Defining parameters
Level: | \( N \) | = | \( 160 = 2^{5} \cdot 5 \) |
Weight: | \( k \) | = | \( 8 \) |
Nonzero newspaces: | \( 10 \) | ||
Sturm bound: | \(12288\) | ||
Trace bound: | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(160))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 5504 | 2802 | 2702 |
Cusp forms | 5248 | 2742 | 2506 |
Eisenstein series | 256 | 60 | 196 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(160))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
160.8.a | \(\chi_{160}(1, \cdot)\) | 160.8.a.a | 2 | 1 |
160.8.a.b | 2 | |||
160.8.a.c | 2 | |||
160.8.a.d | 2 | |||
160.8.a.e | 2 | |||
160.8.a.f | 3 | |||
160.8.a.g | 3 | |||
160.8.a.h | 4 | |||
160.8.a.i | 4 | |||
160.8.a.j | 4 | |||
160.8.c | \(\chi_{160}(129, \cdot)\) | 160.8.c.a | 2 | 1 |
160.8.c.b | 4 | |||
160.8.c.c | 16 | |||
160.8.c.d | 20 | |||
160.8.d | \(\chi_{160}(81, \cdot)\) | 160.8.d.a | 28 | 1 |
160.8.f | \(\chi_{160}(49, \cdot)\) | 160.8.f.a | 40 | 1 |
160.8.j | \(\chi_{160}(87, \cdot)\) | None | 0 | 2 |
160.8.l | \(\chi_{160}(41, \cdot)\) | None | 0 | 2 |
160.8.n | \(\chi_{160}(63, \cdot)\) | 160.8.n.a | 20 | 2 |
160.8.n.b | 20 | |||
160.8.n.c | 22 | |||
160.8.n.d | 22 | |||
160.8.o | \(\chi_{160}(47, \cdot)\) | 160.8.o.a | 80 | 2 |
160.8.q | \(\chi_{160}(9, \cdot)\) | None | 0 | 2 |
160.8.s | \(\chi_{160}(7, \cdot)\) | None | 0 | 2 |
160.8.u | \(\chi_{160}(43, \cdot)\) | n/a | 664 | 4 |
160.8.x | \(\chi_{160}(21, \cdot)\) | n/a | 448 | 4 |
160.8.z | \(\chi_{160}(29, \cdot)\) | n/a | 664 | 4 |
160.8.ba | \(\chi_{160}(3, \cdot)\) | n/a | 664 | 4 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(160))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_1(160)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 2}\)