Properties

Label 160.8.a.g
Level $160$
Weight $8$
Character orbit 160.a
Self dual yes
Analytic conductor $49.982$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [160,8,Mod(1,160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("160.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 160.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,70,0,-375,0,62,0,3403] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.9816040775\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.77052.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 63x + 183 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 23) q^{3} - 125 q^{5} + ( - \beta_{2} - 17 \beta_1 + 15) q^{7} + ( - 6 \beta_{2} - 40 \beta_1 + 1121) q^{9} + ( - 9 \beta_{2} - 14 \beta_1 + 650) q^{11} + ( - 2 \beta_{2} - 152 \beta_1 + 1530) q^{13}+ \cdots + ( - 8361 \beta_{2} - 158526 \beta_1 + 8300250) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 70 q^{3} - 375 q^{5} + 62 q^{7} + 3403 q^{9} + 1964 q^{11} + 4742 q^{13} - 8750 q^{15} - 31066 q^{17} - 88792 q^{19} + 145500 q^{21} + 40282 q^{23} + 46875 q^{25} + 274132 q^{27} - 31966 q^{29} - 6044 q^{31}+ \cdots + 25059276 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 63x + 183 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu^{2} - 85 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 16\nu^{2} + 80\nu - 704 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 8\beta _1 + 24 ) / 80 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta _1 + 85 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.68291
6.37893
3.30398
0 −42.7859 0 −125.000 0 −911.015 0 −356.364 0
1.2 0 26.6186 0 −125.000 0 −380.850 0 −1478.45 0
1.3 0 86.1674 0 −125.000 0 1353.87 0 5237.82 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 160.8.a.g yes 3
4.b odd 2 1 160.8.a.f 3
8.b even 2 1 320.8.a.x 3
8.d odd 2 1 320.8.a.y 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.8.a.f 3 4.b odd 2 1
160.8.a.g yes 3 1.a even 1 1 trivial
320.8.a.x 3 8.b even 2 1
320.8.a.y 3 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 70T_{3}^{2} - 2532T_{3} + 98136 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(160))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 70 T^{2} + \cdots + 98136 \) Copy content Toggle raw display
$5$ \( (T + 125)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 62 T^{2} + \cdots - 469737864 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 19547409600 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots + 109863915000 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 12865848318600 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 56420678540800 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 244764482088 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 574148661362408 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 26\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 19\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 67\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 45\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 24\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 44\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 17\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 42\!\cdots\!32 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 21\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 46\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 74\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 60\!\cdots\!60 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 30\!\cdots\!96 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 38\!\cdots\!00 \) Copy content Toggle raw display
show more
show less