Properties

Label 160.8.d.a.81.10
Level $160$
Weight $8$
Character 160.81
Analytic conductor $49.982$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [160,8,Mod(81,160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("160.81"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 160.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(49.9816040775\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 81.10
Character \(\chi\) \(=\) 160.81
Dual form 160.8.d.a.81.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-28.9351i q^{3} -125.000i q^{5} -724.987 q^{7} +1349.76 q^{9} -635.952i q^{11} -4193.99i q^{13} -3616.88 q^{15} +2743.22 q^{17} -40390.6i q^{19} +20977.5i q^{21} -47823.7 q^{23} -15625.0 q^{25} -102336. i q^{27} +121799. i q^{29} -172575. q^{31} -18401.3 q^{33} +90623.4i q^{35} -116482. i q^{37} -121353. q^{39} +653497. q^{41} +277478. i q^{43} -168720. i q^{45} -884726. q^{47} -297937. q^{49} -79375.2i q^{51} +568686. i q^{53} -79494.0 q^{55} -1.16870e6 q^{57} +1.63412e6i q^{59} +2.45255e6i q^{61} -978559. q^{63} -524249. q^{65} -838798. i q^{67} +1.38378e6i q^{69} -4.53571e6 q^{71} -2.64056e6 q^{73} +452110. i q^{75} +461057. i q^{77} +3.79614e6 q^{79} -9183.73 q^{81} +4.04075e6i q^{83} -342902. i q^{85} +3.52426e6 q^{87} -1.18628e7 q^{89} +3.04059e6i q^{91} +4.99348e6i q^{93} -5.04882e6 q^{95} -1.28038e7 q^{97} -858384. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 1372 q^{7} - 20412 q^{9} + 13500 q^{15} - 2588 q^{23} - 437500 q^{25} - 268024 q^{31} - 99016 q^{33} + 283944 q^{39} - 601208 q^{41} + 2076460 q^{47} + 4316268 q^{49} - 1331000 q^{55} + 3788536 q^{57}+ \cdots + 15198608 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 28.9351i − 0.618729i −0.950944 0.309364i \(-0.899884\pi\)
0.950944 0.309364i \(-0.100116\pi\)
\(4\) 0 0
\(5\) − 125.000i − 0.447214i
\(6\) 0 0
\(7\) −724.987 −0.798890 −0.399445 0.916757i \(-0.630797\pi\)
−0.399445 + 0.916757i \(0.630797\pi\)
\(8\) 0 0
\(9\) 1349.76 0.617175
\(10\) 0 0
\(11\) − 635.952i − 0.144062i −0.997402 0.0720311i \(-0.977052\pi\)
0.997402 0.0720311i \(-0.0229481\pi\)
\(12\) 0 0
\(13\) − 4193.99i − 0.529451i −0.964324 0.264725i \(-0.914719\pi\)
0.964324 0.264725i \(-0.0852813\pi\)
\(14\) 0 0
\(15\) −3616.88 −0.276704
\(16\) 0 0
\(17\) 2743.22 0.135422 0.0677110 0.997705i \(-0.478430\pi\)
0.0677110 + 0.997705i \(0.478430\pi\)
\(18\) 0 0
\(19\) − 40390.6i − 1.35096i −0.737378 0.675480i \(-0.763936\pi\)
0.737378 0.675480i \(-0.236064\pi\)
\(20\) 0 0
\(21\) 20977.5i 0.494296i
\(22\) 0 0
\(23\) −47823.7 −0.819588 −0.409794 0.912178i \(-0.634399\pi\)
−0.409794 + 0.912178i \(0.634399\pi\)
\(24\) 0 0
\(25\) −15625.0 −0.200000
\(26\) 0 0
\(27\) − 102336.i − 1.00059i
\(28\) 0 0
\(29\) 121799.i 0.927363i 0.886002 + 0.463682i \(0.153472\pi\)
−0.886002 + 0.463682i \(0.846528\pi\)
\(30\) 0 0
\(31\) −172575. −1.04043 −0.520215 0.854035i \(-0.674148\pi\)
−0.520215 + 0.854035i \(0.674148\pi\)
\(32\) 0 0
\(33\) −18401.3 −0.0891354
\(34\) 0 0
\(35\) 90623.4i 0.357274i
\(36\) 0 0
\(37\) − 116482.i − 0.378054i −0.981972 0.189027i \(-0.939467\pi\)
0.981972 0.189027i \(-0.0605333\pi\)
\(38\) 0 0
\(39\) −121353. −0.327586
\(40\) 0 0
\(41\) 653497. 1.48081 0.740407 0.672159i \(-0.234633\pi\)
0.740407 + 0.672159i \(0.234633\pi\)
\(42\) 0 0
\(43\) 277478.i 0.532218i 0.963943 + 0.266109i \(0.0857381\pi\)
−0.963943 + 0.266109i \(0.914262\pi\)
\(44\) 0 0
\(45\) − 168720.i − 0.276009i
\(46\) 0 0
\(47\) −884726. −1.24299 −0.621493 0.783420i \(-0.713474\pi\)
−0.621493 + 0.783420i \(0.713474\pi\)
\(48\) 0 0
\(49\) −297937. −0.361775
\(50\) 0 0
\(51\) − 79375.2i − 0.0837894i
\(52\) 0 0
\(53\) 568686.i 0.524695i 0.964973 + 0.262347i \(0.0844966\pi\)
−0.964973 + 0.262347i \(0.915503\pi\)
\(54\) 0 0
\(55\) −79494.0 −0.0644266
\(56\) 0 0
\(57\) −1.16870e6 −0.835877
\(58\) 0 0
\(59\) 1.63412e6i 1.03586i 0.855422 + 0.517932i \(0.173298\pi\)
−0.855422 + 0.517932i \(0.826702\pi\)
\(60\) 0 0
\(61\) 2.45255e6i 1.38345i 0.722162 + 0.691724i \(0.243148\pi\)
−0.722162 + 0.691724i \(0.756852\pi\)
\(62\) 0 0
\(63\) −978559. −0.493055
\(64\) 0 0
\(65\) −524249. −0.236778
\(66\) 0 0
\(67\) − 838798.i − 0.340718i −0.985382 0.170359i \(-0.945507\pi\)
0.985382 0.170359i \(-0.0544928\pi\)
\(68\) 0 0
\(69\) 1.38378e6i 0.507102i
\(70\) 0 0
\(71\) −4.53571e6 −1.50398 −0.751988 0.659177i \(-0.770905\pi\)
−0.751988 + 0.659177i \(0.770905\pi\)
\(72\) 0 0
\(73\) −2.64056e6 −0.794450 −0.397225 0.917721i \(-0.630027\pi\)
−0.397225 + 0.917721i \(0.630027\pi\)
\(74\) 0 0
\(75\) 452110.i 0.123746i
\(76\) 0 0
\(77\) 461057.i 0.115090i
\(78\) 0 0
\(79\) 3.79614e6 0.866258 0.433129 0.901332i \(-0.357409\pi\)
0.433129 + 0.901332i \(0.357409\pi\)
\(80\) 0 0
\(81\) −9183.73 −0.00192009
\(82\) 0 0
\(83\) 4.04075e6i 0.775692i 0.921724 + 0.387846i \(0.126781\pi\)
−0.921724 + 0.387846i \(0.873219\pi\)
\(84\) 0 0
\(85\) − 342902.i − 0.0605625i
\(86\) 0 0
\(87\) 3.52426e6 0.573786
\(88\) 0 0
\(89\) −1.18628e7 −1.78370 −0.891848 0.452334i \(-0.850591\pi\)
−0.891848 + 0.452334i \(0.850591\pi\)
\(90\) 0 0
\(91\) 3.04059e6i 0.422973i
\(92\) 0 0
\(93\) 4.99348e6i 0.643744i
\(94\) 0 0
\(95\) −5.04882e6 −0.604168
\(96\) 0 0
\(97\) −1.28038e7 −1.42442 −0.712208 0.701968i \(-0.752305\pi\)
−0.712208 + 0.701968i \(0.752305\pi\)
\(98\) 0 0
\(99\) − 858384.i − 0.0889116i
\(100\) 0 0
\(101\) − 1.63109e7i − 1.57526i −0.616149 0.787629i \(-0.711308\pi\)
0.616149 0.787629i \(-0.288692\pi\)
\(102\) 0 0
\(103\) −1.26057e7 −1.13668 −0.568338 0.822795i \(-0.692413\pi\)
−0.568338 + 0.822795i \(0.692413\pi\)
\(104\) 0 0
\(105\) 2.62219e6 0.221056
\(106\) 0 0
\(107\) 1.75324e7i 1.38356i 0.722107 + 0.691782i \(0.243174\pi\)
−0.722107 + 0.691782i \(0.756826\pi\)
\(108\) 0 0
\(109\) 7.43018e6i 0.549549i 0.961509 + 0.274775i \(0.0886032\pi\)
−0.961509 + 0.274775i \(0.911397\pi\)
\(110\) 0 0
\(111\) −3.37042e6 −0.233913
\(112\) 0 0
\(113\) −1.74971e7 −1.14075 −0.570375 0.821384i \(-0.693202\pi\)
−0.570375 + 0.821384i \(0.693202\pi\)
\(114\) 0 0
\(115\) 5.97796e6i 0.366531i
\(116\) 0 0
\(117\) − 5.66088e6i − 0.326764i
\(118\) 0 0
\(119\) −1.98880e6 −0.108187
\(120\) 0 0
\(121\) 1.90827e7 0.979246
\(122\) 0 0
\(123\) − 1.89090e7i − 0.916221i
\(124\) 0 0
\(125\) 1.95312e6i 0.0894427i
\(126\) 0 0
\(127\) 1.71199e7 0.741632 0.370816 0.928706i \(-0.379078\pi\)
0.370816 + 0.928706i \(0.379078\pi\)
\(128\) 0 0
\(129\) 8.02886e6 0.329298
\(130\) 0 0
\(131\) − 9.54213e6i − 0.370848i −0.982659 0.185424i \(-0.940634\pi\)
0.982659 0.185424i \(-0.0593658\pi\)
\(132\) 0 0
\(133\) 2.92826e7i 1.07927i
\(134\) 0 0
\(135\) −1.27921e7 −0.447478
\(136\) 0 0
\(137\) 3.76038e7 1.24942 0.624712 0.780855i \(-0.285216\pi\)
0.624712 + 0.780855i \(0.285216\pi\)
\(138\) 0 0
\(139\) − 3.55473e7i − 1.12268i −0.827586 0.561339i \(-0.810286\pi\)
0.827586 0.561339i \(-0.189714\pi\)
\(140\) 0 0
\(141\) 2.55996e7i 0.769071i
\(142\) 0 0
\(143\) −2.66718e6 −0.0762738
\(144\) 0 0
\(145\) 1.52248e7 0.414729
\(146\) 0 0
\(147\) 8.62083e6i 0.223840i
\(148\) 0 0
\(149\) 2.55870e7i 0.633677i 0.948479 + 0.316839i \(0.102621\pi\)
−0.948479 + 0.316839i \(0.897379\pi\)
\(150\) 0 0
\(151\) 8.75969e6 0.207047 0.103524 0.994627i \(-0.466988\pi\)
0.103524 + 0.994627i \(0.466988\pi\)
\(152\) 0 0
\(153\) 3.70269e6 0.0835790
\(154\) 0 0
\(155\) 2.15719e7i 0.465295i
\(156\) 0 0
\(157\) − 4.82895e7i − 0.995873i −0.867213 0.497937i \(-0.834091\pi\)
0.867213 0.497937i \(-0.165909\pi\)
\(158\) 0 0
\(159\) 1.64550e7 0.324644
\(160\) 0 0
\(161\) 3.46715e7 0.654760
\(162\) 0 0
\(163\) 1.65945e7i 0.300129i 0.988676 + 0.150064i \(0.0479481\pi\)
−0.988676 + 0.150064i \(0.952052\pi\)
\(164\) 0 0
\(165\) 2.30016e6i 0.0398625i
\(166\) 0 0
\(167\) −3.75161e7 −0.623319 −0.311660 0.950194i \(-0.600885\pi\)
−0.311660 + 0.950194i \(0.600885\pi\)
\(168\) 0 0
\(169\) 4.51590e7 0.719682
\(170\) 0 0
\(171\) − 5.45177e7i − 0.833779i
\(172\) 0 0
\(173\) − 1.02982e8i − 1.51217i −0.654476 0.756083i \(-0.727111\pi\)
0.654476 0.756083i \(-0.272889\pi\)
\(174\) 0 0
\(175\) 1.13279e7 0.159778
\(176\) 0 0
\(177\) 4.72834e7 0.640918
\(178\) 0 0
\(179\) − 5.26588e7i − 0.686255i −0.939289 0.343127i \(-0.888514\pi\)
0.939289 0.343127i \(-0.111486\pi\)
\(180\) 0 0
\(181\) − 6.39330e7i − 0.801402i −0.916209 0.400701i \(-0.868767\pi\)
0.916209 0.400701i \(-0.131233\pi\)
\(182\) 0 0
\(183\) 7.09646e7 0.855978
\(184\) 0 0
\(185\) −1.45603e7 −0.169071
\(186\) 0 0
\(187\) − 1.74455e6i − 0.0195092i
\(188\) 0 0
\(189\) 7.41926e7i 0.799363i
\(190\) 0 0
\(191\) 1.29743e8 1.34730 0.673652 0.739049i \(-0.264725\pi\)
0.673652 + 0.739049i \(0.264725\pi\)
\(192\) 0 0
\(193\) −1.11020e8 −1.11160 −0.555802 0.831315i \(-0.687589\pi\)
−0.555802 + 0.831315i \(0.687589\pi\)
\(194\) 0 0
\(195\) 1.51692e7i 0.146501i
\(196\) 0 0
\(197\) − 1.82291e8i − 1.69877i −0.527774 0.849385i \(-0.676973\pi\)
0.527774 0.849385i \(-0.323027\pi\)
\(198\) 0 0
\(199\) 1.49332e8 1.34328 0.671640 0.740878i \(-0.265590\pi\)
0.671640 + 0.740878i \(0.265590\pi\)
\(200\) 0 0
\(201\) −2.42707e7 −0.210812
\(202\) 0 0
\(203\) − 8.83025e7i − 0.740861i
\(204\) 0 0
\(205\) − 8.16871e7i − 0.662240i
\(206\) 0 0
\(207\) −6.45505e7 −0.505829
\(208\) 0 0
\(209\) −2.56865e7 −0.194622
\(210\) 0 0
\(211\) − 3.06835e7i − 0.224862i −0.993660 0.112431i \(-0.964136\pi\)
0.993660 0.112431i \(-0.0358637\pi\)
\(212\) 0 0
\(213\) 1.31241e8i 0.930552i
\(214\) 0 0
\(215\) 3.46848e7 0.238015
\(216\) 0 0
\(217\) 1.25115e8 0.831189
\(218\) 0 0
\(219\) 7.64049e7i 0.491549i
\(220\) 0 0
\(221\) − 1.15050e7i − 0.0716992i
\(222\) 0 0
\(223\) −7.89432e7 −0.476703 −0.238351 0.971179i \(-0.576607\pi\)
−0.238351 + 0.971179i \(0.576607\pi\)
\(224\) 0 0
\(225\) −2.10900e7 −0.123435
\(226\) 0 0
\(227\) 2.00872e8i 1.13980i 0.821714 + 0.569900i \(0.193018\pi\)
−0.821714 + 0.569900i \(0.806982\pi\)
\(228\) 0 0
\(229\) 2.38925e8i 1.31473i 0.753572 + 0.657365i \(0.228329\pi\)
−0.753572 + 0.657365i \(0.771671\pi\)
\(230\) 0 0
\(231\) 1.33407e7 0.0712094
\(232\) 0 0
\(233\) 1.13633e8 0.588519 0.294259 0.955726i \(-0.404927\pi\)
0.294259 + 0.955726i \(0.404927\pi\)
\(234\) 0 0
\(235\) 1.10591e8i 0.555880i
\(236\) 0 0
\(237\) − 1.09842e8i − 0.535979i
\(238\) 0 0
\(239\) 1.48286e8 0.702599 0.351299 0.936263i \(-0.385740\pi\)
0.351299 + 0.936263i \(0.385740\pi\)
\(240\) 0 0
\(241\) −3.54688e8 −1.63225 −0.816126 0.577875i \(-0.803882\pi\)
−0.816126 + 0.577875i \(0.803882\pi\)
\(242\) 0 0
\(243\) − 2.23544e8i − 0.999404i
\(244\) 0 0
\(245\) 3.72421e7i 0.161791i
\(246\) 0 0
\(247\) −1.69398e8 −0.715267
\(248\) 0 0
\(249\) 1.16920e8 0.479943
\(250\) 0 0
\(251\) − 1.33392e8i − 0.532443i −0.963912 0.266221i \(-0.914225\pi\)
0.963912 0.266221i \(-0.0857753\pi\)
\(252\) 0 0
\(253\) 3.04136e7i 0.118072i
\(254\) 0 0
\(255\) −9.92190e6 −0.0374718
\(256\) 0 0
\(257\) 5.09013e7 0.187052 0.0935261 0.995617i \(-0.470186\pi\)
0.0935261 + 0.995617i \(0.470186\pi\)
\(258\) 0 0
\(259\) 8.44481e7i 0.302023i
\(260\) 0 0
\(261\) 1.64399e8i 0.572345i
\(262\) 0 0
\(263\) −1.65767e8 −0.561892 −0.280946 0.959724i \(-0.590648\pi\)
−0.280946 + 0.959724i \(0.590648\pi\)
\(264\) 0 0
\(265\) 7.10857e7 0.234651
\(266\) 0 0
\(267\) 3.43250e8i 1.10362i
\(268\) 0 0
\(269\) 3.34898e8i 1.04901i 0.851407 + 0.524505i \(0.175750\pi\)
−0.851407 + 0.524505i \(0.824250\pi\)
\(270\) 0 0
\(271\) −1.88305e8 −0.574736 −0.287368 0.957820i \(-0.592780\pi\)
−0.287368 + 0.957820i \(0.592780\pi\)
\(272\) 0 0
\(273\) 8.79796e7 0.261705
\(274\) 0 0
\(275\) 9.93675e6i 0.0288124i
\(276\) 0 0
\(277\) − 7.27368e7i − 0.205625i −0.994701 0.102812i \(-0.967216\pi\)
0.994701 0.102812i \(-0.0327841\pi\)
\(278\) 0 0
\(279\) −2.32936e8 −0.642128
\(280\) 0 0
\(281\) −2.87068e8 −0.771814 −0.385907 0.922538i \(-0.626112\pi\)
−0.385907 + 0.922538i \(0.626112\pi\)
\(282\) 0 0
\(283\) − 4.41650e8i − 1.15831i −0.815216 0.579157i \(-0.803382\pi\)
0.815216 0.579157i \(-0.196618\pi\)
\(284\) 0 0
\(285\) 1.46088e8i 0.373816i
\(286\) 0 0
\(287\) −4.73777e8 −1.18301
\(288\) 0 0
\(289\) −4.02813e8 −0.981661
\(290\) 0 0
\(291\) 3.70478e8i 0.881327i
\(292\) 0 0
\(293\) − 5.90905e8i − 1.37240i −0.727412 0.686201i \(-0.759277\pi\)
0.727412 0.686201i \(-0.240723\pi\)
\(294\) 0 0
\(295\) 2.04265e8 0.463252
\(296\) 0 0
\(297\) −6.50811e7 −0.144147
\(298\) 0 0
\(299\) 2.00572e8i 0.433931i
\(300\) 0 0
\(301\) − 2.01168e8i − 0.425184i
\(302\) 0 0
\(303\) −4.71956e8 −0.974658
\(304\) 0 0
\(305\) 3.06568e8 0.618696
\(306\) 0 0
\(307\) 1.33591e8i 0.263507i 0.991282 + 0.131754i \(0.0420608\pi\)
−0.991282 + 0.131754i \(0.957939\pi\)
\(308\) 0 0
\(309\) 3.64747e8i 0.703294i
\(310\) 0 0
\(311\) −7.26451e8 −1.36945 −0.684723 0.728804i \(-0.740077\pi\)
−0.684723 + 0.728804i \(0.740077\pi\)
\(312\) 0 0
\(313\) −5.86492e8 −1.08108 −0.540539 0.841319i \(-0.681780\pi\)
−0.540539 + 0.841319i \(0.681780\pi\)
\(314\) 0 0
\(315\) 1.22320e8i 0.220501i
\(316\) 0 0
\(317\) 5.45883e8i 0.962482i 0.876588 + 0.481241i \(0.159814\pi\)
−0.876588 + 0.481241i \(0.840186\pi\)
\(318\) 0 0
\(319\) 7.74581e7 0.133598
\(320\) 0 0
\(321\) 5.07302e8 0.856050
\(322\) 0 0
\(323\) − 1.10800e8i − 0.182950i
\(324\) 0 0
\(325\) 6.55311e7i 0.105890i
\(326\) 0 0
\(327\) 2.14993e8 0.340022
\(328\) 0 0
\(329\) 6.41414e8 0.993009
\(330\) 0 0
\(331\) − 2.19781e8i − 0.333114i −0.986032 0.166557i \(-0.946735\pi\)
0.986032 0.166557i \(-0.0532650\pi\)
\(332\) 0 0
\(333\) − 1.57223e8i − 0.233325i
\(334\) 0 0
\(335\) −1.04850e8 −0.152374
\(336\) 0 0
\(337\) −1.17733e9 −1.67568 −0.837842 0.545913i \(-0.816183\pi\)
−0.837842 + 0.545913i \(0.816183\pi\)
\(338\) 0 0
\(339\) 5.06279e8i 0.705815i
\(340\) 0 0
\(341\) 1.09750e8i 0.149887i
\(342\) 0 0
\(343\) 8.13058e8 1.08791
\(344\) 0 0
\(345\) 1.72973e8 0.226783
\(346\) 0 0
\(347\) − 1.26996e9i − 1.63169i −0.578270 0.815846i \(-0.696272\pi\)
0.578270 0.815846i \(-0.303728\pi\)
\(348\) 0 0
\(349\) 4.38281e8i 0.551904i 0.961171 + 0.275952i \(0.0889931\pi\)
−0.961171 + 0.275952i \(0.911007\pi\)
\(350\) 0 0
\(351\) −4.29198e8 −0.529764
\(352\) 0 0
\(353\) −7.38394e8 −0.893463 −0.446731 0.894668i \(-0.647412\pi\)
−0.446731 + 0.894668i \(0.647412\pi\)
\(354\) 0 0
\(355\) 5.66963e8i 0.672598i
\(356\) 0 0
\(357\) 5.75460e7i 0.0669385i
\(358\) 0 0
\(359\) 1.04520e9 1.19225 0.596127 0.802890i \(-0.296705\pi\)
0.596127 + 0.802890i \(0.296705\pi\)
\(360\) 0 0
\(361\) −7.37527e8 −0.825093
\(362\) 0 0
\(363\) − 5.52160e8i − 0.605888i
\(364\) 0 0
\(365\) 3.30070e8i 0.355289i
\(366\) 0 0
\(367\) 1.52124e9 1.60644 0.803222 0.595680i \(-0.203118\pi\)
0.803222 + 0.595680i \(0.203118\pi\)
\(368\) 0 0
\(369\) 8.82065e8 0.913921
\(370\) 0 0
\(371\) − 4.12290e8i − 0.419173i
\(372\) 0 0
\(373\) − 1.71513e9i − 1.71126i −0.517587 0.855631i \(-0.673170\pi\)
0.517587 0.855631i \(-0.326830\pi\)
\(374\) 0 0
\(375\) 5.65138e7 0.0553408
\(376\) 0 0
\(377\) 5.10823e8 0.490993
\(378\) 0 0
\(379\) 1.49965e9i 1.41498i 0.706721 + 0.707492i \(0.250174\pi\)
−0.706721 + 0.707492i \(0.749826\pi\)
\(380\) 0 0
\(381\) − 4.95366e8i − 0.458869i
\(382\) 0 0
\(383\) −125718. −0.000114341 0 −5.71705e−5 1.00000i \(-0.500018\pi\)
−5.71705e−5 1.00000i \(0.500018\pi\)
\(384\) 0 0
\(385\) 5.76321e7 0.0514697
\(386\) 0 0
\(387\) 3.74530e8i 0.328472i
\(388\) 0 0
\(389\) 8.21407e8i 0.707513i 0.935338 + 0.353757i \(0.115096\pi\)
−0.935338 + 0.353757i \(0.884904\pi\)
\(390\) 0 0
\(391\) −1.31191e8 −0.110990
\(392\) 0 0
\(393\) −2.76102e8 −0.229454
\(394\) 0 0
\(395\) − 4.74517e8i − 0.387402i
\(396\) 0 0
\(397\) − 9.97785e8i − 0.800332i −0.916443 0.400166i \(-0.868952\pi\)
0.916443 0.400166i \(-0.131048\pi\)
\(398\) 0 0
\(399\) 8.47295e8 0.667774
\(400\) 0 0
\(401\) 1.81089e9 1.40245 0.701225 0.712940i \(-0.252637\pi\)
0.701225 + 0.712940i \(0.252637\pi\)
\(402\) 0 0
\(403\) 7.23779e8i 0.550857i
\(404\) 0 0
\(405\) 1.14797e6i 0 0.000858690i
\(406\) 0 0
\(407\) −7.40771e7 −0.0544632
\(408\) 0 0
\(409\) 7.95530e8 0.574943 0.287472 0.957789i \(-0.407185\pi\)
0.287472 + 0.957789i \(0.407185\pi\)
\(410\) 0 0
\(411\) − 1.08807e9i − 0.773055i
\(412\) 0 0
\(413\) − 1.18472e9i − 0.827541i
\(414\) 0 0
\(415\) 5.05094e8 0.346900
\(416\) 0 0
\(417\) −1.02856e9 −0.694633
\(418\) 0 0
\(419\) 2.70680e9i 1.79765i 0.438303 + 0.898827i \(0.355580\pi\)
−0.438303 + 0.898827i \(0.644420\pi\)
\(420\) 0 0
\(421\) − 1.90994e9i − 1.24748i −0.781633 0.623739i \(-0.785613\pi\)
0.781633 0.623739i \(-0.214387\pi\)
\(422\) 0 0
\(423\) −1.19417e9 −0.767140
\(424\) 0 0
\(425\) −4.28628e7 −0.0270844
\(426\) 0 0
\(427\) − 1.77806e9i − 1.10522i
\(428\) 0 0
\(429\) 7.71749e7i 0.0471928i
\(430\) 0 0
\(431\) 1.23043e9 0.740266 0.370133 0.928979i \(-0.379312\pi\)
0.370133 + 0.928979i \(0.379312\pi\)
\(432\) 0 0
\(433\) 1.30549e9 0.772799 0.386399 0.922332i \(-0.373719\pi\)
0.386399 + 0.922332i \(0.373719\pi\)
\(434\) 0 0
\(435\) − 4.40532e8i − 0.256605i
\(436\) 0 0
\(437\) 1.93163e9i 1.10723i
\(438\) 0 0
\(439\) 1.03574e9 0.584283 0.292142 0.956375i \(-0.405632\pi\)
0.292142 + 0.956375i \(0.405632\pi\)
\(440\) 0 0
\(441\) −4.02144e8 −0.223278
\(442\) 0 0
\(443\) − 3.39339e9i − 1.85448i −0.374473 0.927238i \(-0.622176\pi\)
0.374473 0.927238i \(-0.377824\pi\)
\(444\) 0 0
\(445\) 1.48285e9i 0.797693i
\(446\) 0 0
\(447\) 7.40363e8 0.392074
\(448\) 0 0
\(449\) 3.03655e9 1.58314 0.791569 0.611080i \(-0.209265\pi\)
0.791569 + 0.611080i \(0.209265\pi\)
\(450\) 0 0
\(451\) − 4.15593e8i − 0.213329i
\(452\) 0 0
\(453\) − 2.53462e8i − 0.128106i
\(454\) 0 0
\(455\) 3.80073e8 0.189159
\(456\) 0 0
\(457\) 1.73227e8 0.0849001 0.0424500 0.999099i \(-0.486484\pi\)
0.0424500 + 0.999099i \(0.486484\pi\)
\(458\) 0 0
\(459\) − 2.80731e8i − 0.135502i
\(460\) 0 0
\(461\) − 1.70634e9i − 0.811171i −0.914057 0.405586i \(-0.867068\pi\)
0.914057 0.405586i \(-0.132932\pi\)
\(462\) 0 0
\(463\) −3.50776e9 −1.64247 −0.821233 0.570593i \(-0.806714\pi\)
−0.821233 + 0.570593i \(0.806714\pi\)
\(464\) 0 0
\(465\) 6.24185e8 0.287891
\(466\) 0 0
\(467\) − 3.55199e9i − 1.61385i −0.590655 0.806924i \(-0.701130\pi\)
0.590655 0.806924i \(-0.298870\pi\)
\(468\) 0 0
\(469\) 6.08117e8i 0.272196i
\(470\) 0 0
\(471\) −1.39726e9 −0.616175
\(472\) 0 0
\(473\) 1.76463e8 0.0766725
\(474\) 0 0
\(475\) 6.31103e8i 0.270192i
\(476\) 0 0
\(477\) 7.67590e8i 0.323829i
\(478\) 0 0
\(479\) 9.68267e8 0.402551 0.201276 0.979535i \(-0.435491\pi\)
0.201276 + 0.979535i \(0.435491\pi\)
\(480\) 0 0
\(481\) −4.88525e8 −0.200161
\(482\) 0 0
\(483\) − 1.00322e9i − 0.405119i
\(484\) 0 0
\(485\) 1.60047e9i 0.637019i
\(486\) 0 0
\(487\) −8.60336e8 −0.337533 −0.168767 0.985656i \(-0.553978\pi\)
−0.168767 + 0.985656i \(0.553978\pi\)
\(488\) 0 0
\(489\) 4.80163e8 0.185698
\(490\) 0 0
\(491\) − 1.00221e9i − 0.382097i −0.981581 0.191048i \(-0.938811\pi\)
0.981581 0.191048i \(-0.0611888\pi\)
\(492\) 0 0
\(493\) 3.34120e8i 0.125585i
\(494\) 0 0
\(495\) −1.07298e8 −0.0397625
\(496\) 0 0
\(497\) 3.28833e9 1.20151
\(498\) 0 0
\(499\) 5.40650e9i 1.94789i 0.226788 + 0.973944i \(0.427178\pi\)
−0.226788 + 0.973944i \(0.572822\pi\)
\(500\) 0 0
\(501\) 1.08553e9i 0.385665i
\(502\) 0 0
\(503\) −2.06071e9 −0.721986 −0.360993 0.932569i \(-0.617562\pi\)
−0.360993 + 0.932569i \(0.617562\pi\)
\(504\) 0 0
\(505\) −2.03886e9 −0.704477
\(506\) 0 0
\(507\) − 1.30668e9i − 0.445288i
\(508\) 0 0
\(509\) − 2.77559e9i − 0.932917i −0.884543 0.466459i \(-0.845530\pi\)
0.884543 0.466459i \(-0.154470\pi\)
\(510\) 0 0
\(511\) 1.91437e9 0.634678
\(512\) 0 0
\(513\) −4.13343e9 −1.35176
\(514\) 0 0
\(515\) 1.57571e9i 0.508337i
\(516\) 0 0
\(517\) 5.62643e8i 0.179067i
\(518\) 0 0
\(519\) −2.97979e9 −0.935621
\(520\) 0 0
\(521\) −2.62973e9 −0.814666 −0.407333 0.913280i \(-0.633541\pi\)
−0.407333 + 0.913280i \(0.633541\pi\)
\(522\) 0 0
\(523\) 2.10802e9i 0.644347i 0.946681 + 0.322173i \(0.104413\pi\)
−0.946681 + 0.322173i \(0.895587\pi\)
\(524\) 0 0
\(525\) − 3.27774e8i − 0.0988592i
\(526\) 0 0
\(527\) −4.73412e8 −0.140897
\(528\) 0 0
\(529\) −1.11772e9 −0.328276
\(530\) 0 0
\(531\) 2.20568e9i 0.639309i
\(532\) 0 0
\(533\) − 2.74076e9i − 0.784017i
\(534\) 0 0
\(535\) 2.19155e9 0.618748
\(536\) 0 0
\(537\) −1.52369e9 −0.424605
\(538\) 0 0
\(539\) 1.89474e8i 0.0521180i
\(540\) 0 0
\(541\) 1.57237e9i 0.426936i 0.976950 + 0.213468i \(0.0684760\pi\)
−0.976950 + 0.213468i \(0.931524\pi\)
\(542\) 0 0
\(543\) −1.84991e9 −0.495850
\(544\) 0 0
\(545\) 9.28772e8 0.245766
\(546\) 0 0
\(547\) 7.12156e9i 1.86046i 0.366980 + 0.930229i \(0.380392\pi\)
−0.366980 + 0.930229i \(0.619608\pi\)
\(548\) 0 0
\(549\) 3.31035e9i 0.853829i
\(550\) 0 0
\(551\) 4.91952e9 1.25283
\(552\) 0 0
\(553\) −2.75215e9 −0.692045
\(554\) 0 0
\(555\) 4.21303e8i 0.104609i
\(556\) 0 0
\(557\) 2.13776e9i 0.524161i 0.965046 + 0.262081i \(0.0844087\pi\)
−0.965046 + 0.262081i \(0.915591\pi\)
\(558\) 0 0
\(559\) 1.16374e9 0.281783
\(560\) 0 0
\(561\) −5.04788e7 −0.0120709
\(562\) 0 0
\(563\) 1.62576e9i 0.383953i 0.981400 + 0.191977i \(0.0614897\pi\)
−0.981400 + 0.191977i \(0.938510\pi\)
\(564\) 0 0
\(565\) 2.18713e9i 0.510159i
\(566\) 0 0
\(567\) 6.65808e6 0.00153394
\(568\) 0 0
\(569\) 2.12335e9 0.483202 0.241601 0.970376i \(-0.422327\pi\)
0.241601 + 0.970376i \(0.422327\pi\)
\(570\) 0 0
\(571\) − 4.99851e9i − 1.12361i −0.827271 0.561803i \(-0.810108\pi\)
0.827271 0.561803i \(-0.189892\pi\)
\(572\) 0 0
\(573\) − 3.75411e9i − 0.833616i
\(574\) 0 0
\(575\) 7.47245e8 0.163918
\(576\) 0 0
\(577\) −4.67621e9 −1.01339 −0.506697 0.862124i \(-0.669134\pi\)
−0.506697 + 0.862124i \(0.669134\pi\)
\(578\) 0 0
\(579\) 3.21237e9i 0.687781i
\(580\) 0 0
\(581\) − 2.92949e9i − 0.619692i
\(582\) 0 0
\(583\) 3.61657e8 0.0755887
\(584\) 0 0
\(585\) −7.07611e8 −0.146133
\(586\) 0 0
\(587\) − 5.82916e8i − 0.118952i −0.998230 0.0594761i \(-0.981057\pi\)
0.998230 0.0594761i \(-0.0189430\pi\)
\(588\) 0 0
\(589\) 6.97042e9i 1.40558i
\(590\) 0 0
\(591\) −5.27462e9 −1.05108
\(592\) 0 0
\(593\) −3.60198e9 −0.709333 −0.354666 0.934993i \(-0.615406\pi\)
−0.354666 + 0.934993i \(0.615406\pi\)
\(594\) 0 0
\(595\) 2.48600e8i 0.0483828i
\(596\) 0 0
\(597\) − 4.32092e9i − 0.831125i
\(598\) 0 0
\(599\) 7.85978e8 0.149423 0.0747114 0.997205i \(-0.476196\pi\)
0.0747114 + 0.997205i \(0.476196\pi\)
\(600\) 0 0
\(601\) −6.82136e9 −1.28177 −0.640885 0.767637i \(-0.721433\pi\)
−0.640885 + 0.767637i \(0.721433\pi\)
\(602\) 0 0
\(603\) − 1.13218e9i − 0.210283i
\(604\) 0 0
\(605\) − 2.38534e9i − 0.437932i
\(606\) 0 0
\(607\) −7.46800e9 −1.35533 −0.677663 0.735373i \(-0.737007\pi\)
−0.677663 + 0.735373i \(0.737007\pi\)
\(608\) 0 0
\(609\) −2.55504e9 −0.458392
\(610\) 0 0
\(611\) 3.71053e9i 0.658100i
\(612\) 0 0
\(613\) 3.65909e9i 0.641596i 0.947148 + 0.320798i \(0.103951\pi\)
−0.947148 + 0.320798i \(0.896049\pi\)
\(614\) 0 0
\(615\) −2.36362e9 −0.409747
\(616\) 0 0
\(617\) 5.11426e9 0.876567 0.438284 0.898837i \(-0.355587\pi\)
0.438284 + 0.898837i \(0.355587\pi\)
\(618\) 0 0
\(619\) − 9.24516e9i − 1.56674i −0.621555 0.783371i \(-0.713499\pi\)
0.621555 0.783371i \(-0.286501\pi\)
\(620\) 0 0
\(621\) 4.89410e9i 0.820073i
\(622\) 0 0
\(623\) 8.60035e9 1.42498
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 0 0
\(627\) 7.43240e8i 0.120418i
\(628\) 0 0
\(629\) − 3.19536e8i − 0.0511968i
\(630\) 0 0
\(631\) −9.02091e9 −1.42938 −0.714690 0.699442i \(-0.753432\pi\)
−0.714690 + 0.699442i \(0.753432\pi\)
\(632\) 0 0
\(633\) −8.87829e8 −0.139129
\(634\) 0 0
\(635\) − 2.13999e9i − 0.331668i
\(636\) 0 0
\(637\) 1.24954e9i 0.191542i
\(638\) 0 0
\(639\) −6.12212e9 −0.928216
\(640\) 0 0
\(641\) 2.21484e9 0.332154 0.166077 0.986113i \(-0.446890\pi\)
0.166077 + 0.986113i \(0.446890\pi\)
\(642\) 0 0
\(643\) 3.60818e8i 0.0535242i 0.999642 + 0.0267621i \(0.00851966\pi\)
−0.999642 + 0.0267621i \(0.991480\pi\)
\(644\) 0 0
\(645\) − 1.00361e9i − 0.147267i
\(646\) 0 0
\(647\) 2.93899e9 0.426612 0.213306 0.976985i \(-0.431577\pi\)
0.213306 + 0.976985i \(0.431577\pi\)
\(648\) 0 0
\(649\) 1.03922e9 0.149229
\(650\) 0 0
\(651\) − 3.62021e9i − 0.514281i
\(652\) 0 0
\(653\) 2.01978e8i 0.0283863i 0.999899 + 0.0141932i \(0.00451797\pi\)
−0.999899 + 0.0141932i \(0.995482\pi\)
\(654\) 0 0
\(655\) −1.19277e9 −0.165848
\(656\) 0 0
\(657\) −3.56413e9 −0.490315
\(658\) 0 0
\(659\) 5.73039e9i 0.779983i 0.920818 + 0.389992i \(0.127522\pi\)
−0.920818 + 0.389992i \(0.872478\pi\)
\(660\) 0 0
\(661\) − 2.92528e9i − 0.393969i −0.980407 0.196985i \(-0.936885\pi\)
0.980407 0.196985i \(-0.0631149\pi\)
\(662\) 0 0
\(663\) −3.32899e8 −0.0443624
\(664\) 0 0
\(665\) 3.66033e9 0.482664
\(666\) 0 0
\(667\) − 5.82486e9i − 0.760055i
\(668\) 0 0
\(669\) 2.28423e9i 0.294949i
\(670\) 0 0
\(671\) 1.55970e9 0.199302
\(672\) 0 0
\(673\) 1.38147e10 1.74699 0.873493 0.486837i \(-0.161849\pi\)
0.873493 + 0.486837i \(0.161849\pi\)
\(674\) 0 0
\(675\) 1.59901e9i 0.200118i
\(676\) 0 0
\(677\) − 7.08067e9i − 0.877029i −0.898724 0.438514i \(-0.855505\pi\)
0.898724 0.438514i \(-0.144495\pi\)
\(678\) 0 0
\(679\) 9.28257e9 1.13795
\(680\) 0 0
\(681\) 5.81224e9 0.705227
\(682\) 0 0
\(683\) − 1.48335e10i − 1.78144i −0.454554 0.890719i \(-0.650201\pi\)
0.454554 0.890719i \(-0.349799\pi\)
\(684\) 0 0
\(685\) − 4.70048e9i − 0.558760i
\(686\) 0 0
\(687\) 6.91330e9 0.813461
\(688\) 0 0
\(689\) 2.38506e9 0.277800
\(690\) 0 0
\(691\) 8.98381e9i 1.03583i 0.855433 + 0.517914i \(0.173291\pi\)
−0.855433 + 0.517914i \(0.826709\pi\)
\(692\) 0 0
\(693\) 6.22317e8i 0.0710306i
\(694\) 0 0
\(695\) −4.44342e9 −0.502077
\(696\) 0 0
\(697\) 1.79269e9 0.200535
\(698\) 0 0
\(699\) − 3.28799e9i − 0.364133i
\(700\) 0 0
\(701\) − 1.43806e9i − 0.157676i −0.996887 0.0788379i \(-0.974879\pi\)
0.996887 0.0788379i \(-0.0251209\pi\)
\(702\) 0 0
\(703\) −4.70478e9 −0.510736
\(704\) 0 0
\(705\) 3.19995e9 0.343939
\(706\) 0 0
\(707\) 1.18252e10i 1.25846i
\(708\) 0 0
\(709\) 1.96630e9i 0.207199i 0.994619 + 0.103600i \(0.0330360\pi\)
−0.994619 + 0.103600i \(0.966964\pi\)
\(710\) 0 0
\(711\) 5.12388e9 0.534633
\(712\) 0 0
\(713\) 8.25319e9 0.852724
\(714\) 0 0
\(715\) 3.33397e8i 0.0341107i
\(716\) 0 0
\(717\) − 4.29066e9i − 0.434718i
\(718\) 0 0
\(719\) 6.89945e9 0.692251 0.346125 0.938188i \(-0.387497\pi\)
0.346125 + 0.938188i \(0.387497\pi\)
\(720\) 0 0
\(721\) 9.13896e9 0.908079
\(722\) 0 0
\(723\) 1.02629e10i 1.00992i
\(724\) 0 0
\(725\) − 1.90311e9i − 0.185473i
\(726\) 0 0
\(727\) −7.37008e9 −0.711380 −0.355690 0.934604i \(-0.615754\pi\)
−0.355690 + 0.934604i \(0.615754\pi\)
\(728\) 0 0
\(729\) −6.48835e9 −0.620280
\(730\) 0 0
\(731\) 7.61183e8i 0.0720740i
\(732\) 0 0
\(733\) 1.50977e10i 1.41594i 0.706241 + 0.707971i \(0.250389\pi\)
−0.706241 + 0.707971i \(0.749611\pi\)
\(734\) 0 0
\(735\) 1.07760e9 0.100104
\(736\) 0 0
\(737\) −5.33435e8 −0.0490846
\(738\) 0 0
\(739\) − 1.89400e10i − 1.72633i −0.504922 0.863165i \(-0.668479\pi\)
0.504922 0.863165i \(-0.331521\pi\)
\(740\) 0 0
\(741\) 4.90153e9i 0.442556i
\(742\) 0 0
\(743\) 1.59965e10 1.43075 0.715375 0.698741i \(-0.246256\pi\)
0.715375 + 0.698741i \(0.246256\pi\)
\(744\) 0 0
\(745\) 3.19838e9 0.283389
\(746\) 0 0
\(747\) 5.45406e9i 0.478737i
\(748\) 0 0
\(749\) − 1.27108e10i − 1.10531i
\(750\) 0 0
\(751\) −7.15896e9 −0.616752 −0.308376 0.951265i \(-0.599785\pi\)
−0.308376 + 0.951265i \(0.599785\pi\)
\(752\) 0 0
\(753\) −3.85972e9 −0.329438
\(754\) 0 0
\(755\) − 1.09496e9i − 0.0925943i
\(756\) 0 0
\(757\) − 1.93055e9i − 0.161751i −0.996724 0.0808754i \(-0.974228\pi\)
0.996724 0.0808754i \(-0.0257716\pi\)
\(758\) 0 0
\(759\) 8.80018e8 0.0730543
\(760\) 0 0
\(761\) 1.10433e10 0.908348 0.454174 0.890913i \(-0.349934\pi\)
0.454174 + 0.890913i \(0.349934\pi\)
\(762\) 0 0
\(763\) − 5.38678e9i − 0.439029i
\(764\) 0 0
\(765\) − 4.62836e8i − 0.0373777i
\(766\) 0 0
\(767\) 6.85349e9 0.548438
\(768\) 0 0
\(769\) −1.93885e10 −1.53746 −0.768728 0.639575i \(-0.779110\pi\)
−0.768728 + 0.639575i \(0.779110\pi\)
\(770\) 0 0
\(771\) − 1.47283e9i − 0.115735i
\(772\) 0 0
\(773\) − 2.19721e9i − 0.171097i −0.996334 0.0855487i \(-0.972736\pi\)
0.996334 0.0855487i \(-0.0272643\pi\)
\(774\) 0 0
\(775\) 2.69649e9 0.208086
\(776\) 0 0
\(777\) 2.44351e9 0.186871
\(778\) 0 0
\(779\) − 2.63951e10i − 2.00052i
\(780\) 0 0
\(781\) 2.88449e9i 0.216666i
\(782\) 0 0
\(783\) 1.24645e10 0.927912
\(784\) 0 0
\(785\) −6.03619e9 −0.445368
\(786\) 0 0
\(787\) 1.04999e10i 0.767848i 0.923365 + 0.383924i \(0.125428\pi\)
−0.923365 + 0.383924i \(0.874572\pi\)
\(788\) 0 0
\(789\) 4.79648e9i 0.347659i
\(790\) 0 0
\(791\) 1.26851e10 0.911334
\(792\) 0 0
\(793\) 1.02859e10 0.732467
\(794\) 0 0
\(795\) − 2.05687e9i − 0.145185i
\(796\) 0 0
\(797\) − 2.39080e10i − 1.67278i −0.548134 0.836390i \(-0.684662\pi\)
0.548134 0.836390i \(-0.315338\pi\)
\(798\) 0 0
\(799\) −2.42700e9 −0.168328
\(800\) 0 0
\(801\) −1.60119e10 −1.10085
\(802\) 0 0
\(803\) 1.67927e9i 0.114450i
\(804\) 0 0
\(805\) − 4.33394e9i − 0.292818i
\(806\) 0 0
\(807\) 9.69030e9 0.649053
\(808\) 0 0
\(809\) −1.43285e9 −0.0951436 −0.0475718 0.998868i \(-0.515148\pi\)
−0.0475718 + 0.998868i \(0.515148\pi\)
\(810\) 0 0
\(811\) − 2.02071e9i − 0.133024i −0.997786 0.0665120i \(-0.978813\pi\)
0.997786 0.0665120i \(-0.0211871\pi\)
\(812\) 0 0
\(813\) 5.44860e9i 0.355605i
\(814\) 0 0
\(815\) 2.07431e9 0.134222
\(816\) 0 0
\(817\) 1.12075e10 0.719005
\(818\) 0 0
\(819\) 4.10407e9i 0.261048i
\(820\) 0 0
\(821\) 3.97118e9i 0.250448i 0.992128 + 0.125224i \(0.0399650\pi\)
−0.992128 + 0.125224i \(0.960035\pi\)
\(822\) 0 0
\(823\) −1.59915e10 −0.999979 −0.499989 0.866032i \(-0.666663\pi\)
−0.499989 + 0.866032i \(0.666663\pi\)
\(824\) 0 0
\(825\) 2.87521e8 0.0178271
\(826\) 0 0
\(827\) − 3.60022e9i − 0.221340i −0.993857 0.110670i \(-0.964700\pi\)
0.993857 0.110670i \(-0.0352997\pi\)
\(828\) 0 0
\(829\) − 2.42858e10i − 1.48051i −0.672327 0.740254i \(-0.734705\pi\)
0.672327 0.740254i \(-0.265295\pi\)
\(830\) 0 0
\(831\) −2.10465e9 −0.127226
\(832\) 0 0
\(833\) −8.17306e8 −0.0489922
\(834\) 0 0
\(835\) 4.68952e9i 0.278757i
\(836\) 0 0
\(837\) 1.76608e10i 1.04105i
\(838\) 0 0
\(839\) −9.51333e9 −0.556117 −0.278058 0.960564i \(-0.589691\pi\)
−0.278058 + 0.960564i \(0.589691\pi\)
\(840\) 0 0
\(841\) 2.41494e9 0.139998
\(842\) 0 0
\(843\) 8.30634e9i 0.477544i
\(844\) 0 0
\(845\) − 5.64487e9i − 0.321852i
\(846\) 0 0
\(847\) −1.38347e10 −0.782310
\(848\) 0 0
\(849\) −1.27792e10 −0.716682
\(850\) 0 0
\(851\) 5.57061e9i 0.309848i
\(852\) 0 0
\(853\) − 1.30130e10i − 0.717887i −0.933359 0.358944i \(-0.883137\pi\)
0.933359 0.358944i \(-0.116863\pi\)
\(854\) 0 0
\(855\) −6.81471e9 −0.372877
\(856\) 0 0
\(857\) −3.57734e8 −0.0194146 −0.00970728 0.999953i \(-0.503090\pi\)
−0.00970728 + 0.999953i \(0.503090\pi\)
\(858\) 0 0
\(859\) 4.46756e8i 0.0240489i 0.999928 + 0.0120244i \(0.00382759\pi\)
−0.999928 + 0.0120244i \(0.996172\pi\)
\(860\) 0 0
\(861\) 1.37088e10i 0.731960i
\(862\) 0 0
\(863\) 2.63664e10 1.39641 0.698206 0.715897i \(-0.253982\pi\)
0.698206 + 0.715897i \(0.253982\pi\)
\(864\) 0 0
\(865\) −1.28727e10 −0.676261
\(866\) 0 0
\(867\) 1.16554e10i 0.607382i
\(868\) 0 0
\(869\) − 2.41416e9i − 0.124795i
\(870\) 0 0
\(871\) −3.51791e9 −0.180394
\(872\) 0 0
\(873\) −1.72820e10 −0.879114
\(874\) 0 0
\(875\) − 1.41599e9i − 0.0714549i
\(876\) 0 0
\(877\) 2.75765e10i 1.38051i 0.723564 + 0.690257i \(0.242503\pi\)
−0.723564 + 0.690257i \(0.757497\pi\)
\(878\) 0 0
\(879\) −1.70979e10 −0.849144
\(880\) 0 0
\(881\) −8.48952e9 −0.418280 −0.209140 0.977886i \(-0.567067\pi\)
−0.209140 + 0.977886i \(0.567067\pi\)
\(882\) 0 0
\(883\) 3.84331e10i 1.87864i 0.343043 + 0.939320i \(0.388542\pi\)
−0.343043 + 0.939320i \(0.611458\pi\)
\(884\) 0 0
\(885\) − 5.91043e9i − 0.286627i
\(886\) 0 0
\(887\) −3.67955e9 −0.177036 −0.0885181 0.996075i \(-0.528213\pi\)
−0.0885181 + 0.996075i \(0.528213\pi\)
\(888\) 0 0
\(889\) −1.24117e10 −0.592483
\(890\) 0 0
\(891\) 5.84041e6i 0 0.000276612i
\(892\) 0 0
\(893\) 3.57346e10i 1.67922i
\(894\) 0 0
\(895\) −6.58235e9 −0.306902
\(896\) 0 0
\(897\) 5.80356e9 0.268486
\(898\) 0 0
\(899\) − 2.10195e10i − 0.964857i
\(900\) 0 0
\(901\) 1.56003e9i 0.0710552i
\(902\) 0 0
\(903\) −5.82081e9 −0.263073
\(904\) 0 0
\(905\) −7.99163e9 −0.358398
\(906\) 0 0
\(907\) − 1.43630e10i − 0.639177i −0.947556 0.319588i \(-0.896455\pi\)
0.947556 0.319588i \(-0.103545\pi\)
\(908\) 0 0
\(909\) − 2.20158e10i − 0.972210i
\(910\) 0 0
\(911\) 1.87441e10 0.821391 0.410696 0.911772i \(-0.365286\pi\)
0.410696 + 0.911772i \(0.365286\pi\)
\(912\) 0 0
\(913\) 2.56973e9 0.111748
\(914\) 0 0
\(915\) − 8.87057e9i − 0.382805i
\(916\) 0 0
\(917\) 6.91792e9i 0.296267i
\(918\) 0 0
\(919\) −3.28361e10 −1.39556 −0.697778 0.716314i \(-0.745828\pi\)
−0.697778 + 0.716314i \(0.745828\pi\)
\(920\) 0 0
\(921\) 3.86546e9 0.163040
\(922\) 0 0
\(923\) 1.90227e10i 0.796281i
\(924\) 0 0
\(925\) 1.82003e9i 0.0756108i
\(926\) 0 0
\(927\) −1.70147e10 −0.701528
\(928\) 0 0
\(929\) 3.86364e10 1.58103 0.790517 0.612440i \(-0.209812\pi\)
0.790517 + 0.612440i \(0.209812\pi\)
\(930\) 0 0
\(931\) 1.20338e10i 0.488743i
\(932\) 0 0
\(933\) 2.10199e10i 0.847315i
\(934\) 0 0
\(935\) −2.18069e8 −0.00872477
\(936\) 0 0
\(937\) −4.10023e9 −0.162825 −0.0814123 0.996681i \(-0.525943\pi\)
−0.0814123 + 0.996681i \(0.525943\pi\)
\(938\) 0 0
\(939\) 1.69702e10i 0.668894i
\(940\) 0 0
\(941\) − 1.80337e10i − 0.705538i −0.935710 0.352769i \(-0.885240\pi\)
0.935710 0.352769i \(-0.114760\pi\)
\(942\) 0 0
\(943\) −3.12526e10 −1.21366
\(944\) 0 0
\(945\) 9.27407e9 0.357486
\(946\) 0 0
\(947\) − 6.66183e9i − 0.254899i −0.991845 0.127450i \(-0.959321\pi\)
0.991845 0.127450i \(-0.0406791\pi\)
\(948\) 0 0
\(949\) 1.10745e10i 0.420622i
\(950\) 0 0
\(951\) 1.57952e10 0.595515
\(952\) 0 0
\(953\) 1.09990e10 0.411651 0.205825 0.978589i \(-0.434012\pi\)
0.205825 + 0.978589i \(0.434012\pi\)
\(954\) 0 0
\(955\) − 1.62178e10i − 0.602533i
\(956\) 0 0
\(957\) − 2.24126e9i − 0.0826608i
\(958\) 0 0
\(959\) −2.72623e10 −0.998153
\(960\) 0 0
\(961\) 2.26966e9 0.0824951
\(962\) 0 0
\(963\) 2.36646e10i 0.853901i
\(964\) 0 0
\(965\) 1.38775e10i 0.497125i
\(966\) 0 0
\(967\) −1.48740e10 −0.528975 −0.264487 0.964389i \(-0.585203\pi\)
−0.264487 + 0.964389i \(0.585203\pi\)
\(968\) 0 0
\(969\) −3.20601e9 −0.113196
\(970\) 0 0
\(971\) − 1.67742e10i − 0.587995i −0.955806 0.293998i \(-0.905014\pi\)
0.955806 0.293998i \(-0.0949858\pi\)
\(972\) 0 0
\(973\) 2.57713e10i 0.896896i
\(974\) 0 0
\(975\) 1.89615e9 0.0655173
\(976\) 0 0
\(977\) 1.07958e10 0.370361 0.185181 0.982705i \(-0.440713\pi\)
0.185181 + 0.982705i \(0.440713\pi\)
\(978\) 0 0
\(979\) 7.54415e9i 0.256963i
\(980\) 0 0
\(981\) 1.00290e10i 0.339168i
\(982\) 0 0
\(983\) −1.18872e10 −0.399154 −0.199577 0.979882i \(-0.563957\pi\)
−0.199577 + 0.979882i \(0.563957\pi\)
\(984\) 0 0
\(985\) −2.27864e10 −0.759713
\(986\) 0 0
\(987\) − 1.85594e10i − 0.614403i
\(988\) 0 0
\(989\) − 1.32700e10i − 0.436199i
\(990\) 0 0
\(991\) 1.17102e10 0.382213 0.191106 0.981569i \(-0.438792\pi\)
0.191106 + 0.981569i \(0.438792\pi\)
\(992\) 0 0
\(993\) −6.35939e9 −0.206107
\(994\) 0 0
\(995\) − 1.86665e10i − 0.600733i
\(996\) 0 0
\(997\) − 2.29607e9i − 0.0733757i −0.999327 0.0366879i \(-0.988319\pi\)
0.999327 0.0366879i \(-0.0116807\pi\)
\(998\) 0 0
\(999\) −1.19204e10 −0.378278
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.8.d.a.81.10 28
4.3 odd 2 40.8.d.a.21.10 yes 28
8.3 odd 2 40.8.d.a.21.9 28
8.5 even 2 inner 160.8.d.a.81.19 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.8.d.a.21.9 28 8.3 odd 2
40.8.d.a.21.10 yes 28 4.3 odd 2
160.8.d.a.81.10 28 1.1 even 1 trivial
160.8.d.a.81.19 28 8.5 even 2 inner