) −4.03416e12 −0.273660
\(845\) 6.47225e12 0.436717
\(846\) 0 0
\(847\) 2.11989e13 1.41527
\(848\) 2.51722e12 0.167163
\(849\) 0 0
\(850\) 3.28912e12 0.216120
\(851\) 1.25103e13 0.817685
\(852\) 0 0
\(853\) 1.74992e13 1.13174 0.565872 0.824493i \(-0.308539\pi\)
0.565872 + 0.824493i \(0.308539\pi\)
\(854\) 3.71385e11 0.0238927
\(855\) 0 0
\(856\) −2.89843e12 −0.184515
\(857\) 2.49952e11 0.0158286 0.00791431 0.999969i \(-0.497481\pi\)
0.00791431 + 0.999969i \(0.497481\pi\)
\(858\) 0 0
\(859\) −2.48864e13 −1.55953 −0.779764 0.626074i \(-0.784661\pi\)
−0.779764 + 0.626074i \(0.784661\pi\)
\(860\) 2.41596e12 0.150607
\(861\) 0 0
\(862\) 1.40085e13 0.864188
\(863\) −2.38153e13 −1.46153 −0.730764 0.682630i \(-0.760836\pi\)
−0.730764 + 0.682630i \(0.760836\pi\)
\(864\) 0 0
\(865\) 1.01377e13 0.615695
\(866\) 1.80979e13 1.09345
\(867\) 0 0
\(868\) 1.66467e12 0.0995379
\(869\) −5.80481e13 −3.45302
\(870\) 0 0
\(871\) 4.31741e12 0.254180
\(872\) 6.89706e11 0.0403961
\(873\) 0 0
\(874\) 7.03840e12 0.408011
\(875\) 8.43759e12 0.486611
\(876\) 0 0
\(877\) −9.77854e12 −0.558182 −0.279091 0.960265i \(-0.590033\pi\)
−0.279091 + 0.960265i \(0.590033\pi\)
\(878\) 7.40026e12 0.420264
\(879\) 0 0
\(880\) −3.72862e12 −0.209593
\(881\) −1.16336e13 −0.650615 −0.325307 0.945608i \(-0.605468\pi\)
−0.325307 + 0.945608i \(0.605468\pi\)
\(882\) 0 0
\(883\) 2.99837e13 1.65982 0.829912 0.557895i \(-0.188391\pi\)
0.829912 + 0.557895i \(0.188391\pi\)
\(884\) 7.23855e11 0.0398673
\(885\) 0 0
\(886\) −2.25462e12 −0.122920
\(887\) 1.01486e13 0.550488 0.275244 0.961374i \(-0.411241\pi\)
0.275244 + 0.961374i \(0.411241\pi\)
\(888\) 0 0
\(889\) −1.61301e13 −0.866121
\(890\) 6.57289e12 0.351157
\(891\) 0 0
\(892\) 1.07861e13 0.570459
\(893\) 1.47296e13 0.775102
\(894\) 0 0
\(895\) −1.30928e13 −0.682071
\(896\) −1.01510e12 −0.0526166
\(897\) 0 0
\(898\) 2.10641e13 1.08094
\(899\) 1.71901e12 0.0877728
\(900\) 0 0
\(901\) 5.10509e12 0.258073
\(902\) −1.16866e13 −0.587840
\(903\) 0 0
\(904\) −6.21251e12 −0.309392
\(905\) −9.61392e12 −0.476411
\(906\) 0 0
\(907\) 3.02546e13 1.48443 0.742213 0.670164i \(-0.233776\pi\)
0.742213 + 0.670164i \(0.233776\pi\)
\(908\) −1.73211e13 −0.845647
\(909\) 0 0
\(910\) 8.20625e11 0.0396697
\(911\) −3.44509e13 −1.65717 −0.828587 0.559860i \(-0.810855\pi\)
−0.828587 + 0.559860i \(0.810855\pi\)
\(912\) 0 0
\(913\) −1.20780e13 −0.575277
\(914\) −1.60460e13 −0.760515
\(915\) 0 0
\(916\) −1.76336e13 −0.827583
\(917\) −4.42466e11 −0.0206641
\(918\) 0 0
\(919\) −1.95520e12 −0.0904216 −0.0452108 0.998977i \(-0.514396\pi\)
−0.0452108 + 0.998977i \(0.514396\pi\)
\(920\) 4.28351e12 0.197131
\(921\) 0 0
\(922\) −1.95552e13 −0.891196
\(923\) 1.37467e12 0.0623435
\(924\) 0 0
\(925\) −1.17960e13 −0.529780
\(926\) 3.76862e12 0.168435
\(927\) 0 0
\(928\) −1.04824e12 −0.0463975
\(929\) 7.83914e12 0.345301 0.172651 0.984983i \(-0.444767\pi\)
0.172651 + 0.984983i \(0.444767\pi\)
\(930\) 0 0
\(931\) 6.98696e12 0.304800
\(932\) 5.72008e11 0.0248331
\(933\) 0 0
\(934\) 1.00151e13 0.430619
\(935\) −7.56191e12 −0.323578
\(936\) 0 0
\(937\) −1.69235e13 −0.717236 −0.358618 0.933484i \(-0.616752\pi\)
−0.358618 + 0.933484i \(0.616752\pi\)
\(938\) −1.22790e13 −0.517906
\(939\) 0 0
\(940\) 8.96430e12 0.374491
\(941\) −2.11604e13 −0.879775 −0.439887 0.898053i \(-0.644982\pi\)
−0.439887 + 0.898053i \(0.644982\pi\)
\(942\) 0 0
\(943\) 1.34258e13 0.552888
\(944\) 1.85671e12 0.0760975
\(945\) 0 0
\(946\) 2.11360e13 0.858051
\(947\) 1.81201e13 0.732125 0.366063 0.930590i \(-0.380706\pi\)
0.366063 + 0.930590i \(0.380706\pi\)
\(948\) 0 0
\(949\) −8.60869e12 −0.344539
\(950\) −6.63649e12 −0.264352
\(951\) 0 0
\(952\) −2.05869e12 −0.0812317
\(953\) 2.04420e13 0.802798 0.401399 0.915903i \(-0.368524\pi\)
0.401399 + 0.915903i \(0.368524\pi\)
\(954\) 0 0
\(955\) 3.04987e12 0.118649
\(956\) −2.35936e13 −0.913552
\(957\) 0 0
\(958\) 8.47623e12 0.325131
\(959\) 2.75375e13 1.05134
\(960\) 0 0
\(961\) −2.34827e13 −0.888164
\(962\) −2.59600e12 −0.0977276
\(963\) 0 0
\(964\) 2.01254e13 0.750582
\(965\) −1.23739e13 −0.459339
\(966\) 0 0
\(967\) 3.07852e13 1.13220 0.566099 0.824337i \(-0.308452\pi\)
0.566099 + 0.824337i \(0.308452\pi\)
\(968\) −2.29617e13 −0.840554
\(969\) 0 0
\(970\) 1.15849e13 0.420166
\(971\) −4.17249e13 −1.50629 −0.753145 0.657854i \(-0.771464\pi\)
−0.753145 + 0.657854i \(0.771464\pi\)
\(972\) 0 0
\(973\) 2.75046e13 0.983778
\(974\) 8.91868e11 0.0317530
\(975\) 0 0
\(976\) −4.02268e11 −0.0141903
\(977\) −3.41065e13 −1.19760 −0.598799 0.800899i \(-0.704355\pi\)
−0.598799 + 0.800899i \(0.704355\pi\)
\(978\) 0 0
\(979\) 5.75029e13 2.00064
\(980\) 4.25221e12 0.147264
\(981\) 0 0
\(982\) −5.97737e12 −0.205120
\(983\) 4.91805e13 1.67997 0.839987 0.542607i \(-0.182563\pi\)
0.839987 + 0.542607i \(0.182563\pi\)
\(984\) 0 0
\(985\) −2.32412e12 −0.0786675
\(986\) −2.12590e12 −0.0716303
\(987\) 0 0
\(988\) −1.46053e12 −0.0487645
\(989\) −2.42814e13 −0.807033
\(990\) 0 0
\(991\) 5.97858e12 0.196909 0.0984547 0.995142i \(-0.468610\pi\)
0.0984547 + 0.995142i \(0.468610\pi\)
\(992\) −1.80309e12 −0.0591175
\(993\) 0 0
\(994\) −3.90966e12 −0.127028
\(995\) 3.91293e12 0.126561
\(996\) 0 0
\(997\) −2.84771e13 −0.912784 −0.456392 0.889779i \(-0.650859\pi\)
−0.456392 + 0.889779i \(0.650859\pi\)
\(998\) 5.51262e12 0.175902
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.10.a.f.1.2 4
3.2 odd 2 162.10.a.g.1.3 yes 4
9.2 odd 6 162.10.c.s.109.2 8
9.4 even 3 162.10.c.t.55.3 8
9.5 odd 6 162.10.c.s.55.2 8
9.7 even 3 162.10.c.t.109.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.10.a.f.1.2 4 1.1 even 1 trivial
162.10.a.g.1.3 yes 4 3.2 odd 2
162.10.c.s.55.2 8 9.5 odd 6
162.10.c.s.109.2 8 9.2 odd 6
162.10.c.t.55.3 8 9.4 even 3
162.10.c.t.109.3 8 9.7 even 3