Properties

Label 160.8.a.e.1.2
Level $160$
Weight $8$
Character 160.1
Self dual yes
Analytic conductor $49.982$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [160,8,Mod(1,160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("160.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 160.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,8,0,250,0,1288,0,-3974] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.9816040775\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{46}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(6.78233\) of defining polynomial
Character \(\chi\) \(=\) 160.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+17.5647 q^{3} +125.000 q^{5} +1661.35 q^{7} -1878.48 q^{9} -5622.79 q^{11} -11031.4 q^{13} +2195.58 q^{15} -16752.0 q^{17} -35859.5 q^{19} +29181.0 q^{21} +51497.4 q^{23} +15625.0 q^{25} -71408.8 q^{27} +197277. q^{29} -19398.8 q^{31} -98762.3 q^{33} +207669. q^{35} -576835. q^{37} -193763. q^{39} -537158. q^{41} -5819.80 q^{43} -234810. q^{45} -1.04266e6 q^{47} +1.93654e6 q^{49} -294243. q^{51} +466618. q^{53} -702848. q^{55} -629859. q^{57} -498114. q^{59} +2.26280e6 q^{61} -3.12082e6 q^{63} -1.37893e6 q^{65} -1.93123e6 q^{67} +904534. q^{69} +2.41337e6 q^{71} +2.63563e6 q^{73} +274448. q^{75} -9.34141e6 q^{77} -8.41287e6 q^{79} +2.85397e6 q^{81} -5.51975e6 q^{83} -2.09400e6 q^{85} +3.46510e6 q^{87} -5.97135e6 q^{89} -1.83270e7 q^{91} -340734. q^{93} -4.48243e6 q^{95} +1.64459e7 q^{97} +1.05623e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{3} + 250 q^{5} + 1288 q^{7} - 3974 q^{9} - 2944 q^{11} + 2028 q^{13} + 1000 q^{15} - 27644 q^{17} - 53488 q^{19} + 32752 q^{21} - 42120 q^{23} + 31250 q^{25} - 30448 q^{27} + 143228 q^{29} + 255664 q^{31}+ \cdots + 4948864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 17.5647 0.375591 0.187796 0.982208i \(-0.439866\pi\)
0.187796 + 0.982208i \(0.439866\pi\)
\(4\) 0 0
\(5\) 125.000 0.447214
\(6\) 0 0
\(7\) 1661.35 1.83070 0.915351 0.402656i \(-0.131913\pi\)
0.915351 + 0.402656i \(0.131913\pi\)
\(8\) 0 0
\(9\) −1878.48 −0.858931
\(10\) 0 0
\(11\) −5622.79 −1.27373 −0.636865 0.770976i \(-0.719769\pi\)
−0.636865 + 0.770976i \(0.719769\pi\)
\(12\) 0 0
\(13\) −11031.4 −1.39261 −0.696305 0.717746i \(-0.745174\pi\)
−0.696305 + 0.717746i \(0.745174\pi\)
\(14\) 0 0
\(15\) 2195.58 0.167969
\(16\) 0 0
\(17\) −16752.0 −0.826979 −0.413490 0.910509i \(-0.635690\pi\)
−0.413490 + 0.910509i \(0.635690\pi\)
\(18\) 0 0
\(19\) −35859.5 −1.19941 −0.599703 0.800223i \(-0.704715\pi\)
−0.599703 + 0.800223i \(0.704715\pi\)
\(20\) 0 0
\(21\) 29181.0 0.687596
\(22\) 0 0
\(23\) 51497.4 0.882546 0.441273 0.897373i \(-0.354527\pi\)
0.441273 + 0.897373i \(0.354527\pi\)
\(24\) 0 0
\(25\) 15625.0 0.200000
\(26\) 0 0
\(27\) −71408.8 −0.698198
\(28\) 0 0
\(29\) 197277. 1.50205 0.751023 0.660276i \(-0.229561\pi\)
0.751023 + 0.660276i \(0.229561\pi\)
\(30\) 0 0
\(31\) −19398.8 −0.116952 −0.0584762 0.998289i \(-0.518624\pi\)
−0.0584762 + 0.998289i \(0.518624\pi\)
\(32\) 0 0
\(33\) −98762.3 −0.478401
\(34\) 0 0
\(35\) 207669. 0.818715
\(36\) 0 0
\(37\) −576835. −1.87217 −0.936086 0.351772i \(-0.885579\pi\)
−0.936086 + 0.351772i \(0.885579\pi\)
\(38\) 0 0
\(39\) −193763. −0.523052
\(40\) 0 0
\(41\) −537158. −1.21719 −0.608595 0.793481i \(-0.708266\pi\)
−0.608595 + 0.793481i \(0.708266\pi\)
\(42\) 0 0
\(43\) −5819.80 −0.0111627 −0.00558134 0.999984i \(-0.501777\pi\)
−0.00558134 + 0.999984i \(0.501777\pi\)
\(44\) 0 0
\(45\) −234810. −0.384126
\(46\) 0 0
\(47\) −1.04266e6 −1.46487 −0.732434 0.680838i \(-0.761616\pi\)
−0.732434 + 0.680838i \(0.761616\pi\)
\(48\) 0 0
\(49\) 1.93654e6 2.35147
\(50\) 0 0
\(51\) −294243. −0.310606
\(52\) 0 0
\(53\) 466618. 0.430523 0.215261 0.976556i \(-0.430940\pi\)
0.215261 + 0.976556i \(0.430940\pi\)
\(54\) 0 0
\(55\) −702848. −0.569629
\(56\) 0 0
\(57\) −629859. −0.450486
\(58\) 0 0
\(59\) −498114. −0.315753 −0.157876 0.987459i \(-0.550465\pi\)
−0.157876 + 0.987459i \(0.550465\pi\)
\(60\) 0 0
\(61\) 2.26280e6 1.27642 0.638208 0.769864i \(-0.279676\pi\)
0.638208 + 0.769864i \(0.279676\pi\)
\(62\) 0 0
\(63\) −3.12082e6 −1.57245
\(64\) 0 0
\(65\) −1.37893e6 −0.622794
\(66\) 0 0
\(67\) −1.93123e6 −0.784464 −0.392232 0.919866i \(-0.628297\pi\)
−0.392232 + 0.919866i \(0.628297\pi\)
\(68\) 0 0
\(69\) 904534. 0.331477
\(70\) 0 0
\(71\) 2.41337e6 0.800240 0.400120 0.916463i \(-0.368968\pi\)
0.400120 + 0.916463i \(0.368968\pi\)
\(72\) 0 0
\(73\) 2.63563e6 0.792966 0.396483 0.918042i \(-0.370231\pi\)
0.396483 + 0.918042i \(0.370231\pi\)
\(74\) 0 0
\(75\) 274448. 0.0751182
\(76\) 0 0
\(77\) −9.34141e6 −2.33182
\(78\) 0 0
\(79\) −8.41287e6 −1.91977 −0.959885 0.280394i \(-0.909535\pi\)
−0.959885 + 0.280394i \(0.909535\pi\)
\(80\) 0 0
\(81\) 2.85397e6 0.596694
\(82\) 0 0
\(83\) −5.51975e6 −1.05961 −0.529806 0.848119i \(-0.677735\pi\)
−0.529806 + 0.848119i \(0.677735\pi\)
\(84\) 0 0
\(85\) −2.09400e6 −0.369836
\(86\) 0 0
\(87\) 3.46510e6 0.564156
\(88\) 0 0
\(89\) −5.97135e6 −0.897858 −0.448929 0.893567i \(-0.648194\pi\)
−0.448929 + 0.893567i \(0.648194\pi\)
\(90\) 0 0
\(91\) −1.83270e7 −2.54946
\(92\) 0 0
\(93\) −340734. −0.0439263
\(94\) 0 0
\(95\) −4.48243e6 −0.536390
\(96\) 0 0
\(97\) 1.64459e7 1.82961 0.914803 0.403901i \(-0.132346\pi\)
0.914803 + 0.403901i \(0.132346\pi\)
\(98\) 0 0
\(99\) 1.05623e7 1.09405
\(100\) 0 0
\(101\) −6.90100e6 −0.666480 −0.333240 0.942842i \(-0.608142\pi\)
−0.333240 + 0.942842i \(0.608142\pi\)
\(102\) 0 0
\(103\) 8.15511e6 0.735359 0.367680 0.929953i \(-0.380152\pi\)
0.367680 + 0.929953i \(0.380152\pi\)
\(104\) 0 0
\(105\) 3.64763e6 0.307502
\(106\) 0 0
\(107\) −1.19056e7 −0.939521 −0.469761 0.882794i \(-0.655660\pi\)
−0.469761 + 0.882794i \(0.655660\pi\)
\(108\) 0 0
\(109\) −2.64454e6 −0.195595 −0.0977973 0.995206i \(-0.531180\pi\)
−0.0977973 + 0.995206i \(0.531180\pi\)
\(110\) 0 0
\(111\) −1.01319e7 −0.703171
\(112\) 0 0
\(113\) −1.49698e7 −0.975979 −0.487990 0.872849i \(-0.662270\pi\)
−0.487990 + 0.872849i \(0.662270\pi\)
\(114\) 0 0
\(115\) 6.43717e6 0.394687
\(116\) 0 0
\(117\) 2.07223e7 1.19616
\(118\) 0 0
\(119\) −2.78309e7 −1.51395
\(120\) 0 0
\(121\) 1.21286e7 0.622386
\(122\) 0 0
\(123\) −9.43499e6 −0.457166
\(124\) 0 0
\(125\) 1.95312e6 0.0894427
\(126\) 0 0
\(127\) −1.02177e7 −0.442628 −0.221314 0.975203i \(-0.571035\pi\)
−0.221314 + 0.975203i \(0.571035\pi\)
\(128\) 0 0
\(129\) −102223. −0.00419260
\(130\) 0 0
\(131\) 1.19319e7 0.463726 0.231863 0.972748i \(-0.425518\pi\)
0.231863 + 0.972748i \(0.425518\pi\)
\(132\) 0 0
\(133\) −5.95751e7 −2.19576
\(134\) 0 0
\(135\) −8.92610e6 −0.312244
\(136\) 0 0
\(137\) 2.15335e7 0.715474 0.357737 0.933822i \(-0.383549\pi\)
0.357737 + 0.933822i \(0.383549\pi\)
\(138\) 0 0
\(139\) 1.92850e7 0.609072 0.304536 0.952501i \(-0.401499\pi\)
0.304536 + 0.952501i \(0.401499\pi\)
\(140\) 0 0
\(141\) −1.83139e7 −0.550191
\(142\) 0 0
\(143\) 6.20273e7 1.77381
\(144\) 0 0
\(145\) 2.46596e7 0.671736
\(146\) 0 0
\(147\) 3.40147e7 0.883192
\(148\) 0 0
\(149\) −2.96727e7 −0.734860 −0.367430 0.930051i \(-0.619762\pi\)
−0.367430 + 0.930051i \(0.619762\pi\)
\(150\) 0 0
\(151\) 6.94126e7 1.64066 0.820331 0.571890i \(-0.193789\pi\)
0.820331 + 0.571890i \(0.193789\pi\)
\(152\) 0 0
\(153\) 3.14683e7 0.710318
\(154\) 0 0
\(155\) −2.42485e6 −0.0523027
\(156\) 0 0
\(157\) 6.27066e6 0.129320 0.0646598 0.997907i \(-0.479404\pi\)
0.0646598 + 0.997907i \(0.479404\pi\)
\(158\) 0 0
\(159\) 8.19599e6 0.161701
\(160\) 0 0
\(161\) 8.55551e7 1.61568
\(162\) 0 0
\(163\) −7.98890e7 −1.44488 −0.722438 0.691436i \(-0.756978\pi\)
−0.722438 + 0.691436i \(0.756978\pi\)
\(164\) 0 0
\(165\) −1.23453e7 −0.213948
\(166\) 0 0
\(167\) 2.27801e7 0.378484 0.189242 0.981930i \(-0.439397\pi\)
0.189242 + 0.981930i \(0.439397\pi\)
\(168\) 0 0
\(169\) 5.89437e7 0.939364
\(170\) 0 0
\(171\) 6.73614e7 1.03021
\(172\) 0 0
\(173\) 1.69218e7 0.248477 0.124238 0.992252i \(-0.460351\pi\)
0.124238 + 0.992252i \(0.460351\pi\)
\(174\) 0 0
\(175\) 2.59586e7 0.366141
\(176\) 0 0
\(177\) −8.74921e6 −0.118594
\(178\) 0 0
\(179\) −2.62419e6 −0.0341987 −0.0170994 0.999854i \(-0.505443\pi\)
−0.0170994 + 0.999854i \(0.505443\pi\)
\(180\) 0 0
\(181\) −5.95058e7 −0.745906 −0.372953 0.927850i \(-0.621655\pi\)
−0.372953 + 0.927850i \(0.621655\pi\)
\(182\) 0 0
\(183\) 3.97454e7 0.479411
\(184\) 0 0
\(185\) −7.21044e7 −0.837260
\(186\) 0 0
\(187\) 9.41927e7 1.05335
\(188\) 0 0
\(189\) −1.18635e8 −1.27819
\(190\) 0 0
\(191\) 3.23352e7 0.335783 0.167891 0.985806i \(-0.446304\pi\)
0.167891 + 0.985806i \(0.446304\pi\)
\(192\) 0 0
\(193\) 6.24103e6 0.0624893 0.0312446 0.999512i \(-0.490053\pi\)
0.0312446 + 0.999512i \(0.490053\pi\)
\(194\) 0 0
\(195\) −2.42204e7 −0.233916
\(196\) 0 0
\(197\) −1.63779e8 −1.52625 −0.763125 0.646251i \(-0.776336\pi\)
−0.763125 + 0.646251i \(0.776336\pi\)
\(198\) 0 0
\(199\) −6.10438e7 −0.549106 −0.274553 0.961572i \(-0.588530\pi\)
−0.274553 + 0.961572i \(0.588530\pi\)
\(200\) 0 0
\(201\) −3.39215e7 −0.294638
\(202\) 0 0
\(203\) 3.27746e8 2.74980
\(204\) 0 0
\(205\) −6.71447e7 −0.544344
\(206\) 0 0
\(207\) −9.67369e7 −0.758047
\(208\) 0 0
\(209\) 2.01630e8 1.52772
\(210\) 0 0
\(211\) 1.38165e7 0.101253 0.0506267 0.998718i \(-0.483878\pi\)
0.0506267 + 0.998718i \(0.483878\pi\)
\(212\) 0 0
\(213\) 4.23901e7 0.300563
\(214\) 0 0
\(215\) −727475. −0.00499210
\(216\) 0 0
\(217\) −3.22282e7 −0.214105
\(218\) 0 0
\(219\) 4.62940e7 0.297831
\(220\) 0 0
\(221\) 1.84798e8 1.15166
\(222\) 0 0
\(223\) 4.37107e7 0.263949 0.131975 0.991253i \(-0.457868\pi\)
0.131975 + 0.991253i \(0.457868\pi\)
\(224\) 0 0
\(225\) −2.93513e7 −0.171786
\(226\) 0 0
\(227\) −3.83906e7 −0.217838 −0.108919 0.994051i \(-0.534739\pi\)
−0.108919 + 0.994051i \(0.534739\pi\)
\(228\) 0 0
\(229\) 2.18239e8 1.20090 0.600452 0.799661i \(-0.294987\pi\)
0.600452 + 0.799661i \(0.294987\pi\)
\(230\) 0 0
\(231\) −1.64079e8 −0.875811
\(232\) 0 0
\(233\) 2.52167e8 1.30600 0.653000 0.757358i \(-0.273510\pi\)
0.653000 + 0.757358i \(0.273510\pi\)
\(234\) 0 0
\(235\) −1.30332e8 −0.655109
\(236\) 0 0
\(237\) −1.47769e8 −0.721049
\(238\) 0 0
\(239\) 4.04391e7 0.191606 0.0958030 0.995400i \(-0.469458\pi\)
0.0958030 + 0.995400i \(0.469458\pi\)
\(240\) 0 0
\(241\) 5.56292e6 0.0256002 0.0128001 0.999918i \(-0.495925\pi\)
0.0128001 + 0.999918i \(0.495925\pi\)
\(242\) 0 0
\(243\) 2.06300e8 0.922311
\(244\) 0 0
\(245\) 2.42067e8 1.05161
\(246\) 0 0
\(247\) 3.95581e8 1.67030
\(248\) 0 0
\(249\) −9.69526e7 −0.397981
\(250\) 0 0
\(251\) −2.65218e8 −1.05863 −0.529316 0.848425i \(-0.677551\pi\)
−0.529316 + 0.848425i \(0.677551\pi\)
\(252\) 0 0
\(253\) −2.89559e8 −1.12413
\(254\) 0 0
\(255\) −3.67803e7 −0.138907
\(256\) 0 0
\(257\) −2.09163e7 −0.0768634 −0.0384317 0.999261i \(-0.512236\pi\)
−0.0384317 + 0.999261i \(0.512236\pi\)
\(258\) 0 0
\(259\) −9.58325e8 −3.42739
\(260\) 0 0
\(261\) −3.70581e8 −1.29016
\(262\) 0 0
\(263\) −4.64938e8 −1.57598 −0.787988 0.615691i \(-0.788877\pi\)
−0.787988 + 0.615691i \(0.788877\pi\)
\(264\) 0 0
\(265\) 5.83273e7 0.192536
\(266\) 0 0
\(267\) −1.04885e8 −0.337228
\(268\) 0 0
\(269\) −2.21015e8 −0.692291 −0.346145 0.938181i \(-0.612510\pi\)
−0.346145 + 0.938181i \(0.612510\pi\)
\(270\) 0 0
\(271\) 4.87299e8 1.48731 0.743657 0.668561i \(-0.233089\pi\)
0.743657 + 0.668561i \(0.233089\pi\)
\(272\) 0 0
\(273\) −3.21908e8 −0.957553
\(274\) 0 0
\(275\) −8.78560e7 −0.254746
\(276\) 0 0
\(277\) 5.05955e8 1.43032 0.715160 0.698961i \(-0.246354\pi\)
0.715160 + 0.698961i \(0.246354\pi\)
\(278\) 0 0
\(279\) 3.64403e7 0.100454
\(280\) 0 0
\(281\) −1.13423e8 −0.304950 −0.152475 0.988307i \(-0.548724\pi\)
−0.152475 + 0.988307i \(0.548724\pi\)
\(282\) 0 0
\(283\) 1.04096e8 0.273012 0.136506 0.990639i \(-0.456413\pi\)
0.136506 + 0.990639i \(0.456413\pi\)
\(284\) 0 0
\(285\) −7.87324e7 −0.201464
\(286\) 0 0
\(287\) −8.92406e8 −2.22831
\(288\) 0 0
\(289\) −1.29710e8 −0.316105
\(290\) 0 0
\(291\) 2.88867e8 0.687184
\(292\) 0 0
\(293\) 4.54809e8 1.05631 0.528156 0.849147i \(-0.322883\pi\)
0.528156 + 0.849147i \(0.322883\pi\)
\(294\) 0 0
\(295\) −6.22643e7 −0.141209
\(296\) 0 0
\(297\) 4.01517e8 0.889315
\(298\) 0 0
\(299\) −5.68089e8 −1.22904
\(300\) 0 0
\(301\) −9.66872e6 −0.0204355
\(302\) 0 0
\(303\) −1.21214e8 −0.250324
\(304\) 0 0
\(305\) 2.82850e8 0.570831
\(306\) 0 0
\(307\) 3.95297e8 0.779721 0.389861 0.920874i \(-0.372523\pi\)
0.389861 + 0.920874i \(0.372523\pi\)
\(308\) 0 0
\(309\) 1.43242e8 0.276194
\(310\) 0 0
\(311\) −6.41605e7 −0.120950 −0.0604751 0.998170i \(-0.519262\pi\)
−0.0604751 + 0.998170i \(0.519262\pi\)
\(312\) 0 0
\(313\) −4.16252e8 −0.767274 −0.383637 0.923484i \(-0.625329\pi\)
−0.383637 + 0.923484i \(0.625329\pi\)
\(314\) 0 0
\(315\) −3.90102e8 −0.703220
\(316\) 0 0
\(317\) 2.06280e8 0.363706 0.181853 0.983326i \(-0.441790\pi\)
0.181853 + 0.983326i \(0.441790\pi\)
\(318\) 0 0
\(319\) −1.10925e9 −1.91320
\(320\) 0 0
\(321\) −2.09117e8 −0.352876
\(322\) 0 0
\(323\) 6.00716e8 0.991883
\(324\) 0 0
\(325\) −1.72366e8 −0.278522
\(326\) 0 0
\(327\) −4.64504e7 −0.0734636
\(328\) 0 0
\(329\) −1.73221e9 −2.68174
\(330\) 0 0
\(331\) −2.51051e8 −0.380508 −0.190254 0.981735i \(-0.560931\pi\)
−0.190254 + 0.981735i \(0.560931\pi\)
\(332\) 0 0
\(333\) 1.08357e9 1.60807
\(334\) 0 0
\(335\) −2.41404e8 −0.350823
\(336\) 0 0
\(337\) 1.85482e8 0.263996 0.131998 0.991250i \(-0.457861\pi\)
0.131998 + 0.991250i \(0.457861\pi\)
\(338\) 0 0
\(339\) −2.62939e8 −0.366569
\(340\) 0 0
\(341\) 1.09075e8 0.148966
\(342\) 0 0
\(343\) 1.84908e9 2.47415
\(344\) 0 0
\(345\) 1.13067e8 0.148241
\(346\) 0 0
\(347\) −2.85208e8 −0.366445 −0.183223 0.983071i \(-0.558653\pi\)
−0.183223 + 0.983071i \(0.558653\pi\)
\(348\) 0 0
\(349\) −1.67666e8 −0.211133 −0.105567 0.994412i \(-0.533666\pi\)
−0.105567 + 0.994412i \(0.533666\pi\)
\(350\) 0 0
\(351\) 7.87741e8 0.972318
\(352\) 0 0
\(353\) −4.51601e8 −0.546441 −0.273220 0.961951i \(-0.588089\pi\)
−0.273220 + 0.961951i \(0.588089\pi\)
\(354\) 0 0
\(355\) 3.01672e8 0.357878
\(356\) 0 0
\(357\) −4.88840e8 −0.568627
\(358\) 0 0
\(359\) −1.55976e9 −1.77921 −0.889603 0.456735i \(-0.849019\pi\)
−0.889603 + 0.456735i \(0.849019\pi\)
\(360\) 0 0
\(361\) 3.92029e8 0.438574
\(362\) 0 0
\(363\) 2.13034e8 0.233763
\(364\) 0 0
\(365\) 3.29454e8 0.354625
\(366\) 0 0
\(367\) −1.98093e8 −0.209189 −0.104594 0.994515i \(-0.533354\pi\)
−0.104594 + 0.994515i \(0.533354\pi\)
\(368\) 0 0
\(369\) 1.00904e9 1.04548
\(370\) 0 0
\(371\) 7.75216e8 0.788159
\(372\) 0 0
\(373\) 8.64758e8 0.862807 0.431404 0.902159i \(-0.358018\pi\)
0.431404 + 0.902159i \(0.358018\pi\)
\(374\) 0 0
\(375\) 3.43060e7 0.0335939
\(376\) 0 0
\(377\) −2.17625e9 −2.09177
\(378\) 0 0
\(379\) 8.26044e8 0.779410 0.389705 0.920940i \(-0.372577\pi\)
0.389705 + 0.920940i \(0.372577\pi\)
\(380\) 0 0
\(381\) −1.79470e8 −0.166247
\(382\) 0 0
\(383\) 1.79537e9 1.63289 0.816446 0.577421i \(-0.195941\pi\)
0.816446 + 0.577421i \(0.195941\pi\)
\(384\) 0 0
\(385\) −1.16768e9 −1.04282
\(386\) 0 0
\(387\) 1.09324e7 0.00958797
\(388\) 0 0
\(389\) 1.89068e9 1.62852 0.814262 0.580498i \(-0.197142\pi\)
0.814262 + 0.580498i \(0.197142\pi\)
\(390\) 0 0
\(391\) −8.62682e8 −0.729848
\(392\) 0 0
\(393\) 2.09580e8 0.174171
\(394\) 0 0
\(395\) −1.05161e9 −0.858547
\(396\) 0 0
\(397\) 4.47209e8 0.358710 0.179355 0.983784i \(-0.442599\pi\)
0.179355 + 0.983784i \(0.442599\pi\)
\(398\) 0 0
\(399\) −1.04642e9 −0.824706
\(400\) 0 0
\(401\) 5.02001e8 0.388776 0.194388 0.980925i \(-0.437728\pi\)
0.194388 + 0.980925i \(0.437728\pi\)
\(402\) 0 0
\(403\) 2.13996e8 0.162869
\(404\) 0 0
\(405\) 3.56746e8 0.266850
\(406\) 0 0
\(407\) 3.24342e9 2.38464
\(408\) 0 0
\(409\) 1.85997e9 1.34423 0.672115 0.740446i \(-0.265386\pi\)
0.672115 + 0.740446i \(0.265386\pi\)
\(410\) 0 0
\(411\) 3.78229e8 0.268726
\(412\) 0 0
\(413\) −8.27542e8 −0.578049
\(414\) 0 0
\(415\) −6.89969e8 −0.473872
\(416\) 0 0
\(417\) 3.38735e8 0.228762
\(418\) 0 0
\(419\) −1.24339e9 −0.825770 −0.412885 0.910783i \(-0.635479\pi\)
−0.412885 + 0.910783i \(0.635479\pi\)
\(420\) 0 0
\(421\) 1.46595e9 0.957487 0.478744 0.877955i \(-0.341092\pi\)
0.478744 + 0.877955i \(0.341092\pi\)
\(422\) 0 0
\(423\) 1.95861e9 1.25822
\(424\) 0 0
\(425\) −2.61749e8 −0.165396
\(426\) 0 0
\(427\) 3.75931e9 2.33674
\(428\) 0 0
\(429\) 1.08949e9 0.666227
\(430\) 0 0
\(431\) 3.23266e9 1.94487 0.972434 0.233179i \(-0.0749129\pi\)
0.972434 + 0.233179i \(0.0749129\pi\)
\(432\) 0 0
\(433\) −2.13634e9 −1.26463 −0.632313 0.774713i \(-0.717894\pi\)
−0.632313 + 0.774713i \(0.717894\pi\)
\(434\) 0 0
\(435\) 4.33138e8 0.252298
\(436\) 0 0
\(437\) −1.84667e9 −1.05853
\(438\) 0 0
\(439\) −1.75840e9 −0.991957 −0.495978 0.868335i \(-0.665190\pi\)
−0.495978 + 0.868335i \(0.665190\pi\)
\(440\) 0 0
\(441\) −3.63776e9 −2.01975
\(442\) 0 0
\(443\) 1.03894e9 0.567774 0.283887 0.958858i \(-0.408376\pi\)
0.283887 + 0.958858i \(0.408376\pi\)
\(444\) 0 0
\(445\) −7.46419e8 −0.401534
\(446\) 0 0
\(447\) −5.21190e8 −0.276007
\(448\) 0 0
\(449\) −3.02217e7 −0.0157564 −0.00787821 0.999969i \(-0.502508\pi\)
−0.00787821 + 0.999969i \(0.502508\pi\)
\(450\) 0 0
\(451\) 3.02032e9 1.55037
\(452\) 0 0
\(453\) 1.21921e9 0.616218
\(454\) 0 0
\(455\) −2.29088e9 −1.14015
\(456\) 0 0
\(457\) 4.26007e8 0.208790 0.104395 0.994536i \(-0.466709\pi\)
0.104395 + 0.994536i \(0.466709\pi\)
\(458\) 0 0
\(459\) 1.19624e9 0.577395
\(460\) 0 0
\(461\) −1.78754e9 −0.849772 −0.424886 0.905247i \(-0.639686\pi\)
−0.424886 + 0.905247i \(0.639686\pi\)
\(462\) 0 0
\(463\) 2.52187e9 1.18084 0.590419 0.807097i \(-0.298963\pi\)
0.590419 + 0.807097i \(0.298963\pi\)
\(464\) 0 0
\(465\) −4.25917e7 −0.0196444
\(466\) 0 0
\(467\) −3.60291e9 −1.63699 −0.818493 0.574517i \(-0.805190\pi\)
−0.818493 + 0.574517i \(0.805190\pi\)
\(468\) 0 0
\(469\) −3.20846e9 −1.43612
\(470\) 0 0
\(471\) 1.10142e8 0.0485713
\(472\) 0 0
\(473\) 3.27235e7 0.0142182
\(474\) 0 0
\(475\) −5.60304e8 −0.239881
\(476\) 0 0
\(477\) −8.76534e8 −0.369789
\(478\) 0 0
\(479\) −2.87149e9 −1.19381 −0.596903 0.802314i \(-0.703602\pi\)
−0.596903 + 0.802314i \(0.703602\pi\)
\(480\) 0 0
\(481\) 6.36331e9 2.60721
\(482\) 0 0
\(483\) 1.50275e9 0.606835
\(484\) 0 0
\(485\) 2.05574e9 0.818224
\(486\) 0 0
\(487\) −2.48078e9 −0.973277 −0.486638 0.873604i \(-0.661777\pi\)
−0.486638 + 0.873604i \(0.661777\pi\)
\(488\) 0 0
\(489\) −1.40322e9 −0.542683
\(490\) 0 0
\(491\) −3.61256e9 −1.37731 −0.688653 0.725091i \(-0.741797\pi\)
−0.688653 + 0.725091i \(0.741797\pi\)
\(492\) 0 0
\(493\) −3.30478e9 −1.24216
\(494\) 0 0
\(495\) 1.32029e9 0.489272
\(496\) 0 0
\(497\) 4.00946e9 1.46500
\(498\) 0 0
\(499\) −3.78849e9 −1.36494 −0.682471 0.730912i \(-0.739095\pi\)
−0.682471 + 0.730912i \(0.739095\pi\)
\(500\) 0 0
\(501\) 4.00125e8 0.142155
\(502\) 0 0
\(503\) −8.09636e8 −0.283663 −0.141831 0.989891i \(-0.545299\pi\)
−0.141831 + 0.989891i \(0.545299\pi\)
\(504\) 0 0
\(505\) −8.62625e8 −0.298059
\(506\) 0 0
\(507\) 1.03533e9 0.352817
\(508\) 0 0
\(509\) −2.74098e9 −0.921284 −0.460642 0.887586i \(-0.652381\pi\)
−0.460642 + 0.887586i \(0.652381\pi\)
\(510\) 0 0
\(511\) 4.37870e9 1.45169
\(512\) 0 0
\(513\) 2.56068e9 0.837423
\(514\) 0 0
\(515\) 1.01939e9 0.328863
\(516\) 0 0
\(517\) 5.86263e9 1.86584
\(518\) 0 0
\(519\) 2.97226e8 0.0933257
\(520\) 0 0
\(521\) 3.08219e9 0.954834 0.477417 0.878677i \(-0.341573\pi\)
0.477417 + 0.878677i \(0.341573\pi\)
\(522\) 0 0
\(523\) 4.63997e9 1.41827 0.709135 0.705072i \(-0.249085\pi\)
0.709135 + 0.705072i \(0.249085\pi\)
\(524\) 0 0
\(525\) 4.55954e8 0.137519
\(526\) 0 0
\(527\) 3.24968e8 0.0967173
\(528\) 0 0
\(529\) −7.52847e8 −0.221112
\(530\) 0 0
\(531\) 9.35699e8 0.271210
\(532\) 0 0
\(533\) 5.92561e9 1.69507
\(534\) 0 0
\(535\) −1.48819e9 −0.420167
\(536\) 0 0
\(537\) −4.60931e7 −0.0128447
\(538\) 0 0
\(539\) −1.08887e10 −2.99514
\(540\) 0 0
\(541\) −4.21606e9 −1.14477 −0.572383 0.819987i \(-0.693981\pi\)
−0.572383 + 0.819987i \(0.693981\pi\)
\(542\) 0 0
\(543\) −1.04520e9 −0.280156
\(544\) 0 0
\(545\) −3.30567e8 −0.0874725
\(546\) 0 0
\(547\) −3.74991e9 −0.979636 −0.489818 0.871825i \(-0.662937\pi\)
−0.489818 + 0.871825i \(0.662937\pi\)
\(548\) 0 0
\(549\) −4.25064e9 −1.09635
\(550\) 0 0
\(551\) −7.07425e9 −1.80156
\(552\) 0 0
\(553\) −1.39767e10 −3.51453
\(554\) 0 0
\(555\) −1.26649e9 −0.314468
\(556\) 0 0
\(557\) −1.55904e9 −0.382265 −0.191132 0.981564i \(-0.561216\pi\)
−0.191132 + 0.981564i \(0.561216\pi\)
\(558\) 0 0
\(559\) 6.42006e7 0.0155453
\(560\) 0 0
\(561\) 1.65446e9 0.395628
\(562\) 0 0
\(563\) −8.01780e8 −0.189355 −0.0946773 0.995508i \(-0.530182\pi\)
−0.0946773 + 0.995508i \(0.530182\pi\)
\(564\) 0 0
\(565\) −1.87122e9 −0.436471
\(566\) 0 0
\(567\) 4.74144e9 1.09237
\(568\) 0 0
\(569\) 1.65652e9 0.376967 0.188484 0.982076i \(-0.439643\pi\)
0.188484 + 0.982076i \(0.439643\pi\)
\(570\) 0 0
\(571\) −8.44462e8 −0.189825 −0.0949126 0.995486i \(-0.530257\pi\)
−0.0949126 + 0.995486i \(0.530257\pi\)
\(572\) 0 0
\(573\) 5.67956e8 0.126117
\(574\) 0 0
\(575\) 8.04646e8 0.176509
\(576\) 0 0
\(577\) 5.72151e9 1.23992 0.619962 0.784631i \(-0.287148\pi\)
0.619962 + 0.784631i \(0.287148\pi\)
\(578\) 0 0
\(579\) 1.09622e8 0.0234704
\(580\) 0 0
\(581\) −9.17024e9 −1.93983
\(582\) 0 0
\(583\) −2.62369e9 −0.548369
\(584\) 0 0
\(585\) 2.59029e9 0.534937
\(586\) 0 0
\(587\) −3.55364e9 −0.725171 −0.362585 0.931951i \(-0.618106\pi\)
−0.362585 + 0.931951i \(0.618106\pi\)
\(588\) 0 0
\(589\) 6.95631e8 0.140273
\(590\) 0 0
\(591\) −2.87672e9 −0.573246
\(592\) 0 0
\(593\) 7.22540e9 1.42289 0.711443 0.702744i \(-0.248042\pi\)
0.711443 + 0.702744i \(0.248042\pi\)
\(594\) 0 0
\(595\) −3.47886e9 −0.677060
\(596\) 0 0
\(597\) −1.07221e9 −0.206239
\(598\) 0 0
\(599\) 6.11590e7 0.0116270 0.00581348 0.999983i \(-0.498150\pi\)
0.00581348 + 0.999983i \(0.498150\pi\)
\(600\) 0 0
\(601\) 6.55031e9 1.23084 0.615419 0.788200i \(-0.288987\pi\)
0.615419 + 0.788200i \(0.288987\pi\)
\(602\) 0 0
\(603\) 3.62779e9 0.673801
\(604\) 0 0
\(605\) 1.51607e9 0.278340
\(606\) 0 0
\(607\) −4.94498e9 −0.897436 −0.448718 0.893673i \(-0.648119\pi\)
−0.448718 + 0.893673i \(0.648119\pi\)
\(608\) 0 0
\(609\) 5.75675e9 1.03280
\(610\) 0 0
\(611\) 1.15020e10 2.03999
\(612\) 0 0
\(613\) 8.80012e8 0.154304 0.0771520 0.997019i \(-0.475417\pi\)
0.0771520 + 0.997019i \(0.475417\pi\)
\(614\) 0 0
\(615\) −1.17937e9 −0.204451
\(616\) 0 0
\(617\) −6.76308e8 −0.115917 −0.0579584 0.998319i \(-0.518459\pi\)
−0.0579584 + 0.998319i \(0.518459\pi\)
\(618\) 0 0
\(619\) −2.44000e9 −0.413497 −0.206748 0.978394i \(-0.566288\pi\)
−0.206748 + 0.978394i \(0.566288\pi\)
\(620\) 0 0
\(621\) −3.67737e9 −0.616192
\(622\) 0 0
\(623\) −9.92051e9 −1.64371
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 0 0
\(627\) 3.54156e9 0.573797
\(628\) 0 0
\(629\) 9.66312e9 1.54825
\(630\) 0 0
\(631\) −2.83883e9 −0.449817 −0.224909 0.974380i \(-0.572208\pi\)
−0.224909 + 0.974380i \(0.572208\pi\)
\(632\) 0 0
\(633\) 2.42682e8 0.0380299
\(634\) 0 0
\(635\) −1.27721e9 −0.197949
\(636\) 0 0
\(637\) −2.13628e10 −3.27469
\(638\) 0 0
\(639\) −4.53348e9 −0.687351
\(640\) 0 0
\(641\) 9.22881e8 0.138402 0.0692011 0.997603i \(-0.477955\pi\)
0.0692011 + 0.997603i \(0.477955\pi\)
\(642\) 0 0
\(643\) 1.28831e9 0.191109 0.0955544 0.995424i \(-0.469538\pi\)
0.0955544 + 0.995424i \(0.469538\pi\)
\(644\) 0 0
\(645\) −1.27778e7 −0.00187499
\(646\) 0 0
\(647\) 1.73640e9 0.252050 0.126025 0.992027i \(-0.459778\pi\)
0.126025 + 0.992027i \(0.459778\pi\)
\(648\) 0 0
\(649\) 2.80079e9 0.402183
\(650\) 0 0
\(651\) −5.66078e8 −0.0804160
\(652\) 0 0
\(653\) −4.96284e8 −0.0697484 −0.0348742 0.999392i \(-0.511103\pi\)
−0.0348742 + 0.999392i \(0.511103\pi\)
\(654\) 0 0
\(655\) 1.49149e9 0.207385
\(656\) 0 0
\(657\) −4.95099e9 −0.681103
\(658\) 0 0
\(659\) 3.10480e9 0.422606 0.211303 0.977421i \(-0.432229\pi\)
0.211303 + 0.977421i \(0.432229\pi\)
\(660\) 0 0
\(661\) 4.04807e9 0.545183 0.272592 0.962130i \(-0.412119\pi\)
0.272592 + 0.962130i \(0.412119\pi\)
\(662\) 0 0
\(663\) 3.24591e9 0.432553
\(664\) 0 0
\(665\) −7.44689e9 −0.981972
\(666\) 0 0
\(667\) 1.01592e10 1.32563
\(668\) 0 0
\(669\) 7.67763e8 0.0991370
\(670\) 0 0
\(671\) −1.27233e10 −1.62581
\(672\) 0 0
\(673\) −6.38243e9 −0.807111 −0.403556 0.914955i \(-0.632226\pi\)
−0.403556 + 0.914955i \(0.632226\pi\)
\(674\) 0 0
\(675\) −1.11576e9 −0.139640
\(676\) 0 0
\(677\) −7.76270e9 −0.961507 −0.480753 0.876856i \(-0.659637\pi\)
−0.480753 + 0.876856i \(0.659637\pi\)
\(678\) 0 0
\(679\) 2.73224e10 3.34946
\(680\) 0 0
\(681\) −6.74318e8 −0.0818182
\(682\) 0 0
\(683\) −1.01635e10 −1.22060 −0.610298 0.792172i \(-0.708950\pi\)
−0.610298 + 0.792172i \(0.708950\pi\)
\(684\) 0 0
\(685\) 2.69169e9 0.319969
\(686\) 0 0
\(687\) 3.83330e9 0.451049
\(688\) 0 0
\(689\) −5.14746e9 −0.599550
\(690\) 0 0
\(691\) −4.41960e9 −0.509577 −0.254788 0.966997i \(-0.582006\pi\)
−0.254788 + 0.966997i \(0.582006\pi\)
\(692\) 0 0
\(693\) 1.75477e10 2.00287
\(694\) 0 0
\(695\) 2.41063e9 0.272385
\(696\) 0 0
\(697\) 8.99845e9 1.00659
\(698\) 0 0
\(699\) 4.42924e9 0.490522
\(700\) 0 0
\(701\) −1.19204e10 −1.30701 −0.653505 0.756922i \(-0.726702\pi\)
−0.653505 + 0.756922i \(0.726702\pi\)
\(702\) 0 0
\(703\) 2.06850e10 2.24549
\(704\) 0 0
\(705\) −2.28924e9 −0.246053
\(706\) 0 0
\(707\) −1.14650e10 −1.22013
\(708\) 0 0
\(709\) 3.25551e9 0.343050 0.171525 0.985180i \(-0.445131\pi\)
0.171525 + 0.985180i \(0.445131\pi\)
\(710\) 0 0
\(711\) 1.58034e10 1.64895
\(712\) 0 0
\(713\) −9.98988e8 −0.103216
\(714\) 0 0
\(715\) 7.75341e9 0.793271
\(716\) 0 0
\(717\) 7.10299e8 0.0719655
\(718\) 0 0
\(719\) −1.11076e10 −1.11447 −0.557233 0.830356i \(-0.688137\pi\)
−0.557233 + 0.830356i \(0.688137\pi\)
\(720\) 0 0
\(721\) 1.35485e10 1.34622
\(722\) 0 0
\(723\) 9.77107e7 0.00961520
\(724\) 0 0
\(725\) 3.08245e9 0.300409
\(726\) 0 0
\(727\) −5.99593e9 −0.578744 −0.289372 0.957217i \(-0.593446\pi\)
−0.289372 + 0.957217i \(0.593446\pi\)
\(728\) 0 0
\(729\) −2.61804e9 −0.250282
\(730\) 0 0
\(731\) 9.74931e7 0.00923130
\(732\) 0 0
\(733\) 1.60252e10 1.50293 0.751467 0.659771i \(-0.229347\pi\)
0.751467 + 0.659771i \(0.229347\pi\)
\(734\) 0 0
\(735\) 4.25183e9 0.394976
\(736\) 0 0
\(737\) 1.08589e10 0.999195
\(738\) 0 0
\(739\) 4.63052e9 0.422060 0.211030 0.977480i \(-0.432318\pi\)
0.211030 + 0.977480i \(0.432318\pi\)
\(740\) 0 0
\(741\) 6.94824e9 0.627352
\(742\) 0 0
\(743\) 3.84481e9 0.343886 0.171943 0.985107i \(-0.444996\pi\)
0.171943 + 0.985107i \(0.444996\pi\)
\(744\) 0 0
\(745\) −3.70908e9 −0.328639
\(746\) 0 0
\(747\) 1.03688e10 0.910133
\(748\) 0 0
\(749\) −1.97793e10 −1.71998
\(750\) 0 0
\(751\) 1.90095e10 1.63769 0.818843 0.574017i \(-0.194616\pi\)
0.818843 + 0.574017i \(0.194616\pi\)
\(752\) 0 0
\(753\) −4.65847e9 −0.397613
\(754\) 0 0
\(755\) 8.67657e9 0.733726
\(756\) 0 0
\(757\) 1.70131e10 1.42544 0.712720 0.701449i \(-0.247463\pi\)
0.712720 + 0.701449i \(0.247463\pi\)
\(758\) 0 0
\(759\) −5.08600e9 −0.422212
\(760\) 0 0
\(761\) −1.88582e10 −1.55115 −0.775575 0.631255i \(-0.782540\pi\)
−0.775575 + 0.631255i \(0.782540\pi\)
\(762\) 0 0
\(763\) −4.39350e9 −0.358075
\(764\) 0 0
\(765\) 3.93353e9 0.317664
\(766\) 0 0
\(767\) 5.49491e9 0.439720
\(768\) 0 0
\(769\) 1.49558e10 1.18595 0.592976 0.805220i \(-0.297953\pi\)
0.592976 + 0.805220i \(0.297953\pi\)
\(770\) 0 0
\(771\) −3.67388e8 −0.0288692
\(772\) 0 0
\(773\) 9.47016e9 0.737444 0.368722 0.929540i \(-0.379795\pi\)
0.368722 + 0.929540i \(0.379795\pi\)
\(774\) 0 0
\(775\) −3.03107e8 −0.0233905
\(776\) 0 0
\(777\) −1.68326e10 −1.28730
\(778\) 0 0
\(779\) 1.92622e10 1.45990
\(780\) 0 0
\(781\) −1.35699e10 −1.01929
\(782\) 0 0
\(783\) −1.40873e10 −1.04873
\(784\) 0 0
\(785\) 7.83832e8 0.0578335
\(786\) 0 0
\(787\) 2.34996e9 0.171849 0.0859247 0.996302i \(-0.472616\pi\)
0.0859247 + 0.996302i \(0.472616\pi\)
\(788\) 0 0
\(789\) −8.16647e9 −0.591923
\(790\) 0 0
\(791\) −2.48700e10 −1.78673
\(792\) 0 0
\(793\) −2.49619e10 −1.77755
\(794\) 0 0
\(795\) 1.02450e9 0.0723147
\(796\) 0 0
\(797\) 1.37072e10 0.959057 0.479529 0.877526i \(-0.340808\pi\)
0.479529 + 0.877526i \(0.340808\pi\)
\(798\) 0 0
\(799\) 1.74665e10 1.21141
\(800\) 0 0
\(801\) 1.12171e10 0.771199
\(802\) 0 0
\(803\) −1.48196e10 −1.01002
\(804\) 0 0
\(805\) 1.06944e10 0.722554
\(806\) 0 0
\(807\) −3.88205e9 −0.260018
\(808\) 0 0
\(809\) −2.45778e10 −1.63201 −0.816006 0.578043i \(-0.803817\pi\)
−0.816006 + 0.578043i \(0.803817\pi\)
\(810\) 0 0
\(811\) 4.88640e9 0.321674 0.160837 0.986981i \(-0.448581\pi\)
0.160837 + 0.986981i \(0.448581\pi\)
\(812\) 0 0
\(813\) 8.55924e9 0.558622
\(814\) 0 0
\(815\) −9.98613e9 −0.646168
\(816\) 0 0
\(817\) 2.08695e8 0.0133886
\(818\) 0 0
\(819\) 3.44270e10 2.18981
\(820\) 0 0
\(821\) −3.28588e9 −0.207229 −0.103615 0.994618i \(-0.533041\pi\)
−0.103615 + 0.994618i \(0.533041\pi\)
\(822\) 0 0
\(823\) −2.64607e10 −1.65463 −0.827317 0.561735i \(-0.810134\pi\)
−0.827317 + 0.561735i \(0.810134\pi\)
\(824\) 0 0
\(825\) −1.54316e9 −0.0956803
\(826\) 0 0
\(827\) −2.81695e10 −1.73185 −0.865925 0.500174i \(-0.833269\pi\)
−0.865925 + 0.500174i \(0.833269\pi\)
\(828\) 0 0
\(829\) −1.06563e10 −0.649629 −0.324814 0.945778i \(-0.605302\pi\)
−0.324814 + 0.945778i \(0.605302\pi\)
\(830\) 0 0
\(831\) 8.88694e9 0.537215
\(832\) 0 0
\(833\) −3.24408e10 −1.94462
\(834\) 0 0
\(835\) 2.84751e9 0.169263
\(836\) 0 0
\(837\) 1.38525e9 0.0816560
\(838\) 0 0
\(839\) −1.41352e9 −0.0826295 −0.0413147 0.999146i \(-0.513155\pi\)
−0.0413147 + 0.999146i \(0.513155\pi\)
\(840\) 0 0
\(841\) 2.16683e10 1.25614
\(842\) 0 0
\(843\) −1.99223e9 −0.114536
\(844\) 0 0
\(845\) 7.36796e9 0.420096
\(846\) 0 0
\(847\) 2.01498e10 1.13940
\(848\) 0 0
\(849\) 1.82841e9 0.102541
\(850\) 0 0
\(851\) −2.97055e10 −1.65228
\(852\) 0 0
\(853\) −1.12037e10 −0.618074 −0.309037 0.951050i \(-0.600007\pi\)
−0.309037 + 0.951050i \(0.600007\pi\)
\(854\) 0 0
\(855\) 8.42017e9 0.460723
\(856\) 0 0
\(857\) 2.27859e10 1.23661 0.618306 0.785937i \(-0.287819\pi\)
0.618306 + 0.785937i \(0.287819\pi\)
\(858\) 0 0
\(859\) 1.80638e10 0.972374 0.486187 0.873855i \(-0.338387\pi\)
0.486187 + 0.873855i \(0.338387\pi\)
\(860\) 0 0
\(861\) −1.56748e10 −0.836934
\(862\) 0 0
\(863\) −8.77045e9 −0.464498 −0.232249 0.972656i \(-0.574608\pi\)
−0.232249 + 0.972656i \(0.574608\pi\)
\(864\) 0 0
\(865\) 2.11523e9 0.111122
\(866\) 0 0
\(867\) −2.27832e9 −0.118726
\(868\) 0 0
\(869\) 4.73038e10 2.44527
\(870\) 0 0
\(871\) 2.13043e10 1.09245
\(872\) 0 0
\(873\) −3.08934e10 −1.57151
\(874\) 0 0
\(875\) 3.24482e9 0.163743
\(876\) 0 0
\(877\) −7.53810e9 −0.377366 −0.188683 0.982038i \(-0.560422\pi\)
−0.188683 + 0.982038i \(0.560422\pi\)
\(878\) 0 0
\(879\) 7.98857e9 0.396742
\(880\) 0 0
\(881\) 1.42676e10 0.702967 0.351483 0.936194i \(-0.385677\pi\)
0.351483 + 0.936194i \(0.385677\pi\)
\(882\) 0 0
\(883\) −3.13182e10 −1.53085 −0.765427 0.643523i \(-0.777472\pi\)
−0.765427 + 0.643523i \(0.777472\pi\)
\(884\) 0 0
\(885\) −1.09365e9 −0.0530368
\(886\) 0 0
\(887\) −1.11980e10 −0.538775 −0.269387 0.963032i \(-0.586821\pi\)
−0.269387 + 0.963032i \(0.586821\pi\)
\(888\) 0 0
\(889\) −1.69751e10 −0.810321
\(890\) 0 0
\(891\) −1.60473e10 −0.760027
\(892\) 0 0
\(893\) 3.73890e10 1.75697
\(894\) 0 0
\(895\) −3.28024e8 −0.0152941
\(896\) 0 0
\(897\) −9.97829e9 −0.461618
\(898\) 0 0
\(899\) −3.82694e9 −0.175668
\(900\) 0 0
\(901\) −7.81677e9 −0.356033
\(902\) 0 0
\(903\) −1.69828e8 −0.00767541
\(904\) 0 0
\(905\) −7.43822e9 −0.333579
\(906\) 0 0
\(907\) 1.88080e10 0.836982 0.418491 0.908221i \(-0.362559\pi\)
0.418491 + 0.908221i \(0.362559\pi\)
\(908\) 0 0
\(909\) 1.29634e10 0.572461
\(910\) 0 0
\(911\) −4.32986e10 −1.89740 −0.948702 0.316173i \(-0.897602\pi\)
−0.948702 + 0.316173i \(0.897602\pi\)
\(912\) 0 0
\(913\) 3.10364e10 1.34966
\(914\) 0 0
\(915\) 4.96817e9 0.214399
\(916\) 0 0
\(917\) 1.98231e10 0.848944
\(918\) 0 0
\(919\) −2.33634e10 −0.992962 −0.496481 0.868048i \(-0.665375\pi\)
−0.496481 + 0.868048i \(0.665375\pi\)
\(920\) 0 0
\(921\) 6.94326e9 0.292856
\(922\) 0 0
\(923\) −2.66229e10 −1.11442
\(924\) 0 0
\(925\) −9.01305e9 −0.374434
\(926\) 0 0
\(927\) −1.53192e10 −0.631623
\(928\) 0 0
\(929\) 3.22862e10 1.32118 0.660589 0.750748i \(-0.270307\pi\)
0.660589 + 0.750748i \(0.270307\pi\)
\(930\) 0 0
\(931\) −6.94432e10 −2.82037
\(932\) 0 0
\(933\) −1.12696e9 −0.0454278
\(934\) 0 0
\(935\) 1.17741e10 0.471071
\(936\) 0 0
\(937\) −2.32299e10 −0.922483 −0.461242 0.887275i \(-0.652596\pi\)
−0.461242 + 0.887275i \(0.652596\pi\)
\(938\) 0 0
\(939\) −7.31132e9 −0.288181
\(940\) 0 0
\(941\) −6.94349e9 −0.271653 −0.135826 0.990733i \(-0.543369\pi\)
−0.135826 + 0.990733i \(0.543369\pi\)
\(942\) 0 0
\(943\) −2.76622e10 −1.07423
\(944\) 0 0
\(945\) −1.48294e10 −0.571625
\(946\) 0 0
\(947\) 1.30068e9 0.0497675 0.0248838 0.999690i \(-0.492078\pi\)
0.0248838 + 0.999690i \(0.492078\pi\)
\(948\) 0 0
\(949\) −2.90747e10 −1.10429
\(950\) 0 0
\(951\) 3.62324e9 0.136605
\(952\) 0 0
\(953\) −3.12573e10 −1.16984 −0.584920 0.811091i \(-0.698874\pi\)
−0.584920 + 0.811091i \(0.698874\pi\)
\(954\) 0 0
\(955\) 4.04189e9 0.150167
\(956\) 0 0
\(957\) −1.94835e10 −0.718581
\(958\) 0 0
\(959\) 3.57747e10 1.30982
\(960\) 0 0
\(961\) −2.71363e10 −0.986322
\(962\) 0 0
\(963\) 2.23644e10 0.806984
\(964\) 0 0
\(965\) 7.80129e8 0.0279461
\(966\) 0 0
\(967\) −4.26046e10 −1.51518 −0.757590 0.652731i \(-0.773623\pi\)
−0.757590 + 0.652731i \(0.773623\pi\)
\(968\) 0 0
\(969\) 1.05514e10 0.372543
\(970\) 0 0
\(971\) 4.71232e10 1.65184 0.825919 0.563789i \(-0.190657\pi\)
0.825919 + 0.563789i \(0.190657\pi\)
\(972\) 0 0
\(973\) 3.20392e10 1.11503
\(974\) 0 0
\(975\) −3.02755e9 −0.104610
\(976\) 0 0
\(977\) −1.94783e10 −0.668220 −0.334110 0.942534i \(-0.608436\pi\)
−0.334110 + 0.942534i \(0.608436\pi\)
\(978\) 0 0
\(979\) 3.35756e10 1.14363
\(980\) 0 0
\(981\) 4.96771e9 0.168002
\(982\) 0 0
\(983\) −1.93425e10 −0.649495 −0.324747 0.945801i \(-0.605279\pi\)
−0.324747 + 0.945801i \(0.605279\pi\)
\(984\) 0 0
\(985\) −2.04723e10 −0.682560
\(986\) 0 0
\(987\) −3.04258e10 −1.00724
\(988\) 0 0
\(989\) −2.99704e8 −0.00985158
\(990\) 0 0
\(991\) −5.22551e10 −1.70558 −0.852788 0.522258i \(-0.825090\pi\)
−0.852788 + 0.522258i \(0.825090\pi\)
\(992\) 0 0
\(993\) −4.40963e9 −0.142916
\(994\) 0 0
\(995\) −7.63048e9 −0.245568
\(996\) 0 0
\(997\) −5.87982e10 −1.87902 −0.939509 0.342523i \(-0.888719\pi\)
−0.939509 + 0.342523i \(0.888719\pi\)
\(998\) 0 0
\(999\) 4.11911e10 1.30715
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.8.a.e.1.2 yes 2
4.3 odd 2 160.8.a.a.1.1 2
8.3 odd 2 320.8.a.r.1.2 2
8.5 even 2 320.8.a.n.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.8.a.a.1.1 2 4.3 odd 2
160.8.a.e.1.2 yes 2 1.1 even 1 trivial
320.8.a.n.1.1 2 8.5 even 2
320.8.a.r.1.2 2 8.3 odd 2