Properties

Label 160.8
Level 160
Weight 8
Dimension 2742
Nonzero newspaces 10
Sturm bound 12288
Trace bound 7

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 10 \)
Sturm bound: \(12288\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(160))\).

Total New Old
Modular forms 5504 2802 2702
Cusp forms 5248 2742 2506
Eisenstein series 256 60 196

Trace form

\( 2742 q - 8 q^{2} - 4 q^{3} - 8 q^{4} + 266 q^{5} - 24 q^{6} - 1380 q^{7} - 8 q^{8} + 86 q^{9} + 12988 q^{10} - 16 q^{11} - 61352 q^{12} - 27244 q^{13} + 52376 q^{14} + 17860 q^{15} + 105536 q^{16} - 59580 q^{17}+ \cdots + 19476944 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(160))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
160.8.a \(\chi_{160}(1, \cdot)\) 160.8.a.a 2 1
160.8.a.b 2
160.8.a.c 2
160.8.a.d 2
160.8.a.e 2
160.8.a.f 3
160.8.a.g 3
160.8.a.h 4
160.8.a.i 4
160.8.a.j 4
160.8.c \(\chi_{160}(129, \cdot)\) 160.8.c.a 2 1
160.8.c.b 4
160.8.c.c 16
160.8.c.d 20
160.8.d \(\chi_{160}(81, \cdot)\) 160.8.d.a 28 1
160.8.f \(\chi_{160}(49, \cdot)\) 160.8.f.a 40 1
160.8.j \(\chi_{160}(87, \cdot)\) None 0 2
160.8.l \(\chi_{160}(41, \cdot)\) None 0 2
160.8.n \(\chi_{160}(63, \cdot)\) 160.8.n.a 20 2
160.8.n.b 20
160.8.n.c 22
160.8.n.d 22
160.8.o \(\chi_{160}(47, \cdot)\) 160.8.o.a 80 2
160.8.q \(\chi_{160}(9, \cdot)\) None 0 2
160.8.s \(\chi_{160}(7, \cdot)\) None 0 2
160.8.u \(\chi_{160}(43, \cdot)\) n/a 664 4
160.8.x \(\chi_{160}(21, \cdot)\) n/a 448 4
160.8.z \(\chi_{160}(29, \cdot)\) n/a 664 4
160.8.ba \(\chi_{160}(3, \cdot)\) n/a 664 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(160))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(160)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 2}\)