Properties

Label 160.8.d.a.81.12
Level $160$
Weight $8$
Character 160.81
Analytic conductor $49.982$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [160,8,Mod(81,160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("160.81"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 160.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(49.9816040775\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 81.12
Character \(\chi\) \(=\) 160.81
Dual form 160.8.d.a.81.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-15.3942i q^{3} +125.000i q^{5} +206.895 q^{7} +1950.02 q^{9} -5226.99i q^{11} +180.982i q^{13} +1924.27 q^{15} -34858.6 q^{17} +20572.1i q^{19} -3184.98i q^{21} +89873.4 q^{23} -15625.0 q^{25} -63685.9i q^{27} +82757.7i q^{29} +158725. q^{31} -80465.1 q^{33} +25861.9i q^{35} -125771. i q^{37} +2786.06 q^{39} +382738. q^{41} -855458. i q^{43} +243752. i q^{45} +320160. q^{47} -780737. q^{49} +536619. i q^{51} +63020.0i q^{53} +653374. q^{55} +316691. q^{57} -2.07791e6i q^{59} -2.88950e6i q^{61} +403450. q^{63} -22622.7 q^{65} -2.31917e6i q^{67} -1.38352e6i q^{69} +35994.8 q^{71} +590314. q^{73} +240534. i q^{75} -1.08144e6i q^{77} +3.43960e6 q^{79} +3.28430e6 q^{81} +517777. i q^{83} -4.35733e6i q^{85} +1.27398e6 q^{87} +1.01219e7 q^{89} +37444.2i q^{91} -2.44344e6i q^{93} -2.57152e6 q^{95} +6.76059e6 q^{97} -1.01927e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 1372 q^{7} - 20412 q^{9} + 13500 q^{15} - 2588 q^{23} - 437500 q^{25} - 268024 q^{31} - 99016 q^{33} + 283944 q^{39} - 601208 q^{41} + 2076460 q^{47} + 4316268 q^{49} - 1331000 q^{55} + 3788536 q^{57}+ \cdots + 15198608 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 15.3942i − 0.329179i −0.986362 0.164589i \(-0.947370\pi\)
0.986362 0.164589i \(-0.0526299\pi\)
\(4\) 0 0
\(5\) 125.000i 0.447214i
\(6\) 0 0
\(7\) 206.895 0.227986 0.113993 0.993482i \(-0.463636\pi\)
0.113993 + 0.993482i \(0.463636\pi\)
\(8\) 0 0
\(9\) 1950.02 0.891642
\(10\) 0 0
\(11\) − 5226.99i − 1.18407i −0.805912 0.592035i \(-0.798325\pi\)
0.805912 0.592035i \(-0.201675\pi\)
\(12\) 0 0
\(13\) 180.982i 0.0228472i 0.999935 + 0.0114236i \(0.00363632\pi\)
−0.999935 + 0.0114236i \(0.996364\pi\)
\(14\) 0 0
\(15\) 1924.27 0.147213
\(16\) 0 0
\(17\) −34858.6 −1.72083 −0.860417 0.509591i \(-0.829797\pi\)
−0.860417 + 0.509591i \(0.829797\pi\)
\(18\) 0 0
\(19\) 20572.1i 0.688084i 0.938954 + 0.344042i \(0.111796\pi\)
−0.938954 + 0.344042i \(0.888204\pi\)
\(20\) 0 0
\(21\) − 3184.98i − 0.0750479i
\(22\) 0 0
\(23\) 89873.4 1.54022 0.770112 0.637909i \(-0.220200\pi\)
0.770112 + 0.637909i \(0.220200\pi\)
\(24\) 0 0
\(25\) −15625.0 −0.200000
\(26\) 0 0
\(27\) − 63685.9i − 0.622688i
\(28\) 0 0
\(29\) 82757.7i 0.630108i 0.949074 + 0.315054i \(0.102023\pi\)
−0.949074 + 0.315054i \(0.897977\pi\)
\(30\) 0 0
\(31\) 158725. 0.956929 0.478464 0.878107i \(-0.341194\pi\)
0.478464 + 0.878107i \(0.341194\pi\)
\(32\) 0 0
\(33\) −80465.1 −0.389770
\(34\) 0 0
\(35\) 25861.9i 0.101958i
\(36\) 0 0
\(37\) − 125771.i − 0.408202i −0.978950 0.204101i \(-0.934573\pi\)
0.978950 0.204101i \(-0.0654271\pi\)
\(38\) 0 0
\(39\) 2786.06 0.00752081
\(40\) 0 0
\(41\) 382738. 0.867277 0.433638 0.901087i \(-0.357230\pi\)
0.433638 + 0.901087i \(0.357230\pi\)
\(42\) 0 0
\(43\) − 855458.i − 1.64081i −0.571781 0.820406i \(-0.693747\pi\)
0.571781 0.820406i \(-0.306253\pi\)
\(44\) 0 0
\(45\) 243752.i 0.398754i
\(46\) 0 0
\(47\) 320160. 0.449806 0.224903 0.974381i \(-0.427793\pi\)
0.224903 + 0.974381i \(0.427793\pi\)
\(48\) 0 0
\(49\) −780737. −0.948023
\(50\) 0 0
\(51\) 536619.i 0.566462i
\(52\) 0 0
\(53\) 63020.0i 0.0581451i 0.999577 + 0.0290725i \(0.00925538\pi\)
−0.999577 + 0.0290725i \(0.990745\pi\)
\(54\) 0 0
\(55\) 653374. 0.529532
\(56\) 0 0
\(57\) 316691. 0.226503
\(58\) 0 0
\(59\) − 2.07791e6i − 1.31718i −0.752504 0.658588i \(-0.771154\pi\)
0.752504 0.658588i \(-0.228846\pi\)
\(60\) 0 0
\(61\) − 2.88950e6i − 1.62993i −0.579513 0.814963i \(-0.696757\pi\)
0.579513 0.814963i \(-0.303243\pi\)
\(62\) 0 0
\(63\) 403450. 0.203281
\(64\) 0 0
\(65\) −22622.7 −0.0102176
\(66\) 0 0
\(67\) − 2.31917e6i − 0.942041i −0.882122 0.471021i \(-0.843886\pi\)
0.882122 0.471021i \(-0.156114\pi\)
\(68\) 0 0
\(69\) − 1.38352e6i − 0.507008i
\(70\) 0 0
\(71\) 35994.8 0.0119354 0.00596768 0.999982i \(-0.498100\pi\)
0.00596768 + 0.999982i \(0.498100\pi\)
\(72\) 0 0
\(73\) 590314. 0.177604 0.0888020 0.996049i \(-0.471696\pi\)
0.0888020 + 0.996049i \(0.471696\pi\)
\(74\) 0 0
\(75\) 240534.i 0.0658357i
\(76\) 0 0
\(77\) − 1.08144e6i − 0.269951i
\(78\) 0 0
\(79\) 3.43960e6 0.784898 0.392449 0.919774i \(-0.371628\pi\)
0.392449 + 0.919774i \(0.371628\pi\)
\(80\) 0 0
\(81\) 3.28430e6 0.686666
\(82\) 0 0
\(83\) 517777.i 0.0993961i 0.998764 + 0.0496981i \(0.0158259\pi\)
−0.998764 + 0.0496981i \(0.984174\pi\)
\(84\) 0 0
\(85\) − 4.35733e6i − 0.769580i
\(86\) 0 0
\(87\) 1.27398e6 0.207418
\(88\) 0 0
\(89\) 1.01219e7 1.52193 0.760966 0.648792i \(-0.224725\pi\)
0.760966 + 0.648792i \(0.224725\pi\)
\(90\) 0 0
\(91\) 37444.2i 0.00520883i
\(92\) 0 0
\(93\) − 2.44344e6i − 0.315000i
\(94\) 0 0
\(95\) −2.57152e6 −0.307721
\(96\) 0 0
\(97\) 6.76059e6 0.752113 0.376057 0.926597i \(-0.377280\pi\)
0.376057 + 0.926597i \(0.377280\pi\)
\(98\) 0 0
\(99\) − 1.01927e7i − 1.05577i
\(100\) 0 0
\(101\) − 1.47774e7i − 1.42716i −0.700573 0.713581i \(-0.747072\pi\)
0.700573 0.713581i \(-0.252928\pi\)
\(102\) 0 0
\(103\) −6.70183e6 −0.604315 −0.302157 0.953258i \(-0.597707\pi\)
−0.302157 + 0.953258i \(0.597707\pi\)
\(104\) 0 0
\(105\) 398122. 0.0335625
\(106\) 0 0
\(107\) − 7.61603e6i − 0.601015i −0.953779 0.300508i \(-0.902844\pi\)
0.953779 0.300508i \(-0.0971561\pi\)
\(108\) 0 0
\(109\) 6.38375e6i 0.472153i 0.971734 + 0.236077i \(0.0758616\pi\)
−0.971734 + 0.236077i \(0.924138\pi\)
\(110\) 0 0
\(111\) −1.93614e6 −0.134371
\(112\) 0 0
\(113\) 1.34939e7 0.879760 0.439880 0.898056i \(-0.355021\pi\)
0.439880 + 0.898056i \(0.355021\pi\)
\(114\) 0 0
\(115\) 1.12342e7i 0.688809i
\(116\) 0 0
\(117\) 352918.i 0.0203715i
\(118\) 0 0
\(119\) −7.21208e6 −0.392325
\(120\) 0 0
\(121\) −7.83426e6 −0.402021
\(122\) 0 0
\(123\) − 5.89192e6i − 0.285489i
\(124\) 0 0
\(125\) − 1.95312e6i − 0.0894427i
\(126\) 0 0
\(127\) 3.13882e7 1.35973 0.679866 0.733336i \(-0.262038\pi\)
0.679866 + 0.733336i \(0.262038\pi\)
\(128\) 0 0
\(129\) −1.31690e7 −0.540120
\(130\) 0 0
\(131\) − 5.71983e6i − 0.222297i −0.993804 0.111149i \(-0.964547\pi\)
0.993804 0.111149i \(-0.0354529\pi\)
\(132\) 0 0
\(133\) 4.25628e6i 0.156873i
\(134\) 0 0
\(135\) 7.96074e6 0.278474
\(136\) 0 0
\(137\) −4.18692e7 −1.39115 −0.695573 0.718456i \(-0.744849\pi\)
−0.695573 + 0.718456i \(0.744849\pi\)
\(138\) 0 0
\(139\) − 5.36605e6i − 0.169474i −0.996403 0.0847370i \(-0.972995\pi\)
0.996403 0.0847370i \(-0.0270050\pi\)
\(140\) 0 0
\(141\) − 4.92860e6i − 0.148066i
\(142\) 0 0
\(143\) 945990. 0.0270527
\(144\) 0 0
\(145\) −1.03447e7 −0.281793
\(146\) 0 0
\(147\) 1.20188e7i 0.312069i
\(148\) 0 0
\(149\) 7.03967e7i 1.74341i 0.490027 + 0.871707i \(0.336987\pi\)
−0.490027 + 0.871707i \(0.663013\pi\)
\(150\) 0 0
\(151\) 3.90363e7 0.922675 0.461338 0.887225i \(-0.347370\pi\)
0.461338 + 0.887225i \(0.347370\pi\)
\(152\) 0 0
\(153\) −6.79750e7 −1.53437
\(154\) 0 0
\(155\) 1.98406e7i 0.427952i
\(156\) 0 0
\(157\) − 2.60014e7i − 0.536227i −0.963387 0.268113i \(-0.913600\pi\)
0.963387 0.268113i \(-0.0864002\pi\)
\(158\) 0 0
\(159\) 970140. 0.0191401
\(160\) 0 0
\(161\) 1.85944e7 0.351149
\(162\) 0 0
\(163\) − 8.25776e6i − 0.149350i −0.997208 0.0746751i \(-0.976208\pi\)
0.997208 0.0746751i \(-0.0237920\pi\)
\(164\) 0 0
\(165\) − 1.00581e7i − 0.174311i
\(166\) 0 0
\(167\) −7.79727e7 −1.29549 −0.647746 0.761856i \(-0.724288\pi\)
−0.647746 + 0.761856i \(0.724288\pi\)
\(168\) 0 0
\(169\) 6.27158e7 0.999478
\(170\) 0 0
\(171\) 4.01161e7i 0.613525i
\(172\) 0 0
\(173\) 1.20250e8i 1.76572i 0.469636 + 0.882860i \(0.344385\pi\)
−0.469636 + 0.882860i \(0.655615\pi\)
\(174\) 0 0
\(175\) −3.23274e6 −0.0455971
\(176\) 0 0
\(177\) −3.19876e7 −0.433586
\(178\) 0 0
\(179\) − 1.01450e7i − 0.132210i −0.997813 0.0661052i \(-0.978943\pi\)
0.997813 0.0661052i \(-0.0210573\pi\)
\(180\) 0 0
\(181\) 8.28437e7i 1.03845i 0.854638 + 0.519224i \(0.173779\pi\)
−0.854638 + 0.519224i \(0.826221\pi\)
\(182\) 0 0
\(183\) −4.44814e7 −0.536537
\(184\) 0 0
\(185\) 1.57214e7 0.182553
\(186\) 0 0
\(187\) 1.82206e8i 2.03759i
\(188\) 0 0
\(189\) − 1.31763e7i − 0.141964i
\(190\) 0 0
\(191\) −1.47539e8 −1.53211 −0.766055 0.642774i \(-0.777783\pi\)
−0.766055 + 0.642774i \(0.777783\pi\)
\(192\) 0 0
\(193\) −4.97985e6 −0.0498615 −0.0249307 0.999689i \(-0.507937\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(194\) 0 0
\(195\) 348258.i 0.00336341i
\(196\) 0 0
\(197\) − 1.72498e8i − 1.60751i −0.594961 0.803755i \(-0.702832\pi\)
0.594961 0.803755i \(-0.297168\pi\)
\(198\) 0 0
\(199\) −8.94277e7 −0.804427 −0.402213 0.915546i \(-0.631759\pi\)
−0.402213 + 0.915546i \(0.631759\pi\)
\(200\) 0 0
\(201\) −3.57016e7 −0.310100
\(202\) 0 0
\(203\) 1.71222e7i 0.143656i
\(204\) 0 0
\(205\) 4.78422e7i 0.387858i
\(206\) 0 0
\(207\) 1.75255e8 1.37333
\(208\) 0 0
\(209\) 1.07530e8 0.814740
\(210\) 0 0
\(211\) − 8.01536e7i − 0.587401i −0.955898 0.293700i \(-0.905113\pi\)
0.955898 0.293700i \(-0.0948868\pi\)
\(212\) 0 0
\(213\) − 554110.i − 0.00392886i
\(214\) 0 0
\(215\) 1.06932e8 0.733794
\(216\) 0 0
\(217\) 3.28395e7 0.218166
\(218\) 0 0
\(219\) − 9.08738e6i − 0.0584634i
\(220\) 0 0
\(221\) − 6.30877e6i − 0.0393162i
\(222\) 0 0
\(223\) −2.67224e8 −1.61365 −0.806824 0.590791i \(-0.798816\pi\)
−0.806824 + 0.590791i \(0.798816\pi\)
\(224\) 0 0
\(225\) −3.04691e7 −0.178328
\(226\) 0 0
\(227\) 2.95568e8i 1.67713i 0.544799 + 0.838567i \(0.316606\pi\)
−0.544799 + 0.838567i \(0.683394\pi\)
\(228\) 0 0
\(229\) 2.49496e8i 1.37290i 0.727177 + 0.686450i \(0.240832\pi\)
−0.727177 + 0.686450i \(0.759168\pi\)
\(230\) 0 0
\(231\) −1.66478e7 −0.0888620
\(232\) 0 0
\(233\) 4.03293e7 0.208870 0.104435 0.994532i \(-0.466697\pi\)
0.104435 + 0.994532i \(0.466697\pi\)
\(234\) 0 0
\(235\) 4.00201e7i 0.201159i
\(236\) 0 0
\(237\) − 5.29498e7i − 0.258372i
\(238\) 0 0
\(239\) 1.88275e8 0.892072 0.446036 0.895015i \(-0.352835\pi\)
0.446036 + 0.895015i \(0.352835\pi\)
\(240\) 0 0
\(241\) −8.07295e7 −0.371512 −0.185756 0.982596i \(-0.559473\pi\)
−0.185756 + 0.982596i \(0.559473\pi\)
\(242\) 0 0
\(243\) − 1.89840e8i − 0.848723i
\(244\) 0 0
\(245\) − 9.75922e7i − 0.423969i
\(246\) 0 0
\(247\) −3.72318e6 −0.0157208
\(248\) 0 0
\(249\) 7.97074e6 0.0327191
\(250\) 0 0
\(251\) − 4.09776e8i − 1.63564i −0.575472 0.817821i \(-0.695182\pi\)
0.575472 0.817821i \(-0.304818\pi\)
\(252\) 0 0
\(253\) − 4.69767e8i − 1.82373i
\(254\) 0 0
\(255\) −6.70774e7 −0.253329
\(256\) 0 0
\(257\) −1.56457e8 −0.574950 −0.287475 0.957788i \(-0.592816\pi\)
−0.287475 + 0.957788i \(0.592816\pi\)
\(258\) 0 0
\(259\) − 2.60214e7i − 0.0930641i
\(260\) 0 0
\(261\) 1.61379e8i 0.561831i
\(262\) 0 0
\(263\) 1.72821e8 0.585801 0.292901 0.956143i \(-0.405379\pi\)
0.292901 + 0.956143i \(0.405379\pi\)
\(264\) 0 0
\(265\) −7.87750e6 −0.0260033
\(266\) 0 0
\(267\) − 1.55817e8i − 0.500987i
\(268\) 0 0
\(269\) 2.07890e8i 0.651179i 0.945511 + 0.325589i \(0.105563\pi\)
−0.945511 + 0.325589i \(0.894437\pi\)
\(270\) 0 0
\(271\) 1.26178e8 0.385115 0.192558 0.981286i \(-0.438322\pi\)
0.192558 + 0.981286i \(0.438322\pi\)
\(272\) 0 0
\(273\) 576423. 0.00171463
\(274\) 0 0
\(275\) 8.16717e7i 0.236814i
\(276\) 0 0
\(277\) − 6.18270e8i − 1.74783i −0.486079 0.873915i \(-0.661573\pi\)
0.486079 0.873915i \(-0.338427\pi\)
\(278\) 0 0
\(279\) 3.09517e8 0.853238
\(280\) 0 0
\(281\) −1.01028e8 −0.271625 −0.135812 0.990735i \(-0.543364\pi\)
−0.135812 + 0.990735i \(0.543364\pi\)
\(282\) 0 0
\(283\) − 2.99096e8i − 0.784437i −0.919872 0.392218i \(-0.871708\pi\)
0.919872 0.392218i \(-0.128292\pi\)
\(284\) 0 0
\(285\) 3.95863e7i 0.101295i
\(286\) 0 0
\(287\) 7.91866e7 0.197727
\(288\) 0 0
\(289\) 8.04785e8 1.96127
\(290\) 0 0
\(291\) − 1.04074e8i − 0.247580i
\(292\) 0 0
\(293\) 3.84747e7i 0.0893590i 0.999001 + 0.0446795i \(0.0142267\pi\)
−0.999001 + 0.0446795i \(0.985773\pi\)
\(294\) 0 0
\(295\) 2.59738e8 0.589059
\(296\) 0 0
\(297\) −3.32886e8 −0.737306
\(298\) 0 0
\(299\) 1.62654e7i 0.0351898i
\(300\) 0 0
\(301\) − 1.76990e8i − 0.374082i
\(302\) 0 0
\(303\) −2.27486e8 −0.469791
\(304\) 0 0
\(305\) 3.61187e8 0.728925
\(306\) 0 0
\(307\) − 5.27312e8i − 1.04012i −0.854130 0.520060i \(-0.825910\pi\)
0.854130 0.520060i \(-0.174090\pi\)
\(308\) 0 0
\(309\) 1.03169e8i 0.198927i
\(310\) 0 0
\(311\) −1.06674e8 −0.201093 −0.100546 0.994932i \(-0.532059\pi\)
−0.100546 + 0.994932i \(0.532059\pi\)
\(312\) 0 0
\(313\) −2.65874e8 −0.490085 −0.245042 0.969512i \(-0.578802\pi\)
−0.245042 + 0.969512i \(0.578802\pi\)
\(314\) 0 0
\(315\) 5.04312e7i 0.0909102i
\(316\) 0 0
\(317\) 6.09184e8i 1.07409i 0.843553 + 0.537046i \(0.180460\pi\)
−0.843553 + 0.537046i \(0.819540\pi\)
\(318\) 0 0
\(319\) 4.32574e8 0.746092
\(320\) 0 0
\(321\) −1.17242e8 −0.197841
\(322\) 0 0
\(323\) − 7.17116e8i − 1.18408i
\(324\) 0 0
\(325\) − 2.82784e6i − 0.00456944i
\(326\) 0 0
\(327\) 9.82724e7 0.155423
\(328\) 0 0
\(329\) 6.62397e7 0.102549
\(330\) 0 0
\(331\) 9.96510e8i 1.51037i 0.655511 + 0.755186i \(0.272453\pi\)
−0.655511 + 0.755186i \(0.727547\pi\)
\(332\) 0 0
\(333\) − 2.45256e8i − 0.363970i
\(334\) 0 0
\(335\) 2.89896e8 0.421294
\(336\) 0 0
\(337\) 5.29532e8 0.753681 0.376840 0.926278i \(-0.377011\pi\)
0.376840 + 0.926278i \(0.377011\pi\)
\(338\) 0 0
\(339\) − 2.07728e8i − 0.289598i
\(340\) 0 0
\(341\) − 8.29655e8i − 1.13307i
\(342\) 0 0
\(343\) −3.31918e8 −0.444121
\(344\) 0 0
\(345\) 1.72941e8 0.226741
\(346\) 0 0
\(347\) 5.37311e8i 0.690356i 0.938537 + 0.345178i \(0.112181\pi\)
−0.938537 + 0.345178i \(0.887819\pi\)
\(348\) 0 0
\(349\) − 5.21999e8i − 0.657325i −0.944447 0.328663i \(-0.893402\pi\)
0.944447 0.328663i \(-0.106598\pi\)
\(350\) 0 0
\(351\) 1.15260e7 0.0142267
\(352\) 0 0
\(353\) −1.43718e9 −1.73900 −0.869501 0.493932i \(-0.835559\pi\)
−0.869501 + 0.493932i \(0.835559\pi\)
\(354\) 0 0
\(355\) 4.49935e6i 0.00533766i
\(356\) 0 0
\(357\) 1.11024e8i 0.129145i
\(358\) 0 0
\(359\) 9.26349e8 1.05668 0.528341 0.849032i \(-0.322814\pi\)
0.528341 + 0.849032i \(0.322814\pi\)
\(360\) 0 0
\(361\) 4.70659e8 0.526540
\(362\) 0 0
\(363\) 1.20602e8i 0.132337i
\(364\) 0 0
\(365\) 7.37892e7i 0.0794269i
\(366\) 0 0
\(367\) −1.07900e9 −1.13943 −0.569717 0.821841i \(-0.692947\pi\)
−0.569717 + 0.821841i \(0.692947\pi\)
\(368\) 0 0
\(369\) 7.46346e8 0.773300
\(370\) 0 0
\(371\) 1.30385e7i 0.0132562i
\(372\) 0 0
\(373\) − 3.73680e8i − 0.372837i −0.982470 0.186419i \(-0.940312\pi\)
0.982470 0.186419i \(-0.0596881\pi\)
\(374\) 0 0
\(375\) −3.00667e7 −0.0294426
\(376\) 0 0
\(377\) −1.49776e7 −0.0143962
\(378\) 0 0
\(379\) 1.90537e9i 1.79780i 0.438156 + 0.898899i \(0.355632\pi\)
−0.438156 + 0.898899i \(0.644368\pi\)
\(380\) 0 0
\(381\) − 4.83195e8i − 0.447595i
\(382\) 0 0
\(383\) −1.51577e9 −1.37860 −0.689298 0.724478i \(-0.742081\pi\)
−0.689298 + 0.724478i \(0.742081\pi\)
\(384\) 0 0
\(385\) 1.35180e8 0.120726
\(386\) 0 0
\(387\) − 1.66816e9i − 1.46302i
\(388\) 0 0
\(389\) 2.14501e9i 1.84759i 0.382887 + 0.923795i \(0.374930\pi\)
−0.382887 + 0.923795i \(0.625070\pi\)
\(390\) 0 0
\(391\) −3.13286e9 −2.65047
\(392\) 0 0
\(393\) −8.80520e7 −0.0731754
\(394\) 0 0
\(395\) 4.29950e8i 0.351017i
\(396\) 0 0
\(397\) 1.65883e9i 1.33056i 0.746594 + 0.665280i \(0.231688\pi\)
−0.746594 + 0.665280i \(0.768312\pi\)
\(398\) 0 0
\(399\) 6.55218e7 0.0516393
\(400\) 0 0
\(401\) −1.68334e9 −1.30367 −0.651833 0.758363i \(-0.726000\pi\)
−0.651833 + 0.758363i \(0.726000\pi\)
\(402\) 0 0
\(403\) 2.87263e7i 0.0218631i
\(404\) 0 0
\(405\) 4.10538e8i 0.307086i
\(406\) 0 0
\(407\) −6.57404e8 −0.483339
\(408\) 0 0
\(409\) 2.00857e9 1.45163 0.725815 0.687890i \(-0.241463\pi\)
0.725815 + 0.687890i \(0.241463\pi\)
\(410\) 0 0
\(411\) 6.44541e8i 0.457935i
\(412\) 0 0
\(413\) − 4.29909e8i − 0.300297i
\(414\) 0 0
\(415\) −6.47221e7 −0.0444513
\(416\) 0 0
\(417\) −8.26058e7 −0.0557872
\(418\) 0 0
\(419\) 2.31648e9i 1.53843i 0.638988 + 0.769217i \(0.279353\pi\)
−0.638988 + 0.769217i \(0.720647\pi\)
\(420\) 0 0
\(421\) − 8.89530e8i − 0.580996i −0.956876 0.290498i \(-0.906179\pi\)
0.956876 0.290498i \(-0.0938210\pi\)
\(422\) 0 0
\(423\) 6.24319e8 0.401066
\(424\) 0 0
\(425\) 5.44666e8 0.344167
\(426\) 0 0
\(427\) − 5.97823e8i − 0.371600i
\(428\) 0 0
\(429\) − 1.45627e7i − 0.00890516i
\(430\) 0 0
\(431\) 2.58409e9 1.55467 0.777334 0.629088i \(-0.216572\pi\)
0.777334 + 0.629088i \(0.216572\pi\)
\(432\) 0 0
\(433\) −1.00522e9 −0.595049 −0.297525 0.954714i \(-0.596161\pi\)
−0.297525 + 0.954714i \(0.596161\pi\)
\(434\) 0 0
\(435\) 1.59248e8i 0.0927602i
\(436\) 0 0
\(437\) 1.84889e9i 1.05980i
\(438\) 0 0
\(439\) 2.09435e9 1.18147 0.590735 0.806866i \(-0.298838\pi\)
0.590735 + 0.806866i \(0.298838\pi\)
\(440\) 0 0
\(441\) −1.52245e9 −0.845296
\(442\) 0 0
\(443\) 6.18371e8i 0.337937i 0.985621 + 0.168969i \(0.0540436\pi\)
−0.985621 + 0.168969i \(0.945956\pi\)
\(444\) 0 0
\(445\) 1.26523e9i 0.680629i
\(446\) 0 0
\(447\) 1.08370e9 0.573894
\(448\) 0 0
\(449\) −2.19183e9 −1.14274 −0.571368 0.820694i \(-0.693587\pi\)
−0.571368 + 0.820694i \(0.693587\pi\)
\(450\) 0 0
\(451\) − 2.00057e9i − 1.02692i
\(452\) 0 0
\(453\) − 6.00930e8i − 0.303725i
\(454\) 0 0
\(455\) −4.68053e6 −0.00232946
\(456\) 0 0
\(457\) 5.87698e8 0.288037 0.144018 0.989575i \(-0.453998\pi\)
0.144018 + 0.989575i \(0.453998\pi\)
\(458\) 0 0
\(459\) 2.22000e9i 1.07154i
\(460\) 0 0
\(461\) 2.08054e9i 0.989060i 0.869161 + 0.494530i \(0.164660\pi\)
−0.869161 + 0.494530i \(0.835340\pi\)
\(462\) 0 0
\(463\) −3.20279e9 −1.49967 −0.749833 0.661627i \(-0.769866\pi\)
−0.749833 + 0.661627i \(0.769866\pi\)
\(464\) 0 0
\(465\) 3.05430e8 0.140872
\(466\) 0 0
\(467\) 2.17564e8i 0.0988504i 0.998778 + 0.0494252i \(0.0157389\pi\)
−0.998778 + 0.0494252i \(0.984261\pi\)
\(468\) 0 0
\(469\) − 4.79824e8i − 0.214772i
\(470\) 0 0
\(471\) −4.00270e8 −0.176514
\(472\) 0 0
\(473\) −4.47147e9 −1.94284
\(474\) 0 0
\(475\) − 3.21440e8i − 0.137617i
\(476\) 0 0
\(477\) 1.22890e8i 0.0518446i
\(478\) 0 0
\(479\) 4.24977e9 1.76681 0.883407 0.468607i \(-0.155244\pi\)
0.883407 + 0.468607i \(0.155244\pi\)
\(480\) 0 0
\(481\) 2.27623e7 0.00932627
\(482\) 0 0
\(483\) − 2.86245e8i − 0.115591i
\(484\) 0 0
\(485\) 8.45073e8i 0.336355i
\(486\) 0 0
\(487\) −3.58617e8 −0.140695 −0.0703476 0.997523i \(-0.522411\pi\)
−0.0703476 + 0.997523i \(0.522411\pi\)
\(488\) 0 0
\(489\) −1.27121e8 −0.0491629
\(490\) 0 0
\(491\) − 9.53136e8i − 0.363387i −0.983355 0.181694i \(-0.941842\pi\)
0.983355 0.181694i \(-0.0581579\pi\)
\(492\) 0 0
\(493\) − 2.88482e9i − 1.08431i
\(494\) 0 0
\(495\) 1.27409e9 0.472153
\(496\) 0 0
\(497\) 7.44715e6 0.00272109
\(498\) 0 0
\(499\) − 2.10234e9i − 0.757446i −0.925510 0.378723i \(-0.876363\pi\)
0.925510 0.378723i \(-0.123637\pi\)
\(500\) 0 0
\(501\) 1.20032e9i 0.426448i
\(502\) 0 0
\(503\) −2.06991e9 −0.725210 −0.362605 0.931943i \(-0.618113\pi\)
−0.362605 + 0.931943i \(0.618113\pi\)
\(504\) 0 0
\(505\) 1.84718e9 0.638246
\(506\) 0 0
\(507\) − 9.65456e8i − 0.329007i
\(508\) 0 0
\(509\) 1.29240e8i 0.0434394i 0.999764 + 0.0217197i \(0.00691414\pi\)
−0.999764 + 0.0217197i \(0.993086\pi\)
\(510\) 0 0
\(511\) 1.22133e8 0.0404911
\(512\) 0 0
\(513\) 1.31016e9 0.428462
\(514\) 0 0
\(515\) − 8.37729e8i − 0.270258i
\(516\) 0 0
\(517\) − 1.67348e9i − 0.532602i
\(518\) 0 0
\(519\) 1.85114e9 0.581237
\(520\) 0 0
\(521\) 9.14488e8 0.283300 0.141650 0.989917i \(-0.454759\pi\)
0.141650 + 0.989917i \(0.454759\pi\)
\(522\) 0 0
\(523\) 3.51620e9i 1.07478i 0.843335 + 0.537388i \(0.180589\pi\)
−0.843335 + 0.537388i \(0.819411\pi\)
\(524\) 0 0
\(525\) 4.97653e7i 0.0150096i
\(526\) 0 0
\(527\) −5.53294e9 −1.64672
\(528\) 0 0
\(529\) 4.67240e9 1.37229
\(530\) 0 0
\(531\) − 4.05196e9i − 1.17445i
\(532\) 0 0
\(533\) 6.92685e7i 0.0198148i
\(534\) 0 0
\(535\) 9.52004e8 0.268782
\(536\) 0 0
\(537\) −1.56173e8 −0.0435208
\(538\) 0 0
\(539\) 4.08091e9i 1.12252i
\(540\) 0 0
\(541\) − 2.84793e9i − 0.773285i −0.922230 0.386642i \(-0.873635\pi\)
0.922230 0.386642i \(-0.126365\pi\)
\(542\) 0 0
\(543\) 1.27531e9 0.341835
\(544\) 0 0
\(545\) −7.97968e8 −0.211153
\(546\) 0 0
\(547\) − 4.35740e9i − 1.13834i −0.822220 0.569169i \(-0.807265\pi\)
0.822220 0.569169i \(-0.192735\pi\)
\(548\) 0 0
\(549\) − 5.63458e9i − 1.45331i
\(550\) 0 0
\(551\) −1.70250e9 −0.433568
\(552\) 0 0
\(553\) 7.11637e8 0.178945
\(554\) 0 0
\(555\) − 2.42018e8i − 0.0600927i
\(556\) 0 0
\(557\) − 6.77954e9i − 1.66229i −0.556055 0.831145i \(-0.687686\pi\)
0.556055 0.831145i \(-0.312314\pi\)
\(558\) 0 0
\(559\) 1.54822e8 0.0374880
\(560\) 0 0
\(561\) 2.80490e9 0.670730
\(562\) 0 0
\(563\) − 6.65687e9i − 1.57214i −0.618139 0.786069i \(-0.712113\pi\)
0.618139 0.786069i \(-0.287887\pi\)
\(564\) 0 0
\(565\) 1.68674e9i 0.393441i
\(566\) 0 0
\(567\) 6.79506e8 0.156550
\(568\) 0 0
\(569\) 7.16957e9 1.63155 0.815774 0.578370i \(-0.196311\pi\)
0.815774 + 0.578370i \(0.196311\pi\)
\(570\) 0 0
\(571\) 1.62406e9i 0.365071i 0.983199 + 0.182535i \(0.0584304\pi\)
−0.983199 + 0.182535i \(0.941570\pi\)
\(572\) 0 0
\(573\) 2.27124e9i 0.504338i
\(574\) 0 0
\(575\) −1.40427e9 −0.308045
\(576\) 0 0
\(577\) 6.98294e8 0.151329 0.0756646 0.997133i \(-0.475892\pi\)
0.0756646 + 0.997133i \(0.475892\pi\)
\(578\) 0 0
\(579\) 7.66605e7i 0.0164133i
\(580\) 0 0
\(581\) 1.07126e8i 0.0226609i
\(582\) 0 0
\(583\) 3.29405e8 0.0688478
\(584\) 0 0
\(585\) −4.41147e7 −0.00911042
\(586\) 0 0
\(587\) 6.97861e9i 1.42408i 0.702137 + 0.712042i \(0.252229\pi\)
−0.702137 + 0.712042i \(0.747771\pi\)
\(588\) 0 0
\(589\) 3.26531e9i 0.658448i
\(590\) 0 0
\(591\) −2.65547e9 −0.529158
\(592\) 0 0
\(593\) −1.94954e9 −0.383920 −0.191960 0.981403i \(-0.561484\pi\)
−0.191960 + 0.981403i \(0.561484\pi\)
\(594\) 0 0
\(595\) − 9.01510e8i − 0.175453i
\(596\) 0 0
\(597\) 1.37666e9i 0.264800i
\(598\) 0 0
\(599\) −3.06381e9 −0.582463 −0.291232 0.956653i \(-0.594065\pi\)
−0.291232 + 0.956653i \(0.594065\pi\)
\(600\) 0 0
\(601\) −5.08283e8 −0.0955091 −0.0477545 0.998859i \(-0.515207\pi\)
−0.0477545 + 0.998859i \(0.515207\pi\)
\(602\) 0 0
\(603\) − 4.52242e9i − 0.839963i
\(604\) 0 0
\(605\) − 9.79282e8i − 0.179789i
\(606\) 0 0
\(607\) 8.96433e9 1.62689 0.813444 0.581644i \(-0.197590\pi\)
0.813444 + 0.581644i \(0.197590\pi\)
\(608\) 0 0
\(609\) 2.63581e8 0.0472883
\(610\) 0 0
\(611\) 5.79432e7i 0.0102768i
\(612\) 0 0
\(613\) − 9.47512e9i − 1.66140i −0.556724 0.830698i \(-0.687942\pi\)
0.556724 0.830698i \(-0.312058\pi\)
\(614\) 0 0
\(615\) 7.36490e8 0.127675
\(616\) 0 0
\(617\) 3.17374e9 0.543968 0.271984 0.962302i \(-0.412320\pi\)
0.271984 + 0.962302i \(0.412320\pi\)
\(618\) 0 0
\(619\) 8.06198e6i 0.00136623i 1.00000 0.000683116i \(0.000217443\pi\)
−1.00000 0.000683116i \(0.999783\pi\)
\(620\) 0 0
\(621\) − 5.72367e9i − 0.959078i
\(622\) 0 0
\(623\) 2.09416e9 0.346978
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 0 0
\(627\) − 1.65534e9i − 0.268195i
\(628\) 0 0
\(629\) 4.38421e9i 0.702448i
\(630\) 0 0
\(631\) 9.94224e9 1.57537 0.787683 0.616080i \(-0.211280\pi\)
0.787683 + 0.616080i \(0.211280\pi\)
\(632\) 0 0
\(633\) −1.23390e9 −0.193360
\(634\) 0 0
\(635\) 3.92353e9i 0.608091i
\(636\) 0 0
\(637\) − 1.41299e8i − 0.0216597i
\(638\) 0 0
\(639\) 7.01906e7 0.0106421
\(640\) 0 0
\(641\) −7.72262e9 −1.15814 −0.579071 0.815277i \(-0.696585\pi\)
−0.579071 + 0.815277i \(0.696585\pi\)
\(642\) 0 0
\(643\) − 6.30325e9i − 0.935031i −0.883985 0.467516i \(-0.845149\pi\)
0.883985 0.467516i \(-0.154851\pi\)
\(644\) 0 0
\(645\) − 1.64613e9i − 0.241549i
\(646\) 0 0
\(647\) −7.64503e8 −0.110972 −0.0554861 0.998459i \(-0.517671\pi\)
−0.0554861 + 0.998459i \(0.517671\pi\)
\(648\) 0 0
\(649\) −1.08612e10 −1.55963
\(650\) 0 0
\(651\) − 5.05536e8i − 0.0718155i
\(652\) 0 0
\(653\) 1.13012e10i 1.58828i 0.607732 + 0.794142i \(0.292080\pi\)
−0.607732 + 0.794142i \(0.707920\pi\)
\(654\) 0 0
\(655\) 7.14979e8 0.0994143
\(656\) 0 0
\(657\) 1.15112e9 0.158359
\(658\) 0 0
\(659\) − 8.18496e9i − 1.11408i −0.830484 0.557042i \(-0.811936\pi\)
0.830484 0.557042i \(-0.188064\pi\)
\(660\) 0 0
\(661\) − 2.61103e8i − 0.0351647i −0.999845 0.0175823i \(-0.994403\pi\)
0.999845 0.0175823i \(-0.00559692\pi\)
\(662\) 0 0
\(663\) −9.71182e7 −0.0129421
\(664\) 0 0
\(665\) −5.32034e8 −0.0701559
\(666\) 0 0
\(667\) 7.43771e9i 0.970508i
\(668\) 0 0
\(669\) 4.11369e9i 0.531178i
\(670\) 0 0
\(671\) −1.51034e10 −1.92995
\(672\) 0 0
\(673\) 1.64656e9 0.208221 0.104110 0.994566i \(-0.466800\pi\)
0.104110 + 0.994566i \(0.466800\pi\)
\(674\) 0 0
\(675\) 9.95093e8i 0.124538i
\(676\) 0 0
\(677\) 7.17917e9i 0.889230i 0.895722 + 0.444615i \(0.146659\pi\)
−0.895722 + 0.444615i \(0.853341\pi\)
\(678\) 0 0
\(679\) 1.39873e9 0.171471
\(680\) 0 0
\(681\) 4.55003e9 0.552076
\(682\) 0 0
\(683\) 1.40800e10i 1.69095i 0.534015 + 0.845475i \(0.320682\pi\)
−0.534015 + 0.845475i \(0.679318\pi\)
\(684\) 0 0
\(685\) − 5.23365e9i − 0.622139i
\(686\) 0 0
\(687\) 3.84078e9 0.451929
\(688\) 0 0
\(689\) −1.14055e7 −0.00132845
\(690\) 0 0
\(691\) − 4.46261e9i − 0.514536i −0.966340 0.257268i \(-0.917178\pi\)
0.966340 0.257268i \(-0.0828224\pi\)
\(692\) 0 0
\(693\) − 2.10883e9i − 0.240699i
\(694\) 0 0
\(695\) 6.70757e8 0.0757911
\(696\) 0 0
\(697\) −1.33417e10 −1.49244
\(698\) 0 0
\(699\) − 6.20836e8i − 0.0687554i
\(700\) 0 0
\(701\) 1.39996e10i 1.53497i 0.641064 + 0.767487i \(0.278493\pi\)
−0.641064 + 0.767487i \(0.721507\pi\)
\(702\) 0 0
\(703\) 2.58738e9 0.280877
\(704\) 0 0
\(705\) 6.16075e8 0.0662173
\(706\) 0 0
\(707\) − 3.05737e9i − 0.325372i
\(708\) 0 0
\(709\) 8.55580e9i 0.901569i 0.892633 + 0.450785i \(0.148856\pi\)
−0.892633 + 0.450785i \(0.851144\pi\)
\(710\) 0 0
\(711\) 6.70729e9 0.699848
\(712\) 0 0
\(713\) 1.42652e10 1.47388
\(714\) 0 0
\(715\) 1.18249e8i 0.0120983i
\(716\) 0 0
\(717\) − 2.89833e9i − 0.293651i
\(718\) 0 0
\(719\) −1.06358e10 −1.06714 −0.533569 0.845757i \(-0.679149\pi\)
−0.533569 + 0.845757i \(0.679149\pi\)
\(720\) 0 0
\(721\) −1.38658e9 −0.137775
\(722\) 0 0
\(723\) 1.24276e9i 0.122294i
\(724\) 0 0
\(725\) − 1.29309e9i − 0.126022i
\(726\) 0 0
\(727\) −5.54600e9 −0.535315 −0.267657 0.963514i \(-0.586250\pi\)
−0.267657 + 0.963514i \(0.586250\pi\)
\(728\) 0 0
\(729\) 4.26034e9 0.407285
\(730\) 0 0
\(731\) 2.98201e10i 2.82357i
\(732\) 0 0
\(733\) 2.09767e9i 0.196731i 0.995150 + 0.0983656i \(0.0313615\pi\)
−0.995150 + 0.0983656i \(0.968639\pi\)
\(734\) 0 0
\(735\) −1.50235e9 −0.139561
\(736\) 0 0
\(737\) −1.21223e10 −1.11544
\(738\) 0 0
\(739\) − 2.13547e10i − 1.94643i −0.229906 0.973213i \(-0.573842\pi\)
0.229906 0.973213i \(-0.426158\pi\)
\(740\) 0 0
\(741\) 5.73152e7i 0.00517495i
\(742\) 0 0
\(743\) −1.14077e10 −1.02033 −0.510163 0.860078i \(-0.670415\pi\)
−0.510163 + 0.860078i \(0.670415\pi\)
\(744\) 0 0
\(745\) −8.79959e9 −0.779679
\(746\) 0 0
\(747\) 1.00968e9i 0.0886257i
\(748\) 0 0
\(749\) − 1.57572e9i − 0.137023i
\(750\) 0 0
\(751\) 5.67889e9 0.489242 0.244621 0.969619i \(-0.421337\pi\)
0.244621 + 0.969619i \(0.421337\pi\)
\(752\) 0 0
\(753\) −6.30816e9 −0.538419
\(754\) 0 0
\(755\) 4.87953e9i 0.412633i
\(756\) 0 0
\(757\) − 1.85210e9i − 0.155177i −0.996985 0.0775887i \(-0.975278\pi\)
0.996985 0.0775887i \(-0.0247221\pi\)
\(758\) 0 0
\(759\) −7.23167e9 −0.600333
\(760\) 0 0
\(761\) −5.34803e9 −0.439893 −0.219947 0.975512i \(-0.570588\pi\)
−0.219947 + 0.975512i \(0.570588\pi\)
\(762\) 0 0
\(763\) 1.32077e9i 0.107644i
\(764\) 0 0
\(765\) − 8.49688e9i − 0.686190i
\(766\) 0 0
\(767\) 3.76063e8 0.0300938
\(768\) 0 0
\(769\) −8.10347e8 −0.0642583 −0.0321291 0.999484i \(-0.510229\pi\)
−0.0321291 + 0.999484i \(0.510229\pi\)
\(770\) 0 0
\(771\) 2.40853e9i 0.189261i
\(772\) 0 0
\(773\) 2.04191e10i 1.59004i 0.606583 + 0.795021i \(0.292540\pi\)
−0.606583 + 0.795021i \(0.707460\pi\)
\(774\) 0 0
\(775\) −2.48008e9 −0.191386
\(776\) 0 0
\(777\) −4.00578e8 −0.0306347
\(778\) 0 0
\(779\) 7.87373e9i 0.596760i
\(780\) 0 0
\(781\) − 1.88144e8i − 0.0141323i
\(782\) 0 0
\(783\) 5.27050e9 0.392361
\(784\) 0 0
\(785\) 3.25018e9 0.239808
\(786\) 0 0
\(787\) 9.31284e9i 0.681037i 0.940238 + 0.340518i \(0.110603\pi\)
−0.940238 + 0.340518i \(0.889397\pi\)
\(788\) 0 0
\(789\) − 2.66043e9i − 0.192833i
\(790\) 0 0
\(791\) 2.79183e9 0.200573
\(792\) 0 0
\(793\) 5.22946e8 0.0372392
\(794\) 0 0
\(795\) 1.21267e8i 0.00855972i
\(796\) 0 0
\(797\) − 3.99689e9i − 0.279652i −0.990176 0.139826i \(-0.955346\pi\)
0.990176 0.139826i \(-0.0446543\pi\)
\(798\) 0 0
\(799\) −1.11604e10 −0.774041
\(800\) 0 0
\(801\) 1.97378e10 1.35702
\(802\) 0 0
\(803\) − 3.08556e9i − 0.210296i
\(804\) 0 0
\(805\) 2.32430e9i 0.157038i
\(806\) 0 0
\(807\) 3.20029e9 0.214354
\(808\) 0 0
\(809\) −2.60637e10 −1.73068 −0.865338 0.501189i \(-0.832896\pi\)
−0.865338 + 0.501189i \(0.832896\pi\)
\(810\) 0 0
\(811\) − 2.92385e9i − 0.192479i −0.995358 0.0962394i \(-0.969319\pi\)
0.995358 0.0962394i \(-0.0306814\pi\)
\(812\) 0 0
\(813\) − 1.94240e9i − 0.126772i
\(814\) 0 0
\(815\) 1.03222e9 0.0667914
\(816\) 0 0
\(817\) 1.75986e10 1.12902
\(818\) 0 0
\(819\) 7.30170e7i 0.00464441i
\(820\) 0 0
\(821\) − 4.25354e9i − 0.268256i −0.990964 0.134128i \(-0.957177\pi\)
0.990964 0.134128i \(-0.0428233\pi\)
\(822\) 0 0
\(823\) 1.65577e10 1.03538 0.517691 0.855568i \(-0.326792\pi\)
0.517691 + 0.855568i \(0.326792\pi\)
\(824\) 0 0
\(825\) 1.25727e9 0.0779541
\(826\) 0 0
\(827\) 2.53453e10i 1.55822i 0.626888 + 0.779110i \(0.284328\pi\)
−0.626888 + 0.779110i \(0.715672\pi\)
\(828\) 0 0
\(829\) 3.78621e9i 0.230815i 0.993318 + 0.115407i \(0.0368173\pi\)
−0.993318 + 0.115407i \(0.963183\pi\)
\(830\) 0 0
\(831\) −9.51774e9 −0.575348
\(832\) 0 0
\(833\) 2.72154e10 1.63139
\(834\) 0 0
\(835\) − 9.74658e9i − 0.579362i
\(836\) 0 0
\(837\) − 1.01086e10i − 0.595868i
\(838\) 0 0
\(839\) −2.53943e10 −1.48446 −0.742232 0.670143i \(-0.766233\pi\)
−0.742232 + 0.670143i \(0.766233\pi\)
\(840\) 0 0
\(841\) 1.04010e10 0.602963
\(842\) 0 0
\(843\) 1.55524e9i 0.0894130i
\(844\) 0 0
\(845\) 7.83947e9i 0.446980i
\(846\) 0 0
\(847\) −1.62087e9 −0.0916550
\(848\) 0 0
\(849\) −4.60433e9 −0.258220
\(850\) 0 0
\(851\) − 1.13035e10i − 0.628722i
\(852\) 0 0
\(853\) − 2.80898e9i − 0.154963i −0.996994 0.0774815i \(-0.975312\pi\)
0.996994 0.0774815i \(-0.0246879\pi\)
\(854\) 0 0
\(855\) −5.01451e9 −0.274377
\(856\) 0 0
\(857\) 5.95128e9 0.322982 0.161491 0.986874i \(-0.448370\pi\)
0.161491 + 0.986874i \(0.448370\pi\)
\(858\) 0 0
\(859\) − 2.18106e10i − 1.17407i −0.809563 0.587033i \(-0.800296\pi\)
0.809563 0.587033i \(-0.199704\pi\)
\(860\) 0 0
\(861\) − 1.21901e9i − 0.0650873i
\(862\) 0 0
\(863\) 2.04922e10 1.08530 0.542652 0.839957i \(-0.317420\pi\)
0.542652 + 0.839957i \(0.317420\pi\)
\(864\) 0 0
\(865\) −1.50312e10 −0.789654
\(866\) 0 0
\(867\) − 1.23890e10i − 0.645608i
\(868\) 0 0
\(869\) − 1.79788e10i − 0.929374i
\(870\) 0 0
\(871\) 4.19726e8 0.0215230
\(872\) 0 0
\(873\) 1.31833e10 0.670616
\(874\) 0 0
\(875\) − 4.04092e8i − 0.0203916i
\(876\) 0 0
\(877\) − 4.67115e9i − 0.233843i −0.993141 0.116922i \(-0.962697\pi\)
0.993141 0.116922i \(-0.0373027\pi\)
\(878\) 0 0
\(879\) 5.92285e8 0.0294151
\(880\) 0 0
\(881\) 3.56670e9 0.175732 0.0878661 0.996132i \(-0.471995\pi\)
0.0878661 + 0.996132i \(0.471995\pi\)
\(882\) 0 0
\(883\) 1.06146e10i 0.518850i 0.965763 + 0.259425i \(0.0835330\pi\)
−0.965763 + 0.259425i \(0.916467\pi\)
\(884\) 0 0
\(885\) − 3.99845e9i − 0.193906i
\(886\) 0 0
\(887\) 1.86034e10 0.895075 0.447538 0.894265i \(-0.352301\pi\)
0.447538 + 0.894265i \(0.352301\pi\)
\(888\) 0 0
\(889\) 6.49407e9 0.309999
\(890\) 0 0
\(891\) − 1.71670e10i − 0.813061i
\(892\) 0 0
\(893\) 6.58638e9i 0.309504i
\(894\) 0 0
\(895\) 1.26812e9 0.0591263
\(896\) 0 0
\(897\) 2.50393e8 0.0115837
\(898\) 0 0
\(899\) 1.31357e10i 0.602969i
\(900\) 0 0
\(901\) − 2.19679e9i − 0.100058i
\(902\) 0 0
\(903\) −2.72461e9 −0.123140
\(904\) 0 0
\(905\) −1.03555e10 −0.464408
\(906\) 0 0
\(907\) − 1.30672e10i − 0.581511i −0.956797 0.290756i \(-0.906093\pi\)
0.956797 0.290756i \(-0.0939066\pi\)
\(908\) 0 0
\(909\) − 2.88162e10i − 1.27252i
\(910\) 0 0
\(911\) 2.08232e10 0.912499 0.456249 0.889852i \(-0.349192\pi\)
0.456249 + 0.889852i \(0.349192\pi\)
\(912\) 0 0
\(913\) 2.70642e9 0.117692
\(914\) 0 0
\(915\) − 5.56017e9i − 0.239946i
\(916\) 0 0
\(917\) − 1.18341e9i − 0.0506805i
\(918\) 0 0
\(919\) 1.75479e10 0.745798 0.372899 0.927872i \(-0.378364\pi\)
0.372899 + 0.927872i \(0.378364\pi\)
\(920\) 0 0
\(921\) −8.11752e9 −0.342385
\(922\) 0 0
\(923\) 6.51440e6i 0 0.000272690i
\(924\) 0 0
\(925\) 1.96517e9i 0.0816404i
\(926\) 0 0
\(927\) −1.30687e10 −0.538832
\(928\) 0 0
\(929\) −1.98642e10 −0.812862 −0.406431 0.913681i \(-0.633227\pi\)
−0.406431 + 0.913681i \(0.633227\pi\)
\(930\) 0 0
\(931\) − 1.60614e10i − 0.652320i
\(932\) 0 0
\(933\) 1.64215e9i 0.0661954i
\(934\) 0 0
\(935\) −2.27757e10 −0.911237
\(936\) 0 0
\(937\) 1.72786e10 0.686153 0.343076 0.939308i \(-0.388531\pi\)
0.343076 + 0.939308i \(0.388531\pi\)
\(938\) 0 0
\(939\) 4.09291e9i 0.161325i
\(940\) 0 0
\(941\) 2.33037e10i 0.911719i 0.890052 + 0.455859i \(0.150668\pi\)
−0.890052 + 0.455859i \(0.849332\pi\)
\(942\) 0 0
\(943\) 3.43979e10 1.33580
\(944\) 0 0
\(945\) 1.64704e9 0.0634881
\(946\) 0 0
\(947\) − 1.84941e10i − 0.707632i −0.935315 0.353816i \(-0.884884\pi\)
0.935315 0.353816i \(-0.115116\pi\)
\(948\) 0 0
\(949\) 1.06836e8i 0.00405775i
\(950\) 0 0
\(951\) 9.37788e9 0.353568
\(952\) 0 0
\(953\) −2.84591e10 −1.06511 −0.532556 0.846394i \(-0.678769\pi\)
−0.532556 + 0.846394i \(0.678769\pi\)
\(954\) 0 0
\(955\) − 1.84424e10i − 0.685181i
\(956\) 0 0
\(957\) − 6.65910e9i − 0.245598i
\(958\) 0 0
\(959\) −8.66254e9 −0.317161
\(960\) 0 0
\(961\) −2.31896e9 −0.0842870
\(962\) 0 0
\(963\) − 1.48514e10i − 0.535890i
\(964\) 0 0
\(965\) − 6.22481e8i − 0.0222987i
\(966\) 0 0
\(967\) 1.39464e10 0.495987 0.247994 0.968762i \(-0.420229\pi\)
0.247994 + 0.968762i \(0.420229\pi\)
\(968\) 0 0
\(969\) −1.10394e10 −0.389773
\(970\) 0 0
\(971\) − 6.58331e9i − 0.230769i −0.993321 0.115384i \(-0.963190\pi\)
0.993321 0.115384i \(-0.0368100\pi\)
\(972\) 0 0
\(973\) − 1.11021e9i − 0.0386376i
\(974\) 0 0
\(975\) −4.35322e7 −0.00150416
\(976\) 0 0
\(977\) −1.75217e10 −0.601098 −0.300549 0.953766i \(-0.597170\pi\)
−0.300549 + 0.953766i \(0.597170\pi\)
\(978\) 0 0
\(979\) − 5.29068e10i − 1.80207i
\(980\) 0 0
\(981\) 1.24484e10i 0.420991i
\(982\) 0 0
\(983\) 9.71858e9 0.326336 0.163168 0.986598i \(-0.447829\pi\)
0.163168 + 0.986598i \(0.447829\pi\)
\(984\) 0 0
\(985\) 2.15623e10 0.718900
\(986\) 0 0
\(987\) − 1.01970e9i − 0.0337570i
\(988\) 0 0
\(989\) − 7.68829e10i − 2.52722i
\(990\) 0 0
\(991\) 4.51199e10 1.47269 0.736343 0.676608i \(-0.236551\pi\)
0.736343 + 0.676608i \(0.236551\pi\)
\(992\) 0 0
\(993\) 1.53404e10 0.497182
\(994\) 0 0
\(995\) − 1.11785e10i − 0.359750i
\(996\) 0 0
\(997\) − 9.00945e9i − 0.287916i −0.989584 0.143958i \(-0.954017\pi\)
0.989584 0.143958i \(-0.0459830\pi\)
\(998\) 0 0
\(999\) −8.00985e9 −0.254182
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.8.d.a.81.12 28
4.3 odd 2 40.8.d.a.21.6 yes 28
8.3 odd 2 40.8.d.a.21.5 28
8.5 even 2 inner 160.8.d.a.81.17 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.8.d.a.21.5 28 8.3 odd 2
40.8.d.a.21.6 yes 28 4.3 odd 2
160.8.d.a.81.12 28 1.1 even 1 trivial
160.8.d.a.81.17 28 8.5 even 2 inner