Properties

Label 162.10.a.b
Level $162$
Weight $10$
Character orbit 162.a
Self dual yes
Analytic conductor $83.436$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,10,Mod(1,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,32,0,512,204] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(83.4358054585\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{126561}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 31640 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 3\sqrt{126561}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 16 q^{2} + 256 q^{4} + ( - \beta + 102) q^{5} + ( - 7 \beta - 1225) q^{7} + 4096 q^{8} + ( - 16 \beta + 1632) q^{10} + ( - \beta + 15453) q^{11} + (67 \beta + 57884) q^{13} + ( - 112 \beta - 19600) q^{14}+ \cdots + (274400 \beta + 271366704) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 32 q^{2} + 512 q^{4} + 204 q^{5} - 2450 q^{7} + 8192 q^{8} + 3264 q^{10} + 30906 q^{11} + 115768 q^{13} - 39200 q^{14} + 131072 q^{16} - 189822 q^{17} - 37538 q^{19} + 52224 q^{20} + 494496 q^{22}+ \cdots + 542733408 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
178.377
−177.377
16.0000 0 256.000 −965.262 0 −8695.84 4096.00 0 −15444.2
1.2 16.0000 0 256.000 1169.26 0 6245.84 4096.00 0 18708.2
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.10.a.b yes 2
3.b odd 2 1 162.10.a.a 2
9.c even 3 2 162.10.c.m 4
9.d odd 6 2 162.10.c.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
162.10.a.a 2 3.b odd 2 1
162.10.a.b yes 2 1.a even 1 1 trivial
162.10.c.m 4 9.c even 3 2
162.10.c.n 4 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 204T_{5} - 1128645 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(162))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 204 T - 1128645 \) Copy content Toggle raw display
$7$ \( T^{2} + 2450 T - 54312776 \) Copy content Toggle raw display
$11$ \( T^{2} - 30906 T + 237656160 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 1762633505 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 54432375183 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 315994664360 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 1301694084000 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 27176358110625 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 7523766944464 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 257459058613529 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 38971883616804 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 77075435871760 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 60175187935488 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 13\!\cdots\!92 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 48\!\cdots\!20 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 16\!\cdots\!15 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 21\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 42\!\cdots\!08 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 64\!\cdots\!23 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 35\!\cdots\!68 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 92\!\cdots\!52 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 24\!\cdots\!33 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 22\!\cdots\!72 \) Copy content Toggle raw display
show more
show less