Properties

Label 160.8.d.a.81.11
Level $160$
Weight $8$
Character 160.81
Analytic conductor $49.982$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [160,8,Mod(81,160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("160.81"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 160.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(49.9816040775\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 81.11
Character \(\chi\) \(=\) 160.81
Dual form 160.8.d.a.81.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-21.9337i q^{3} +125.000i q^{5} +1766.19 q^{7} +1705.91 q^{9} +4654.38i q^{11} +10214.0i q^{13} +2741.72 q^{15} -12616.9 q^{17} -8565.99i q^{19} -38739.2i q^{21} +7657.10 q^{23} -15625.0 q^{25} -85386.1i q^{27} +97383.8i q^{29} -282907. q^{31} +102088. q^{33} +220774. i q^{35} +468640. i q^{37} +224032. q^{39} +233023. q^{41} +134095. i q^{43} +213239. i q^{45} -892914. q^{47} +2.29589e6 q^{49} +276735. i q^{51} -979881. i q^{53} -581797. q^{55} -187884. q^{57} -921947. i q^{59} +1.96677e6i q^{61} +3.01297e6 q^{63} -1.27675e6 q^{65} +2.76945e6i q^{67} -167949. i q^{69} +4.08400e6 q^{71} -294889. q^{73} +342714. i q^{75} +8.22052e6i q^{77} +3.23939e6 q^{79} +1.85799e6 q^{81} +2.58186e6i q^{83} -1.57711e6i q^{85} +2.13599e6 q^{87} -2.22040e6 q^{89} +1.80400e7i q^{91} +6.20520e6i q^{93} +1.07075e6 q^{95} -1.81261e6 q^{97} +7.93995e6i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 1372 q^{7} - 20412 q^{9} + 13500 q^{15} - 2588 q^{23} - 437500 q^{25} - 268024 q^{31} - 99016 q^{33} + 283944 q^{39} - 601208 q^{41} + 2076460 q^{47} + 4316268 q^{49} - 1331000 q^{55} + 3788536 q^{57}+ \cdots + 15198608 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 21.9337i − 0.469016i −0.972114 0.234508i \(-0.924652\pi\)
0.972114 0.234508i \(-0.0753480\pi\)
\(4\) 0 0
\(5\) 125.000i 0.447214i
\(6\) 0 0
\(7\) 1766.19 1.94623 0.973117 0.230312i \(-0.0739747\pi\)
0.973117 + 0.230312i \(0.0739747\pi\)
\(8\) 0 0
\(9\) 1705.91 0.780024
\(10\) 0 0
\(11\) 4654.38i 1.05436i 0.849755 + 0.527178i \(0.176750\pi\)
−0.849755 + 0.527178i \(0.823250\pi\)
\(12\) 0 0
\(13\) 10214.0i 1.28942i 0.764426 + 0.644712i \(0.223023\pi\)
−0.764426 + 0.644712i \(0.776977\pi\)
\(14\) 0 0
\(15\) 2741.72 0.209751
\(16\) 0 0
\(17\) −12616.9 −0.622845 −0.311423 0.950271i \(-0.600805\pi\)
−0.311423 + 0.950271i \(0.600805\pi\)
\(18\) 0 0
\(19\) − 8565.99i − 0.286510i −0.989686 0.143255i \(-0.954243\pi\)
0.989686 0.143255i \(-0.0457569\pi\)
\(20\) 0 0
\(21\) − 38739.2i − 0.912816i
\(22\) 0 0
\(23\) 7657.10 0.131225 0.0656126 0.997845i \(-0.479100\pi\)
0.0656126 + 0.997845i \(0.479100\pi\)
\(24\) 0 0
\(25\) −15625.0 −0.200000
\(26\) 0 0
\(27\) − 85386.1i − 0.834860i
\(28\) 0 0
\(29\) 97383.8i 0.741470i 0.928739 + 0.370735i \(0.120894\pi\)
−0.928739 + 0.370735i \(0.879106\pi\)
\(30\) 0 0
\(31\) −282907. −1.70560 −0.852800 0.522237i \(-0.825098\pi\)
−0.852800 + 0.522237i \(0.825098\pi\)
\(32\) 0 0
\(33\) 102088. 0.494510
\(34\) 0 0
\(35\) 220774.i 0.870382i
\(36\) 0 0
\(37\) 468640.i 1.52102i 0.649329 + 0.760508i \(0.275050\pi\)
−0.649329 + 0.760508i \(0.724950\pi\)
\(38\) 0 0
\(39\) 224032. 0.604761
\(40\) 0 0
\(41\) 233023. 0.528026 0.264013 0.964519i \(-0.414954\pi\)
0.264013 + 0.964519i \(0.414954\pi\)
\(42\) 0 0
\(43\) 134095.i 0.257201i 0.991696 + 0.128601i \(0.0410485\pi\)
−0.991696 + 0.128601i \(0.958951\pi\)
\(44\) 0 0
\(45\) 213239.i 0.348837i
\(46\) 0 0
\(47\) −892914. −1.25449 −0.627245 0.778822i \(-0.715817\pi\)
−0.627245 + 0.778822i \(0.715817\pi\)
\(48\) 0 0
\(49\) 2.29589e6 2.78783
\(50\) 0 0
\(51\) 276735.i 0.292125i
\(52\) 0 0
\(53\) − 979881.i − 0.904082i −0.891997 0.452041i \(-0.850696\pi\)
0.891997 0.452041i \(-0.149304\pi\)
\(54\) 0 0
\(55\) −581797. −0.471522
\(56\) 0 0
\(57\) −187884. −0.134378
\(58\) 0 0
\(59\) − 921947.i − 0.584418i −0.956354 0.292209i \(-0.905610\pi\)
0.956354 0.292209i \(-0.0943903\pi\)
\(60\) 0 0
\(61\) 1.96677e6i 1.10943i 0.832041 + 0.554714i \(0.187172\pi\)
−0.832041 + 0.554714i \(0.812828\pi\)
\(62\) 0 0
\(63\) 3.01297e6 1.51811
\(64\) 0 0
\(65\) −1.27675e6 −0.576648
\(66\) 0 0
\(67\) 2.76945e6i 1.12495i 0.826815 + 0.562474i \(0.190150\pi\)
−0.826815 + 0.562474i \(0.809850\pi\)
\(68\) 0 0
\(69\) − 167949.i − 0.0615468i
\(70\) 0 0
\(71\) 4.08400e6 1.35420 0.677098 0.735893i \(-0.263237\pi\)
0.677098 + 0.735893i \(0.263237\pi\)
\(72\) 0 0
\(73\) −294889. −0.0887215 −0.0443608 0.999016i \(-0.514125\pi\)
−0.0443608 + 0.999016i \(0.514125\pi\)
\(74\) 0 0
\(75\) 342714.i 0.0938033i
\(76\) 0 0
\(77\) 8.22052e6i 2.05202i
\(78\) 0 0
\(79\) 3.23939e6 0.739212 0.369606 0.929189i \(-0.379493\pi\)
0.369606 + 0.929189i \(0.379493\pi\)
\(80\) 0 0
\(81\) 1.85799e6 0.388460
\(82\) 0 0
\(83\) 2.58186e6i 0.495631i 0.968807 + 0.247816i \(0.0797127\pi\)
−0.968807 + 0.247816i \(0.920287\pi\)
\(84\) 0 0
\(85\) − 1.57711e6i − 0.278545i
\(86\) 0 0
\(87\) 2.13599e6 0.347762
\(88\) 0 0
\(89\) −2.22040e6 −0.333862 −0.166931 0.985969i \(-0.553386\pi\)
−0.166931 + 0.985969i \(0.553386\pi\)
\(90\) 0 0
\(91\) 1.80400e7i 2.50952i
\(92\) 0 0
\(93\) 6.20520e6i 0.799955i
\(94\) 0 0
\(95\) 1.07075e6 0.128131
\(96\) 0 0
\(97\) −1.81261e6 −0.201653 −0.100826 0.994904i \(-0.532149\pi\)
−0.100826 + 0.994904i \(0.532149\pi\)
\(98\) 0 0
\(99\) 7.93995e6i 0.822422i
\(100\) 0 0
\(101\) − 1.75572e7i − 1.69562i −0.530296 0.847812i \(-0.677919\pi\)
0.530296 0.847812i \(-0.322081\pi\)
\(102\) 0 0
\(103\) −4.32525e6 −0.390015 −0.195007 0.980802i \(-0.562473\pi\)
−0.195007 + 0.980802i \(0.562473\pi\)
\(104\) 0 0
\(105\) 4.84240e6 0.408224
\(106\) 0 0
\(107\) − 1.85044e7i − 1.46027i −0.683304 0.730134i \(-0.739458\pi\)
0.683304 0.730134i \(-0.260542\pi\)
\(108\) 0 0
\(109\) 1.47307e7i 1.08951i 0.838596 + 0.544754i \(0.183377\pi\)
−0.838596 + 0.544754i \(0.816623\pi\)
\(110\) 0 0
\(111\) 1.02790e7 0.713381
\(112\) 0 0
\(113\) 7.44542e6 0.485416 0.242708 0.970099i \(-0.421964\pi\)
0.242708 + 0.970099i \(0.421964\pi\)
\(114\) 0 0
\(115\) 957138.i 0.0586857i
\(116\) 0 0
\(117\) 1.74242e7i 1.00578i
\(118\) 0 0
\(119\) −2.22838e7 −1.21220
\(120\) 0 0
\(121\) −2.17604e6 −0.111665
\(122\) 0 0
\(123\) − 5.11107e6i − 0.247653i
\(124\) 0 0
\(125\) − 1.95312e6i − 0.0894427i
\(126\) 0 0
\(127\) 3.47873e7 1.50698 0.753491 0.657458i \(-0.228368\pi\)
0.753491 + 0.657458i \(0.228368\pi\)
\(128\) 0 0
\(129\) 2.94120e6 0.120632
\(130\) 0 0
\(131\) 5.24357e6i 0.203787i 0.994795 + 0.101894i \(0.0324902\pi\)
−0.994795 + 0.101894i \(0.967510\pi\)
\(132\) 0 0
\(133\) − 1.51292e7i − 0.557616i
\(134\) 0 0
\(135\) 1.06733e7 0.373361
\(136\) 0 0
\(137\) 3.16092e7 1.05025 0.525123 0.851026i \(-0.324019\pi\)
0.525123 + 0.851026i \(0.324019\pi\)
\(138\) 0 0
\(139\) 3.30038e7i 1.04235i 0.853451 + 0.521174i \(0.174506\pi\)
−0.853451 + 0.521174i \(0.825494\pi\)
\(140\) 0 0
\(141\) 1.95849e7i 0.588376i
\(142\) 0 0
\(143\) −4.75400e7 −1.35951
\(144\) 0 0
\(145\) −1.21730e7 −0.331596
\(146\) 0 0
\(147\) − 5.03575e7i − 1.30754i
\(148\) 0 0
\(149\) − 2.88822e7i − 0.715283i −0.933859 0.357641i \(-0.883581\pi\)
0.933859 0.357641i \(-0.116419\pi\)
\(150\) 0 0
\(151\) −2.47359e7 −0.584668 −0.292334 0.956316i \(-0.594432\pi\)
−0.292334 + 0.956316i \(0.594432\pi\)
\(152\) 0 0
\(153\) −2.15233e7 −0.485834
\(154\) 0 0
\(155\) − 3.53633e7i − 0.762768i
\(156\) 0 0
\(157\) − 1.13532e7i − 0.234137i −0.993124 0.117068i \(-0.962650\pi\)
0.993124 0.117068i \(-0.0373497\pi\)
\(158\) 0 0
\(159\) −2.14924e7 −0.424029
\(160\) 0 0
\(161\) 1.35239e7 0.255395
\(162\) 0 0
\(163\) − 6.59553e7i − 1.19287i −0.802662 0.596435i \(-0.796583\pi\)
0.802662 0.596435i \(-0.203417\pi\)
\(164\) 0 0
\(165\) 1.27610e7i 0.221152i
\(166\) 0 0
\(167\) −3.84566e7 −0.638945 −0.319472 0.947596i \(-0.603506\pi\)
−0.319472 + 0.947596i \(0.603506\pi\)
\(168\) 0 0
\(169\) −4.15780e7 −0.662613
\(170\) 0 0
\(171\) − 1.46128e7i − 0.223485i
\(172\) 0 0
\(173\) − 1.18583e8i − 1.74125i −0.491945 0.870626i \(-0.663714\pi\)
0.491945 0.870626i \(-0.336286\pi\)
\(174\) 0 0
\(175\) −2.75968e7 −0.389247
\(176\) 0 0
\(177\) −2.02217e7 −0.274102
\(178\) 0 0
\(179\) 1.75108e7i 0.228202i 0.993469 + 0.114101i \(0.0363988\pi\)
−0.993469 + 0.114101i \(0.963601\pi\)
\(180\) 0 0
\(181\) 2.11922e7i 0.265645i 0.991140 + 0.132823i \(0.0424040\pi\)
−0.991140 + 0.132823i \(0.957596\pi\)
\(182\) 0 0
\(183\) 4.31386e7 0.520340
\(184\) 0 0
\(185\) −5.85800e7 −0.680219
\(186\) 0 0
\(187\) − 5.87236e7i − 0.656700i
\(188\) 0 0
\(189\) − 1.50808e8i − 1.62483i
\(190\) 0 0
\(191\) −3.98972e7 −0.414310 −0.207155 0.978308i \(-0.566420\pi\)
−0.207155 + 0.978308i \(0.566420\pi\)
\(192\) 0 0
\(193\) 3.94627e7 0.395127 0.197563 0.980290i \(-0.436697\pi\)
0.197563 + 0.980290i \(0.436697\pi\)
\(194\) 0 0
\(195\) 2.80040e7i 0.270457i
\(196\) 0 0
\(197\) 1.81451e8i 1.69094i 0.534023 + 0.845470i \(0.320679\pi\)
−0.534023 + 0.845470i \(0.679321\pi\)
\(198\) 0 0
\(199\) −2.02144e7 −0.181834 −0.0909168 0.995858i \(-0.528980\pi\)
−0.0909168 + 0.995858i \(0.528980\pi\)
\(200\) 0 0
\(201\) 6.07445e7 0.527619
\(202\) 0 0
\(203\) 1.71999e8i 1.44307i
\(204\) 0 0
\(205\) 2.91279e7i 0.236141i
\(206\) 0 0
\(207\) 1.30623e7 0.102359
\(208\) 0 0
\(209\) 3.98693e7 0.302084
\(210\) 0 0
\(211\) − 1.32774e8i − 0.973024i −0.873674 0.486512i \(-0.838269\pi\)
0.873674 0.486512i \(-0.161731\pi\)
\(212\) 0 0
\(213\) − 8.95773e7i − 0.635140i
\(214\) 0 0
\(215\) −1.67619e7 −0.115024
\(216\) 0 0
\(217\) −4.99668e8 −3.31950
\(218\) 0 0
\(219\) 6.46802e6i 0.0416119i
\(220\) 0 0
\(221\) − 1.28869e8i − 0.803111i
\(222\) 0 0
\(223\) 2.03764e8 1.23044 0.615221 0.788355i \(-0.289067\pi\)
0.615221 + 0.788355i \(0.289067\pi\)
\(224\) 0 0
\(225\) −2.66549e7 −0.156005
\(226\) 0 0
\(227\) 2.61770e7i 0.148535i 0.997238 + 0.0742675i \(0.0236619\pi\)
−0.997238 + 0.0742675i \(0.976338\pi\)
\(228\) 0 0
\(229\) − 1.61808e8i − 0.890383i −0.895435 0.445191i \(-0.853136\pi\)
0.895435 0.445191i \(-0.146864\pi\)
\(230\) 0 0
\(231\) 1.80307e8 0.962432
\(232\) 0 0
\(233\) 8.50027e7 0.440237 0.220119 0.975473i \(-0.429356\pi\)
0.220119 + 0.975473i \(0.429356\pi\)
\(234\) 0 0
\(235\) − 1.11614e8i − 0.561025i
\(236\) 0 0
\(237\) − 7.10519e7i − 0.346702i
\(238\) 0 0
\(239\) −1.52631e8 −0.723184 −0.361592 0.932336i \(-0.617767\pi\)
−0.361592 + 0.932336i \(0.617767\pi\)
\(240\) 0 0
\(241\) −1.10727e8 −0.509557 −0.254778 0.966999i \(-0.582002\pi\)
−0.254778 + 0.966999i \(0.582002\pi\)
\(242\) 0 0
\(243\) − 2.27492e8i − 1.01705i
\(244\) 0 0
\(245\) 2.86987e8i 1.24675i
\(246\) 0 0
\(247\) 8.74933e7 0.369433
\(248\) 0 0
\(249\) 5.66297e7 0.232459
\(250\) 0 0
\(251\) − 1.24960e8i − 0.498784i −0.968403 0.249392i \(-0.919769\pi\)
0.968403 0.249392i \(-0.0802308\pi\)
\(252\) 0 0
\(253\) 3.56390e7i 0.138358i
\(254\) 0 0
\(255\) −3.45919e7 −0.130642
\(256\) 0 0
\(257\) 5.23524e8 1.92385 0.961925 0.273315i \(-0.0881200\pi\)
0.961925 + 0.273315i \(0.0881200\pi\)
\(258\) 0 0
\(259\) 8.27709e8i 2.96025i
\(260\) 0 0
\(261\) 1.66128e8i 0.578364i
\(262\) 0 0
\(263\) −9.90641e6 −0.0335793 −0.0167896 0.999859i \(-0.505345\pi\)
−0.0167896 + 0.999859i \(0.505345\pi\)
\(264\) 0 0
\(265\) 1.22485e8 0.404318
\(266\) 0 0
\(267\) 4.87017e7i 0.156587i
\(268\) 0 0
\(269\) 5.47899e8i 1.71620i 0.513483 + 0.858100i \(0.328355\pi\)
−0.513483 + 0.858100i \(0.671645\pi\)
\(270\) 0 0
\(271\) 1.19755e8 0.365511 0.182755 0.983158i \(-0.441498\pi\)
0.182755 + 0.983158i \(0.441498\pi\)
\(272\) 0 0
\(273\) 3.95683e8 1.17701
\(274\) 0 0
\(275\) − 7.27246e7i − 0.210871i
\(276\) 0 0
\(277\) 3.82549e7i 0.108145i 0.998537 + 0.0540727i \(0.0172203\pi\)
−0.998537 + 0.0540727i \(0.982780\pi\)
\(278\) 0 0
\(279\) −4.82614e8 −1.33041
\(280\) 0 0
\(281\) 4.70011e8 1.26368 0.631838 0.775101i \(-0.282301\pi\)
0.631838 + 0.775101i \(0.282301\pi\)
\(282\) 0 0
\(283\) 2.27280e8i 0.596087i 0.954552 + 0.298043i \(0.0963340\pi\)
−0.954552 + 0.298043i \(0.903666\pi\)
\(284\) 0 0
\(285\) − 2.34855e7i − 0.0600957i
\(286\) 0 0
\(287\) 4.11564e8 1.02766
\(288\) 0 0
\(289\) −2.51153e8 −0.612064
\(290\) 0 0
\(291\) 3.97574e7i 0.0945785i
\(292\) 0 0
\(293\) − 8.24016e7i − 0.191381i −0.995411 0.0956905i \(-0.969494\pi\)
0.995411 0.0956905i \(-0.0305059\pi\)
\(294\) 0 0
\(295\) 1.15243e8 0.261360
\(296\) 0 0
\(297\) 3.97419e8 0.880239
\(298\) 0 0
\(299\) 7.82099e7i 0.169205i
\(300\) 0 0
\(301\) 2.36838e8i 0.500574i
\(302\) 0 0
\(303\) −3.85094e8 −0.795276
\(304\) 0 0
\(305\) −2.45846e8 −0.496151
\(306\) 0 0
\(307\) − 7.43722e8i − 1.46699i −0.679697 0.733493i \(-0.737889\pi\)
0.679697 0.733493i \(-0.262111\pi\)
\(308\) 0 0
\(309\) 9.48689e7i 0.182923i
\(310\) 0 0
\(311\) −4.54714e8 −0.857191 −0.428595 0.903497i \(-0.640991\pi\)
−0.428595 + 0.903497i \(0.640991\pi\)
\(312\) 0 0
\(313\) 5.08221e8 0.936802 0.468401 0.883516i \(-0.344830\pi\)
0.468401 + 0.883516i \(0.344830\pi\)
\(314\) 0 0
\(315\) 3.76621e8i 0.678919i
\(316\) 0 0
\(317\) 1.48942e8i 0.262610i 0.991342 + 0.131305i \(0.0419167\pi\)
−0.991342 + 0.131305i \(0.958083\pi\)
\(318\) 0 0
\(319\) −4.53261e8 −0.781773
\(320\) 0 0
\(321\) −4.05871e8 −0.684889
\(322\) 0 0
\(323\) 1.08076e8i 0.178452i
\(324\) 0 0
\(325\) − 1.59594e8i − 0.257885i
\(326\) 0 0
\(327\) 3.23099e8 0.510997
\(328\) 0 0
\(329\) −1.57706e9 −2.44153
\(330\) 0 0
\(331\) 1.08603e9i 1.64605i 0.568006 + 0.823024i \(0.307715\pi\)
−0.568006 + 0.823024i \(0.692285\pi\)
\(332\) 0 0
\(333\) 7.99459e8i 1.18643i
\(334\) 0 0
\(335\) −3.46182e8 −0.503092
\(336\) 0 0
\(337\) 1.35022e8 0.192177 0.0960885 0.995373i \(-0.469367\pi\)
0.0960885 + 0.995373i \(0.469367\pi\)
\(338\) 0 0
\(339\) − 1.63306e8i − 0.227668i
\(340\) 0 0
\(341\) − 1.31675e9i − 1.79831i
\(342\) 0 0
\(343\) 2.60046e9 3.47953
\(344\) 0 0
\(345\) 2.09936e7 0.0275245
\(346\) 0 0
\(347\) − 1.28568e8i − 0.165189i −0.996583 0.0825944i \(-0.973679\pi\)
0.996583 0.0825944i \(-0.0263206\pi\)
\(348\) 0 0
\(349\) 1.00723e9i 1.26835i 0.773190 + 0.634175i \(0.218660\pi\)
−0.773190 + 0.634175i \(0.781340\pi\)
\(350\) 0 0
\(351\) 8.72136e8 1.07649
\(352\) 0 0
\(353\) 2.65853e8 0.321685 0.160843 0.986980i \(-0.448579\pi\)
0.160843 + 0.986980i \(0.448579\pi\)
\(354\) 0 0
\(355\) 5.10500e8i 0.605615i
\(356\) 0 0
\(357\) 4.88767e8i 0.568543i
\(358\) 0 0
\(359\) −2.05582e8 −0.234507 −0.117253 0.993102i \(-0.537409\pi\)
−0.117253 + 0.993102i \(0.537409\pi\)
\(360\) 0 0
\(361\) 8.20496e8 0.917912
\(362\) 0 0
\(363\) 4.77287e7i 0.0523729i
\(364\) 0 0
\(365\) − 3.68612e7i − 0.0396775i
\(366\) 0 0
\(367\) −6.18317e8 −0.652950 −0.326475 0.945206i \(-0.605861\pi\)
−0.326475 + 0.945206i \(0.605861\pi\)
\(368\) 0 0
\(369\) 3.97517e8 0.411873
\(370\) 0 0
\(371\) − 1.73066e9i − 1.75955i
\(372\) 0 0
\(373\) − 1.61904e9i − 1.61539i −0.589601 0.807695i \(-0.700715\pi\)
0.589601 0.807695i \(-0.299285\pi\)
\(374\) 0 0
\(375\) −4.28393e7 −0.0419501
\(376\) 0 0
\(377\) −9.94681e8 −0.956069
\(378\) 0 0
\(379\) 3.04862e7i 0.0287651i 0.999897 + 0.0143825i \(0.00457826\pi\)
−0.999897 + 0.0143825i \(0.995422\pi\)
\(380\) 0 0
\(381\) − 7.63016e8i − 0.706799i
\(382\) 0 0
\(383\) 3.11383e7 0.0283204 0.0141602 0.999900i \(-0.495493\pi\)
0.0141602 + 0.999900i \(0.495493\pi\)
\(384\) 0 0
\(385\) −1.02757e9 −0.917692
\(386\) 0 0
\(387\) 2.28754e8i 0.200623i
\(388\) 0 0
\(389\) − 7.95666e7i − 0.0685341i −0.999413 0.0342671i \(-0.989090\pi\)
0.999413 0.0342671i \(-0.0109097\pi\)
\(390\) 0 0
\(391\) −9.66086e7 −0.0817330
\(392\) 0 0
\(393\) 1.15011e8 0.0955797
\(394\) 0 0
\(395\) 4.04924e8i 0.330585i
\(396\) 0 0
\(397\) − 1.83383e9i − 1.47093i −0.677561 0.735466i \(-0.736963\pi\)
0.677561 0.735466i \(-0.263037\pi\)
\(398\) 0 0
\(399\) −3.31840e8 −0.261531
\(400\) 0 0
\(401\) −1.19601e9 −0.926252 −0.463126 0.886292i \(-0.653272\pi\)
−0.463126 + 0.886292i \(0.653272\pi\)
\(402\) 0 0
\(403\) − 2.88962e9i − 2.19924i
\(404\) 0 0
\(405\) 2.32249e8i 0.173725i
\(406\) 0 0
\(407\) −2.18123e9 −1.60369
\(408\) 0 0
\(409\) −1.57423e9 −1.13773 −0.568863 0.822432i \(-0.692617\pi\)
−0.568863 + 0.822432i \(0.692617\pi\)
\(410\) 0 0
\(411\) − 6.93307e8i − 0.492583i
\(412\) 0 0
\(413\) − 1.62834e9i − 1.13741i
\(414\) 0 0
\(415\) −3.22732e8 −0.221653
\(416\) 0 0
\(417\) 7.23897e8 0.488878
\(418\) 0 0
\(419\) − 8.82743e8i − 0.586253i −0.956074 0.293127i \(-0.905304\pi\)
0.956074 0.293127i \(-0.0946958\pi\)
\(420\) 0 0
\(421\) 4.45601e8i 0.291044i 0.989355 + 0.145522i \(0.0464861\pi\)
−0.989355 + 0.145522i \(0.953514\pi\)
\(422\) 0 0
\(423\) −1.52323e9 −0.978532
\(424\) 0 0
\(425\) 1.97139e8 0.124569
\(426\) 0 0
\(427\) 3.47369e9i 2.15921i
\(428\) 0 0
\(429\) 1.04273e9i 0.637633i
\(430\) 0 0
\(431\) 1.83573e9 1.10443 0.552215 0.833701i \(-0.313783\pi\)
0.552215 + 0.833701i \(0.313783\pi\)
\(432\) 0 0
\(433\) 2.04642e9 1.21140 0.605701 0.795693i \(-0.292893\pi\)
0.605701 + 0.795693i \(0.292893\pi\)
\(434\) 0 0
\(435\) 2.66999e8i 0.155524i
\(436\) 0 0
\(437\) − 6.55907e7i − 0.0375973i
\(438\) 0 0
\(439\) −1.20727e9 −0.681049 −0.340524 0.940236i \(-0.610605\pi\)
−0.340524 + 0.940236i \(0.610605\pi\)
\(440\) 0 0
\(441\) 3.91659e9 2.17457
\(442\) 0 0
\(443\) − 3.22365e9i − 1.76171i −0.473385 0.880856i \(-0.656968\pi\)
0.473385 0.880856i \(-0.343032\pi\)
\(444\) 0 0
\(445\) − 2.77550e8i − 0.149308i
\(446\) 0 0
\(447\) −6.33493e8 −0.335479
\(448\) 0 0
\(449\) −1.67638e9 −0.873998 −0.436999 0.899462i \(-0.643959\pi\)
−0.436999 + 0.899462i \(0.643959\pi\)
\(450\) 0 0
\(451\) 1.08458e9i 0.556727i
\(452\) 0 0
\(453\) 5.42551e8i 0.274219i
\(454\) 0 0
\(455\) −2.25499e9 −1.12229
\(456\) 0 0
\(457\) −2.24910e9 −1.10230 −0.551152 0.834405i \(-0.685812\pi\)
−0.551152 + 0.834405i \(0.685812\pi\)
\(458\) 0 0
\(459\) 1.07730e9i 0.519989i
\(460\) 0 0
\(461\) − 6.25433e8i − 0.297322i −0.988888 0.148661i \(-0.952504\pi\)
0.988888 0.148661i \(-0.0474963\pi\)
\(462\) 0 0
\(463\) 2.33057e9 1.09126 0.545632 0.838025i \(-0.316290\pi\)
0.545632 + 0.838025i \(0.316290\pi\)
\(464\) 0 0
\(465\) −7.75650e8 −0.357751
\(466\) 0 0
\(467\) − 1.74239e9i − 0.791655i −0.918325 0.395828i \(-0.870458\pi\)
0.918325 0.395828i \(-0.129542\pi\)
\(468\) 0 0
\(469\) 4.89139e9i 2.18941i
\(470\) 0 0
\(471\) −2.49018e8 −0.109814
\(472\) 0 0
\(473\) −6.24129e8 −0.271182
\(474\) 0 0
\(475\) 1.33844e8i 0.0573020i
\(476\) 0 0
\(477\) − 1.67159e9i − 0.705205i
\(478\) 0 0
\(479\) −2.31629e9 −0.962984 −0.481492 0.876450i \(-0.659905\pi\)
−0.481492 + 0.876450i \(0.659905\pi\)
\(480\) 0 0
\(481\) −4.78671e9 −1.96123
\(482\) 0 0
\(483\) − 2.96630e8i − 0.119784i
\(484\) 0 0
\(485\) − 2.26577e8i − 0.0901819i
\(486\) 0 0
\(487\) 2.19818e9 0.862404 0.431202 0.902255i \(-0.358090\pi\)
0.431202 + 0.902255i \(0.358090\pi\)
\(488\) 0 0
\(489\) −1.44665e9 −0.559475
\(490\) 0 0
\(491\) − 8.80140e8i − 0.335557i −0.985825 0.167779i \(-0.946341\pi\)
0.985825 0.167779i \(-0.0536594\pi\)
\(492\) 0 0
\(493\) − 1.22868e9i − 0.461821i
\(494\) 0 0
\(495\) −9.92494e8 −0.367798
\(496\) 0 0
\(497\) 7.21313e9 2.63558
\(498\) 0 0
\(499\) − 3.87072e9i − 1.39457i −0.716795 0.697284i \(-0.754392\pi\)
0.716795 0.697284i \(-0.245608\pi\)
\(500\) 0 0
\(501\) 8.43497e8i 0.299676i
\(502\) 0 0
\(503\) 2.27841e9 0.798258 0.399129 0.916895i \(-0.369313\pi\)
0.399129 + 0.916895i \(0.369313\pi\)
\(504\) 0 0
\(505\) 2.19465e9 0.758307
\(506\) 0 0
\(507\) 9.11960e8i 0.310776i
\(508\) 0 0
\(509\) − 1.63663e9i − 0.550096i −0.961431 0.275048i \(-0.911306\pi\)
0.961431 0.275048i \(-0.0886937\pi\)
\(510\) 0 0
\(511\) −5.20831e8 −0.172673
\(512\) 0 0
\(513\) −7.31416e8 −0.239196
\(514\) 0 0
\(515\) − 5.40657e8i − 0.174420i
\(516\) 0 0
\(517\) − 4.15596e9i − 1.32268i
\(518\) 0 0
\(519\) −2.60097e9 −0.816676
\(520\) 0 0
\(521\) 5.84018e9 1.80923 0.904616 0.426228i \(-0.140158\pi\)
0.904616 + 0.426228i \(0.140158\pi\)
\(522\) 0 0
\(523\) 2.35065e9i 0.718509i 0.933240 + 0.359254i \(0.116969\pi\)
−0.933240 + 0.359254i \(0.883031\pi\)
\(524\) 0 0
\(525\) 6.05300e8i 0.182563i
\(526\) 0 0
\(527\) 3.56940e9 1.06233
\(528\) 0 0
\(529\) −3.34619e9 −0.982780
\(530\) 0 0
\(531\) − 1.57276e9i − 0.455860i
\(532\) 0 0
\(533\) 2.38011e9i 0.680850i
\(534\) 0 0
\(535\) 2.31305e9 0.653051
\(536\) 0 0
\(537\) 3.84077e8 0.107031
\(538\) 0 0
\(539\) 1.06860e10i 2.93936i
\(540\) 0 0
\(541\) 4.38266e9i 1.19000i 0.803725 + 0.595001i \(0.202848\pi\)
−0.803725 + 0.595001i \(0.797152\pi\)
\(542\) 0 0
\(543\) 4.64825e8 0.124592
\(544\) 0 0
\(545\) −1.84134e9 −0.487243
\(546\) 0 0
\(547\) 5.06550e9i 1.32333i 0.749801 + 0.661663i \(0.230149\pi\)
−0.749801 + 0.661663i \(0.769851\pi\)
\(548\) 0 0
\(549\) 3.35513e9i 0.865380i
\(550\) 0 0
\(551\) 8.34189e8 0.212439
\(552\) 0 0
\(553\) 5.72139e9 1.43868
\(554\) 0 0
\(555\) 1.28488e9i 0.319034i
\(556\) 0 0
\(557\) − 2.49888e9i − 0.612706i −0.951918 0.306353i \(-0.900891\pi\)
0.951918 0.306353i \(-0.0991088\pi\)
\(558\) 0 0
\(559\) −1.36965e9 −0.331641
\(560\) 0 0
\(561\) −1.28803e9 −0.308003
\(562\) 0 0
\(563\) − 7.56075e7i − 0.0178560i −0.999960 0.00892802i \(-0.997158\pi\)
0.999960 0.00892802i \(-0.00284192\pi\)
\(564\) 0 0
\(565\) 9.30677e8i 0.217085i
\(566\) 0 0
\(567\) 3.28158e9 0.756035
\(568\) 0 0
\(569\) −3.55415e9 −0.808804 −0.404402 0.914581i \(-0.632520\pi\)
−0.404402 + 0.914581i \(0.632520\pi\)
\(570\) 0 0
\(571\) 1.63366e9i 0.367226i 0.982999 + 0.183613i \(0.0587794\pi\)
−0.982999 + 0.183613i \(0.941221\pi\)
\(572\) 0 0
\(573\) 8.75094e8i 0.194318i
\(574\) 0 0
\(575\) −1.19642e8 −0.0262450
\(576\) 0 0
\(577\) 1.71765e9 0.372238 0.186119 0.982527i \(-0.440409\pi\)
0.186119 + 0.982527i \(0.440409\pi\)
\(578\) 0 0
\(579\) − 8.65564e8i − 0.185321i
\(580\) 0 0
\(581\) 4.56006e9i 0.964614i
\(582\) 0 0
\(583\) 4.56073e9 0.953223
\(584\) 0 0
\(585\) −2.17803e9 −0.449799
\(586\) 0 0
\(587\) − 1.59750e9i − 0.325991i −0.986627 0.162996i \(-0.947884\pi\)
0.986627 0.162996i \(-0.0521157\pi\)
\(588\) 0 0
\(589\) 2.42338e9i 0.488672i
\(590\) 0 0
\(591\) 3.97990e9 0.793078
\(592\) 0 0
\(593\) −3.49911e9 −0.689075 −0.344537 0.938773i \(-0.611964\pi\)
−0.344537 + 0.938773i \(0.611964\pi\)
\(594\) 0 0
\(595\) − 2.78548e9i − 0.542113i
\(596\) 0 0
\(597\) 4.43376e8i 0.0852830i
\(598\) 0 0
\(599\) 3.77602e9 0.717862 0.358931 0.933364i \(-0.383141\pi\)
0.358931 + 0.933364i \(0.383141\pi\)
\(600\) 0 0
\(601\) 2.38785e9 0.448690 0.224345 0.974510i \(-0.427976\pi\)
0.224345 + 0.974510i \(0.427976\pi\)
\(602\) 0 0
\(603\) 4.72444e9i 0.877486i
\(604\) 0 0
\(605\) − 2.72005e8i − 0.0499382i
\(606\) 0 0
\(607\) −1.78453e9 −0.323864 −0.161932 0.986802i \(-0.551773\pi\)
−0.161932 + 0.986802i \(0.551773\pi\)
\(608\) 0 0
\(609\) 3.77257e9 0.676826
\(610\) 0 0
\(611\) − 9.12025e9i − 1.61757i
\(612\) 0 0
\(613\) − 1.05192e10i − 1.84446i −0.386637 0.922232i \(-0.626363\pi\)
0.386637 0.922232i \(-0.373637\pi\)
\(614\) 0 0
\(615\) 6.38883e8 0.110754
\(616\) 0 0
\(617\) −9.65840e9 −1.65542 −0.827708 0.561160i \(-0.810355\pi\)
−0.827708 + 0.561160i \(0.810355\pi\)
\(618\) 0 0
\(619\) 4.79549e9i 0.812674i 0.913723 + 0.406337i \(0.133194\pi\)
−0.913723 + 0.406337i \(0.866806\pi\)
\(620\) 0 0
\(621\) − 6.53810e8i − 0.109555i
\(622\) 0 0
\(623\) −3.92166e9 −0.649773
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 0 0
\(627\) − 8.74483e8i − 0.141682i
\(628\) 0 0
\(629\) − 5.91277e9i − 0.947357i
\(630\) 0 0
\(631\) 3.65513e8 0.0579162 0.0289581 0.999581i \(-0.490781\pi\)
0.0289581 + 0.999581i \(0.490781\pi\)
\(632\) 0 0
\(633\) −2.91222e9 −0.456364
\(634\) 0 0
\(635\) 4.34842e9i 0.673943i
\(636\) 0 0
\(637\) 2.34503e10i 3.59469i
\(638\) 0 0
\(639\) 6.96694e9 1.05630
\(640\) 0 0
\(641\) 1.01508e9 0.152229 0.0761145 0.997099i \(-0.475749\pi\)
0.0761145 + 0.997099i \(0.475749\pi\)
\(642\) 0 0
\(643\) − 6.44588e9i − 0.956188i −0.878309 0.478094i \(-0.841328\pi\)
0.878309 0.478094i \(-0.158672\pi\)
\(644\) 0 0
\(645\) 3.67651e8i 0.0539481i
\(646\) 0 0
\(647\) −1.14867e10 −1.66736 −0.833679 0.552250i \(-0.813769\pi\)
−0.833679 + 0.552250i \(0.813769\pi\)
\(648\) 0 0
\(649\) 4.29109e9 0.616185
\(650\) 0 0
\(651\) 1.09596e10i 1.55690i
\(652\) 0 0
\(653\) 2.25835e9i 0.317392i 0.987328 + 0.158696i \(0.0507289\pi\)
−0.987328 + 0.158696i \(0.949271\pi\)
\(654\) 0 0
\(655\) −6.55446e8 −0.0911365
\(656\) 0 0
\(657\) −5.03055e8 −0.0692049
\(658\) 0 0
\(659\) − 6.56257e9i − 0.893254i −0.894720 0.446627i \(-0.852625\pi\)
0.894720 0.446627i \(-0.147375\pi\)
\(660\) 0 0
\(661\) − 1.39055e10i − 1.87275i −0.350997 0.936377i \(-0.614157\pi\)
0.350997 0.936377i \(-0.385843\pi\)
\(662\) 0 0
\(663\) −2.82658e9 −0.376672
\(664\) 0 0
\(665\) 1.89115e9 0.249373
\(666\) 0 0
\(667\) 7.45678e8i 0.0972995i
\(668\) 0 0
\(669\) − 4.46931e9i − 0.577097i
\(670\) 0 0
\(671\) −9.15408e9 −1.16973
\(672\) 0 0
\(673\) 1.42405e10 1.80083 0.900414 0.435035i \(-0.143264\pi\)
0.900414 + 0.435035i \(0.143264\pi\)
\(674\) 0 0
\(675\) 1.33416e9i 0.166972i
\(676\) 0 0
\(677\) − 4.39329e9i − 0.544164i −0.962274 0.272082i \(-0.912288\pi\)
0.962274 0.272082i \(-0.0877122\pi\)
\(678\) 0 0
\(679\) −3.20143e9 −0.392463
\(680\) 0 0
\(681\) 5.74158e8 0.0696653
\(682\) 0 0
\(683\) − 1.44759e9i − 0.173849i −0.996215 0.0869246i \(-0.972296\pi\)
0.996215 0.0869246i \(-0.0277039\pi\)
\(684\) 0 0
\(685\) 3.95115e9i 0.469684i
\(686\) 0 0
\(687\) −3.54906e9 −0.417604
\(688\) 0 0
\(689\) 1.00085e10 1.16574
\(690\) 0 0
\(691\) 6.56593e9i 0.757047i 0.925592 + 0.378523i \(0.123568\pi\)
−0.925592 + 0.378523i \(0.876432\pi\)
\(692\) 0 0
\(693\) 1.40235e10i 1.60063i
\(694\) 0 0
\(695\) −4.12548e9 −0.466152
\(696\) 0 0
\(697\) −2.94002e9 −0.328879
\(698\) 0 0
\(699\) − 1.86443e9i − 0.206479i
\(700\) 0 0
\(701\) − 1.52450e10i − 1.67153i −0.549088 0.835764i \(-0.685025\pi\)
0.549088 0.835764i \(-0.314975\pi\)
\(702\) 0 0
\(703\) 4.01437e9 0.435786
\(704\) 0 0
\(705\) −2.44812e9 −0.263130
\(706\) 0 0
\(707\) − 3.10094e10i − 3.30008i
\(708\) 0 0
\(709\) 1.23751e9i 0.130403i 0.997872 + 0.0652015i \(0.0207690\pi\)
−0.997872 + 0.0652015i \(0.979231\pi\)
\(710\) 0 0
\(711\) 5.52612e9 0.576602
\(712\) 0 0
\(713\) −2.16625e9 −0.223818
\(714\) 0 0
\(715\) − 5.94249e9i − 0.607992i
\(716\) 0 0
\(717\) 3.34776e9i 0.339185i
\(718\) 0 0
\(719\) −1.15168e10 −1.15552 −0.577762 0.816205i \(-0.696074\pi\)
−0.577762 + 0.816205i \(0.696074\pi\)
\(720\) 0 0
\(721\) −7.63923e9 −0.759060
\(722\) 0 0
\(723\) 2.42865e9i 0.238990i
\(724\) 0 0
\(725\) − 1.52162e9i − 0.148294i
\(726\) 0 0
\(727\) 7.83600e9 0.756352 0.378176 0.925734i \(-0.376551\pi\)
0.378176 + 0.925734i \(0.376551\pi\)
\(728\) 0 0
\(729\) −9.26316e8 −0.0885549
\(730\) 0 0
\(731\) − 1.69186e9i − 0.160197i
\(732\) 0 0
\(733\) 1.71394e9i 0.160743i 0.996765 + 0.0803713i \(0.0256106\pi\)
−0.996765 + 0.0803713i \(0.974389\pi\)
\(734\) 0 0
\(735\) 6.29469e9 0.584748
\(736\) 0 0
\(737\) −1.28901e10 −1.18609
\(738\) 0 0
\(739\) − 1.15208e10i − 1.05009i −0.851073 0.525047i \(-0.824048\pi\)
0.851073 0.525047i \(-0.175952\pi\)
\(740\) 0 0
\(741\) − 1.91906e9i − 0.173270i
\(742\) 0 0
\(743\) −1.76670e10 −1.58016 −0.790080 0.613004i \(-0.789961\pi\)
−0.790080 + 0.613004i \(0.789961\pi\)
\(744\) 0 0
\(745\) 3.61027e9 0.319884
\(746\) 0 0
\(747\) 4.40442e9i 0.386604i
\(748\) 0 0
\(749\) − 3.26824e10i − 2.84202i
\(750\) 0 0
\(751\) −1.69635e10 −1.46142 −0.730711 0.682687i \(-0.760811\pi\)
−0.730711 + 0.682687i \(0.760811\pi\)
\(752\) 0 0
\(753\) −2.74084e9 −0.233938
\(754\) 0 0
\(755\) − 3.09199e9i − 0.261471i
\(756\) 0 0
\(757\) − 3.33112e8i − 0.0279097i −0.999903 0.0139548i \(-0.995558\pi\)
0.999903 0.0139548i \(-0.00444211\pi\)
\(758\) 0 0
\(759\) 7.81697e8 0.0648922
\(760\) 0 0
\(761\) −2.08615e10 −1.71593 −0.857963 0.513712i \(-0.828270\pi\)
−0.857963 + 0.513712i \(0.828270\pi\)
\(762\) 0 0
\(763\) 2.60172e10i 2.12044i
\(764\) 0 0
\(765\) − 2.69041e9i − 0.217272i
\(766\) 0 0
\(767\) 9.41680e9 0.753563
\(768\) 0 0
\(769\) 7.32167e9 0.580588 0.290294 0.956937i \(-0.406247\pi\)
0.290294 + 0.956937i \(0.406247\pi\)
\(770\) 0 0
\(771\) − 1.14828e10i − 0.902317i
\(772\) 0 0
\(773\) − 1.19518e10i − 0.930690i −0.885129 0.465345i \(-0.845930\pi\)
0.885129 0.465345i \(-0.154070\pi\)
\(774\) 0 0
\(775\) 4.42042e9 0.341120
\(776\) 0 0
\(777\) 1.81547e10 1.38841
\(778\) 0 0
\(779\) − 1.99607e9i − 0.151285i
\(780\) 0 0
\(781\) 1.90085e10i 1.42780i
\(782\) 0 0
\(783\) 8.31522e9 0.619024
\(784\) 0 0
\(785\) 1.41915e9 0.104709
\(786\) 0 0
\(787\) − 1.42890e10i − 1.04494i −0.852658 0.522470i \(-0.825011\pi\)
0.852658 0.522470i \(-0.174989\pi\)
\(788\) 0 0
\(789\) 2.17284e8i 0.0157492i
\(790\) 0 0
\(791\) 1.31500e10 0.944734
\(792\) 0 0
\(793\) −2.00887e10 −1.43052
\(794\) 0 0
\(795\) − 2.68655e9i − 0.189632i
\(796\) 0 0
\(797\) − 1.49311e10i − 1.04469i −0.852733 0.522347i \(-0.825057\pi\)
0.852733 0.522347i \(-0.174943\pi\)
\(798\) 0 0
\(799\) 1.12658e10 0.781353
\(800\) 0 0
\(801\) −3.78781e9 −0.260420
\(802\) 0 0
\(803\) − 1.37253e9i − 0.0935440i
\(804\) 0 0
\(805\) 1.69049e9i 0.114216i
\(806\) 0 0
\(807\) 1.20175e10 0.804926
\(808\) 0 0
\(809\) −1.06200e10 −0.705189 −0.352594 0.935776i \(-0.614700\pi\)
−0.352594 + 0.935776i \(0.614700\pi\)
\(810\) 0 0
\(811\) 1.29606e10i 0.853204i 0.904439 + 0.426602i \(0.140290\pi\)
−0.904439 + 0.426602i \(0.859710\pi\)
\(812\) 0 0
\(813\) − 2.62667e9i − 0.171431i
\(814\) 0 0
\(815\) 8.24441e9 0.533467
\(816\) 0 0
\(817\) 1.14866e9 0.0736908
\(818\) 0 0
\(819\) 3.07746e10i 1.95748i
\(820\) 0 0
\(821\) 8.63474e9i 0.544563i 0.962218 + 0.272282i \(0.0877782\pi\)
−0.962218 + 0.272282i \(0.912222\pi\)
\(822\) 0 0
\(823\) −1.41772e10 −0.886528 −0.443264 0.896391i \(-0.646180\pi\)
−0.443264 + 0.896391i \(0.646180\pi\)
\(824\) 0 0
\(825\) −1.59512e9 −0.0989020
\(826\) 0 0
\(827\) 6.22560e9i 0.382747i 0.981517 + 0.191373i \(0.0612942\pi\)
−0.981517 + 0.191373i \(0.938706\pi\)
\(828\) 0 0
\(829\) 1.14802e10i 0.699853i 0.936777 + 0.349927i \(0.113793\pi\)
−0.936777 + 0.349927i \(0.886207\pi\)
\(830\) 0 0
\(831\) 8.39072e8 0.0507219
\(832\) 0 0
\(833\) −2.89670e10 −1.73638
\(834\) 0 0
\(835\) − 4.80708e9i − 0.285745i
\(836\) 0 0
\(837\) 2.41563e10i 1.42394i
\(838\) 0 0
\(839\) 1.32294e10 0.773344 0.386672 0.922217i \(-0.373624\pi\)
0.386672 + 0.922217i \(0.373624\pi\)
\(840\) 0 0
\(841\) 7.76627e9 0.450222
\(842\) 0 0
\(843\) − 1.03091e10i − 0.592685i
\(844\) 0 0
\(845\) − 5.19725e9i − 0.296330i
\(846\) 0 0
\(847\) −3.84331e9 −0.217327
\(848\) 0 0
\(849\) 4.98511e9 0.279574
\(850\) 0 0
\(851\) 3.58843e9i 0.199595i
\(852\) 0 0
\(853\) 5.99775e9i 0.330877i 0.986220 + 0.165439i \(0.0529039\pi\)
−0.986220 + 0.165439i \(0.947096\pi\)
\(854\) 0 0
\(855\) 1.82660e9 0.0999454
\(856\) 0 0
\(857\) −1.05936e10 −0.574926 −0.287463 0.957792i \(-0.592812\pi\)
−0.287463 + 0.957792i \(0.592812\pi\)
\(858\) 0 0
\(859\) − 5.11747e9i − 0.275473i −0.990469 0.137737i \(-0.956017\pi\)
0.990469 0.137737i \(-0.0439827\pi\)
\(860\) 0 0
\(861\) − 9.02713e9i − 0.481991i
\(862\) 0 0
\(863\) −2.02627e10 −1.07315 −0.536575 0.843853i \(-0.680282\pi\)
−0.536575 + 0.843853i \(0.680282\pi\)
\(864\) 0 0
\(865\) 1.48229e10 0.778712
\(866\) 0 0
\(867\) 5.50873e9i 0.287068i
\(868\) 0 0
\(869\) 1.50773e10i 0.779392i
\(870\) 0 0
\(871\) −2.82873e10 −1.45053
\(872\) 0 0
\(873\) −3.09216e9 −0.157294
\(874\) 0 0
\(875\) − 3.44960e9i − 0.174076i
\(876\) 0 0
\(877\) − 1.26460e10i − 0.633076i −0.948580 0.316538i \(-0.897479\pi\)
0.948580 0.316538i \(-0.102521\pi\)
\(878\) 0 0
\(879\) −1.80737e9 −0.0897609
\(880\) 0 0
\(881\) 2.84861e10 1.40352 0.701758 0.712415i \(-0.252399\pi\)
0.701758 + 0.712415i \(0.252399\pi\)
\(882\) 0 0
\(883\) 6.91021e9i 0.337776i 0.985635 + 0.168888i \(0.0540176\pi\)
−0.985635 + 0.168888i \(0.945982\pi\)
\(884\) 0 0
\(885\) − 2.52772e9i − 0.122582i
\(886\) 0 0
\(887\) −2.27208e9 −0.109318 −0.0546590 0.998505i \(-0.517407\pi\)
−0.0546590 + 0.998505i \(0.517407\pi\)
\(888\) 0 0
\(889\) 6.14411e10 2.93294
\(890\) 0 0
\(891\) 8.64780e9i 0.409575i
\(892\) 0 0
\(893\) 7.64869e9i 0.359424i
\(894\) 0 0
\(895\) −2.18885e9 −0.102055
\(896\) 0 0
\(897\) 1.71544e9 0.0793598
\(898\) 0 0
\(899\) − 2.75505e10i − 1.26465i
\(900\) 0 0
\(901\) 1.23630e10i 0.563103i
\(902\) 0 0
\(903\) 5.19473e9 0.234777
\(904\) 0 0
\(905\) −2.64903e9 −0.118800
\(906\) 0 0
\(907\) 2.05338e10i 0.913787i 0.889521 + 0.456893i \(0.151038\pi\)
−0.889521 + 0.456893i \(0.848962\pi\)
\(908\) 0 0
\(909\) − 2.99510e10i − 1.32263i
\(910\) 0 0
\(911\) 5.14530e9 0.225474 0.112737 0.993625i \(-0.464038\pi\)
0.112737 + 0.993625i \(0.464038\pi\)
\(912\) 0 0
\(913\) −1.20169e10 −0.522571
\(914\) 0 0
\(915\) 5.39232e9i 0.232703i
\(916\) 0 0
\(917\) 9.26115e9i 0.396618i
\(918\) 0 0
\(919\) 2.24863e10 0.955682 0.477841 0.878446i \(-0.341419\pi\)
0.477841 + 0.878446i \(0.341419\pi\)
\(920\) 0 0
\(921\) −1.63126e10 −0.688041
\(922\) 0 0
\(923\) 4.17141e10i 1.74613i
\(924\) 0 0
\(925\) − 7.32250e9i − 0.304203i
\(926\) 0 0
\(927\) −7.37850e9 −0.304221
\(928\) 0 0
\(929\) −9.09332e9 −0.372107 −0.186053 0.982540i \(-0.559570\pi\)
−0.186053 + 0.982540i \(0.559570\pi\)
\(930\) 0 0
\(931\) − 1.96666e10i − 0.798740i
\(932\) 0 0
\(933\) 9.97358e9i 0.402036i
\(934\) 0 0
\(935\) 7.34045e9 0.293685
\(936\) 0 0
\(937\) 2.06278e10 0.819153 0.409576 0.912276i \(-0.365676\pi\)
0.409576 + 0.912276i \(0.365676\pi\)
\(938\) 0 0
\(939\) − 1.11472e10i − 0.439375i
\(940\) 0 0
\(941\) 4.71969e10i 1.84650i 0.384195 + 0.923252i \(0.374479\pi\)
−0.384195 + 0.923252i \(0.625521\pi\)
\(942\) 0 0
\(943\) 1.78428e9 0.0692903
\(944\) 0 0
\(945\) 1.88510e10 0.726648
\(946\) 0 0
\(947\) 3.96596e10i 1.51748i 0.651393 + 0.758740i \(0.274185\pi\)
−0.651393 + 0.758740i \(0.725815\pi\)
\(948\) 0 0
\(949\) − 3.01201e9i − 0.114400i
\(950\) 0 0
\(951\) 3.26686e9 0.123168
\(952\) 0 0
\(953\) 4.01775e10 1.50369 0.751845 0.659340i \(-0.229164\pi\)
0.751845 + 0.659340i \(0.229164\pi\)
\(954\) 0 0
\(955\) − 4.98715e9i − 0.185285i
\(956\) 0 0
\(957\) 9.94170e9i 0.366664i
\(958\) 0 0
\(959\) 5.58279e10 2.04402
\(960\) 0 0
\(961\) 5.25236e10 1.90907
\(962\) 0 0
\(963\) − 3.15669e10i − 1.13904i
\(964\) 0 0
\(965\) 4.93284e9i 0.176706i
\(966\) 0 0
\(967\) −4.00487e10 −1.42428 −0.712141 0.702036i \(-0.752274\pi\)
−0.712141 + 0.702036i \(0.752274\pi\)
\(968\) 0 0
\(969\) 2.37051e9 0.0836967
\(970\) 0 0
\(971\) − 2.91461e9i − 0.102168i −0.998694 0.0510838i \(-0.983732\pi\)
0.998694 0.0510838i \(-0.0162676\pi\)
\(972\) 0 0
\(973\) 5.82911e10i 2.02865i
\(974\) 0 0
\(975\) −3.50050e9 −0.120952
\(976\) 0 0
\(977\) −2.59846e10 −0.891424 −0.445712 0.895176i \(-0.647049\pi\)
−0.445712 + 0.895176i \(0.647049\pi\)
\(978\) 0 0
\(979\) − 1.03346e10i − 0.352009i
\(980\) 0 0
\(981\) 2.51293e10i 0.849842i
\(982\) 0 0
\(983\) −1.21350e10 −0.407477 −0.203738 0.979025i \(-0.565309\pi\)
−0.203738 + 0.979025i \(0.565309\pi\)
\(984\) 0 0
\(985\) −2.26814e10 −0.756211
\(986\) 0 0
\(987\) 3.45908e10i 1.14512i
\(988\) 0 0
\(989\) 1.02678e9i 0.0337513i
\(990\) 0 0
\(991\) 3.89139e10 1.27013 0.635063 0.772460i \(-0.280974\pi\)
0.635063 + 0.772460i \(0.280974\pi\)
\(992\) 0 0
\(993\) 2.38206e10 0.772024
\(994\) 0 0
\(995\) − 2.52679e9i − 0.0813185i
\(996\) 0 0
\(997\) − 4.38562e10i − 1.40152i −0.713399 0.700758i \(-0.752845\pi\)
0.713399 0.700758i \(-0.247155\pi\)
\(998\) 0 0
\(999\) 4.00153e10 1.26984
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.8.d.a.81.11 28
4.3 odd 2 40.8.d.a.21.26 yes 28
8.3 odd 2 40.8.d.a.21.25 28
8.5 even 2 inner 160.8.d.a.81.18 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.8.d.a.21.25 28 8.3 odd 2
40.8.d.a.21.26 yes 28 4.3 odd 2
160.8.d.a.81.11 28 1.1 even 1 trivial
160.8.d.a.81.18 28 8.5 even 2 inner